CN113292600B - 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用 - Google Patents

一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用 Download PDF

Info

Publication number
CN113292600B
CN113292600B CN202110518653.9A CN202110518653A CN113292600B CN 113292600 B CN113292600 B CN 113292600B CN 202110518653 A CN202110518653 A CN 202110518653A CN 113292600 B CN113292600 B CN 113292600B
Authority
CN
China
Prior art keywords
tbp
phosphorus
solution
modified
phosphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110518653.9A
Other languages
English (en)
Other versions
CN113292600A (zh
Inventor
史向阳
李锦�
陈亮
李昌盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202110518653.9A priority Critical patent/CN113292600B/zh
Publication of CN113292600A publication Critical patent/CN113292600A/zh
Application granted granted Critical
Publication of CN113292600B publication Critical patent/CN113292600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/659Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having three phosphorus atoms as ring hetero atoms in the same ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用,纳米胶束以亚磷酸酯钠盐修饰的两亲性含磷树冠大分子为原料,通过在水中自组装获得。本发明原料为商品化来源,制备的两亲性含磷树冠大分子的分子量均一,制备方法简单,反应过程可控性高,易于操作;本发明制备的纳米材料可用做疏水性抗氧化药物的载体且富含抗炎活性的亚磷酸酯钠盐基团,与已报道的聚酰胺‑胺型树冠大分子纳米胶束相比具有更高的包封率、上载率和更好的抗炎效果,能够有效地提高疏水性药物的治疗效果,拥有良好的应用前景。

Description

一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及 其制备和应用
技术领域
本发明属于功能性纳米胶束及其制备和应用领域,特别涉及一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用。
背景技术
化疗是目前临床上用于急性肺损伤治疗的手段之一。化疗药物能有效抑制肺泡巨噬细胞促炎性细胞因子的分泌,调节促炎性细胞因子和抗炎性细胞因子的分泌平衡,并显著消除活性氧(ROS)从而降低肺部组织的损伤。同时,传统化疗药物的缺陷也是很明显的,一方面其毒副作用将对健康的器官和组织造成损伤;另一方面由于药物利用度低使得给药剂量过高,加剧了药物的毒副作用。因此构建安全且高效的药物载体,增强肺损伤的抗炎与抗氧化药物治疗效果备受研究人员的关注。在药物载体系统中,化疗药物的负载方式主要包括物理包裹和化学键合。其中,化学键合可以实现纳米载体与药物复合材料稳定存在,但也使得药物的释放受限。物理包裹主要包括吸附作用、静电作用和疏水作用,其药物上载量大、易于实现肺损伤病灶部位药物响应性释放等特点,使其更合适作为纳米载药平台。
纳米药物载体中,树状大分子具有独特的高度支化三维立体结构,可作为一种新型的高分子载体广泛地应用于纳米载药平台。聚酰胺-胺树状大分子(PAMAM)由于其疏水的内部空腔结构,可以通过物理包裹或者静电吸附来负载药物(例如阿霉素),还可以在树状大分子表面修饰靶向试剂(叶酸、RGD多肽等)和水溶性的基团(例如聚乙二醇),从而使载体通过主动靶向病灶部位达到更好的治疗效果(Wang et al,Polymer Chemistry,2011,2(8),1754-1760)。与此同时,表面修饰叶酸的树状大分子负载钆配合物,然后内部包裹DOX可用于癌细胞的靶向MR成像和化疗,合成的材料的药物包封率达到了79.8%,药物上载率为5.7%,同时对pH敏感,可以在弱酸的环境下实现药物的快速释放(Zhu et al,RSCAdvances,2015,5(38),30286-30296)。树状大分子有限的内部空腔限制了药物的负载,而两亲性PAMAM树冠大分子,作为一类具有疏水侧链和亲水端基部分的树冠大分子,能够形成稳定的纳米胶束,可用于负载疏水药物DOX且具有较高的包封率(65%)和上载率(42%)(Wei,T.et al.,PNAS,2015,112(10),2978-2983)。然而,PAMAM树形分子的缺枝结构及分子量不均一的缺陷限制了其在纳米医药方面的临床应用。与之相比,含磷树状大分子由于其分子量分布均一,骨架结构精准和表面易功能化的特点而具备巨大的生物医学应用潜力,但由于含磷树状大分子的刚性分子结构,很难作为药物载体构建纳米载药体系。为了解决这个问题,作为含磷树状大分子家族重要成员的两亲性含磷树冠大分子受到了研究者关注。两亲性含磷树冠大分子是一种具有疏水部分和亲水端基部分的树冠大分子,其在水溶液中能够形成尺寸均一的纳米胶束。研究表明该纳米胶束内部具有疏水空腔可用于负载疏水性药物,其包封率(96.71%)和上载率(42.36%)高于PAMAM型树冠大分子(曹流,陈亮.一种两亲性PN=PS型含磷树冠大分子纳米胶束的制备方法及其药物载体应用,中国,CN202010535188.5[P],2020-10-30)。
根据表面不同的功能化修饰,含磷树状大分子可以分为阳离子型、阴离子型和金属离子型含磷树状大分子。已有研究表明,吡咯烷修饰并质子化的阳离子型含磷树状大分子因其具有良好的酸离解常数,表现出优异的基因负载能力,可以高效负载治疗性基因(TNF-αsiRNA)用于小鼠急性肺损伤基因治疗(Bohr et al,Biomacromolecules,2017,18(8),2379-2388)。含磷树状大分子表面修饰金属螯合配体可用于螯合金属离子(Cu(II)、Au(III)等)形成金属离子型含磷树状大分子,可以通过促进肿瘤细胞凋亡和阻滞肿瘤细胞周期,从而抑制肿瘤细胞增殖(Serge M.et al,Molecular Pharmaceutics,2017,14(11),4087-4097)。亚磷酸酯钠盐修饰的阴离子型含磷树状大分子可以通过Toll-like受体(TLR-2)介导,被单核细胞特异性吞噬并激活单核细胞,降低促炎性细胞因子分泌(Poupot etal.Faseb Journal,2006,20(13)2339-2351)。但由于功能化修饰的含磷树状大分子的刚性分子结构和有限的内部空腔限制了其药物负载的能力,因此难以实现多重治疗方式的联合治疗。
肺泡巨噬细胞在急性肺损伤、急性呼吸窘迫综合征和肺炎等肺部疾病的发生发展过程中起着至关重要的作用,急性肺损伤病灶部位肺泡巨噬细胞倾向于M1型巨噬细胞极化,分泌大量促炎性细胞因子(TNF-α、IL-1β和IL-6)等,加速机体炎症,损伤肺泡上皮细胞和肺毛细血管内皮细胞,导致肺水肿和肺换气功能障碍。与此同时,氧化应激也是急性肺损伤产生和进展的重要因素。肺泡巨噬细胞大量产生活性氧一方面可以引起肺血管内皮细胞和肺上皮细胞的氧化应激反应,进而引起细胞的损伤甚至凋亡;另一方面可以激活肺泡巨噬细胞核转录因子(NF-кB)和激活蛋白调控(AP-1)信号调节通路,促进促炎性细胞因子(TNF-α、IL-1β)的分泌。姜黄素(Cur)是一种从植物姜黄中提取的多酚类活性成分。Cur含有2个苯丙烯酰基骨架,前后两个苯环对称,其上有酚羟基甲氧基,其丙烯基与一个β-双酮/烯醇式结构连接。这类含有两个羟基基团的酚类物质在抗氧化过程中会产生强稳定性醌类物质,表现出优异的氧自由基清除能力。但是,由于Cur自身特性(水溶性及药物特异性差)限制了其在炎症疾病治疗中的应用。
检索国内外相关文献和专利结果表明:CN 111848685 A公开了一种两亲性PN=PS型含磷树冠大分子纳米胶束的制备方法及其药物载体应用,可以用于有效负载疏水性化疗药物,但其载体本身并无治疗效果,因此治疗效果单一。而关于亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束的制备及其作为化疗药物载体用于药物传递的研究,尚未见报道。
发明内容
本发明所要解决的技术问题是提供一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用,克服药物载体治疗效果单一的问题。
本发明提供一种如结构式所示亚磷酸酯钠盐修饰的两亲性含磷树冠大分子,
Figure BDA0003063015570000031
本发明提供一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束,所述纳米胶束以所述亚磷酸酯钠盐修饰的两亲性含磷树冠大分子为原料,通过在水中自组装获得。
本发明的一种载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束,药物负载在所述亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束的内部空腔;其中药物为疏水药物。
进一步优选地,所述药物为姜黄素。
本发明的一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子的制备方法,包括:
(1)将月桂酸酰胺溶于无水四氢呋喃中,加入无水碳酸钾或无水碳酸铯,冰浴,逐滴加入溶有修饰有五个对羟基苯甲醛的环三磷腈AB5的四氢呋喃溶液,反应,纯化,真空干燥,得到第0.5代的含磷树冠大分子C11G0.5(如图1b所示);
(2)将步骤(1)制得的C11G0.5溶于无水二氯甲烷中,加入无水硫酸钠,冰浴,逐滴加入修饰有一个甲基肼的硫代磷酰氯MMHPSCl2溶液,反应,纯化,真空干燥,得到第1代的含磷树冠大分子C11G1(如图1c所示);
(3)如图1a所示,将反应得到的苯基磷衍生物(PN=PS)溶于无水四氢呋喃中,加入无水碳酸铯,冰浴,逐滴加入步骤(2)制得的C11G1的四氢呋喃溶液,反应,纯化,真空干燥,得到第2代的含磷树冠大分子C11G2(如图1e所示);
(4)将步骤(3)制得的C11G2溶于无水二氯甲烷中,加入无水硫酸钠,冰浴,逐滴加入修饰有一个甲基肼的硫代磷酰氯(MMHPSCl2)溶液,反应,纯化,真空干燥,得到第3代的含磷树冠大分子C11G3(如图1f所示);
(5)将酪胺溶于无水四氢呋喃中,冰浴,然后滴加入甲醛溶液,室温搅拌反应30min,然后滴加入亚磷酸二甲酯溶液,搅拌反应过夜(12-24h)。经萃取、旋转蒸发、洗涤、真空干燥和柱层析后得到亚磷酸二甲酯修饰的酪胺(如图1d所示),记为TBP(tyraminebearing two dimethylphosphonate)。
(6)将步骤(4)制得的C11G3、步骤(5)制得的TBP和碳酸铯溶于无水四氢呋喃中,搅拌反应过夜,离心后将上清液旋转蒸发,真空干燥,得到两亲性含磷树冠大分子纳米材料TBP-C11G3(如图1g所示)。
(7)将步骤(6)制得的TBP-C11G3溶于乙腈中,冰浴,然后滴加入三甲基溴硅烷,室温搅拌反应过夜,旋转蒸发并洗涤。将产物悬浮于水,然后滴加入氢氧化钠溶液,室温搅拌反应30min,冻干后得到TBP-C11G3钠盐,记为C11G3-TBP(如图1h所示)。
上述制备方法的优选方式如下:
所述步骤(1)中的月桂酸酰胺是通过将月桂酸溶于无水二氯甲烷中,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC·HCl活化,然后加入溶有酪胺的甲醇溶液,室温反应,纯化,真空干燥制得。
所述月桂酸、酪胺和EDC·HCl的摩尔比为1:1.5:2;月桂酸的二氯甲烷溶液浓度为0.20-0.60mmol/mL;酪胺的甲醇溶液浓度为0.30-0.90mmol/mL。
所述活化时间为0-40min;室温反应时间为6-24h;纯化工艺条件为:采用溶剂体积比为1:19的甲醇和二氯甲烷进行柱层析纯化。
所述步骤(1)中:AB5是通过将六氯环三磷腈溶于无水四氢呋喃中,加入无水碳酸钾或无水碳酸铯,冰浴,逐滴加入溶有对羟基苯甲醛的四氢呋喃溶液,室温反应,纯化,真空干燥制得;六氯环三磷腈、对羟基苯甲醛和无水碳酸钾或无水碳酸铯的摩尔比为1:5:20;六氯环三磷腈的四氢呋喃溶液浓度为0.20-0.60mmol/mL;对羟基苯甲醛的四氢呋喃溶液浓度为2-20mmol/mL;冰浴时间为10-60min;室温反应时间为6-24h;纯化工艺条件为:采用溶剂体积比为1:3的乙酸乙酯和正己烷进行柱层析纯化。
月桂酸酰胺、AB5和无水碳酸钾或无水碳酸铯的摩尔比为1.5:1:3;月桂酸酰胺的四氢呋喃溶液浓度为0.030-0.090mmol/mL;AB5的四氢呋喃溶液0.020-0.060mmol/mL;冰浴时间为10-60min;室温反应时间为6-24h;纯化工艺条件为:采用溶剂体积比为1:1的乙酸乙酯和正己烷进行柱层析纯化。
所述步骤(2)中:C11G0.5、无水硫酸盐和N-甲基二氯硫代磷酰肼的摩尔比为1:12:6;C11G0.5的无水二氯甲烷溶液浓度为0.04-0.080mmol/mL;N-甲基二氯硫代磷酰肼的氯仿溶液浓度为0.02-0.060mmol/mL。其中的后处理步骤为:过滤,旋转蒸发,添加无水四氢呋喃重新溶解产物,逐滴加入至戊烷中,搅拌,移除上清后真空干燥。
所述步骤(3)中:苯基磷衍生物PN=PS是通过将硫化磷的叠氮衍生物(PS)溶于无水无氧的二甲基甲酰胺中,然后加入(4-羟基苯基)二苯基磷(PN)的二甲基甲酰胺无水无氧溶液,室温反应,纯化,真空干燥制得;PN和PS摩尔比为1:1;PN的二甲基甲酰胺无水无氧溶液浓度为0.20-0.60mmol/mL;PS的二甲基甲酰胺无水无氧溶液浓度为0.20-0.60mmol/mL;冰浴的时间为10-60min;活化时间为0-40min;室温反应6-24h;纯化的工艺条件为:采用溶剂体积比为1:1.5的乙酸乙酯和正己烷进行柱层析纯化。
PS是通过将硫代磷酰氯溶于无水四氢呋喃中,加入无水碳酸铯,冰浴,逐滴加入溶有对羟基苯甲醛的无水四氢呋喃溶液,室温反应,纯化,真空干燥制得PS前体,随后将PS前体溶于无水四氢呋喃中,冰浴,逐滴加入混有叠氮化钠的无水四氢呋喃溶液,室温反应,纯化,真空干燥制得PS;硫代磷酰氯、羟基苯甲醛和无水碳酸铯摩尔比为1:2:4;硫代磷酰氯的无水四氢呋喃溶液浓度为0.20-0.60mmol/mL;羟基苯甲醛的无水四氢呋喃溶液浓度为0.40-1.20mmol/mL;冰浴的时间为10-60min;反应的工艺参数为:室温反应6-24h;纯化的工艺条件为:采用溶剂体积比为3:7的乙酸乙酯和正己烷进行柱层析纯化。
PN是通过将二苯基膦溶于无水无氧二甲基乙酰胺中,冰浴,逐滴加入溶有对碘苯酚的二甲基乙酰胺无水无氧溶液,高温反应,纯化,真空干燥制得;二苯基膦和对碘苯酚摩尔比为1:1;二苯基膦的二甲基乙酰胺无水无氧溶液浓度为0.20-0.60mmol/mL;对碘苯酚的二甲基乙酰胺无水无氧溶液浓度为0.20-0.60mmol/mL;冰浴的时间为10-60min;反应的工艺参数为:130℃反应1-12h;纯化的工艺条件为:真空干燥;
C11G1、PN=PS和无水碳酸铯的摩尔比为1:12:30;C11G1的无水二氯甲烷溶液浓度为0.010-0.050mmol/mL;PN=PS的二氯甲烷溶液浓度为0.10-0.50mmol/mL;冰浴的时间为10-60min;反应的工艺参数为:室温反应6-24h;纯化的工艺条件为:采用体积比为1:1戊烷和乙醚的混合溶液进行沉淀纯化;
所述步骤(4)中C11G2、无水硫酸钠和MMHPSCl2的摩尔比为1:20:30;C11G2的二氯甲烷溶液浓度为0.002-0.20mmol/mL;冰浴的时间为10-60min;反应的工艺参数为:室温搅拌反应6-24h;纯化的工艺条件为:反应混合液逐滴加入至10倍体积的戊烷溶液中,搅拌,移除上清后真空干燥。
所述步骤(5)中酪胺和亚磷酸二甲酯的摩尔比为1:1~1:4;溶剂为无水四氢呋喃,酪胺溶于溶剂后的浓度为0.012-1.2mmol/mL;冰浴的时间为30-60min;所述加入甲醛溶液,室温搅拌反应30min;所述纯化的工艺条件为:向反应混合液中加入等量体积的饱和食盐水,然后利用4-5倍体积的乙酸乙酯溶液萃取,加入过量硫酸镁搅拌,收集上清后真空干燥,采用溶剂为丙酮的柱层析进行纯化。
进一步,所述步骤(5)中酪胺和亚磷酸二甲酯的摩尔比为1:2。
所述步骤(6)中C11G3、碳酸铯和TBP的摩尔比为1:70-90:30-50;搅拌反应的时间为12-24h;纯化的工艺条件为:8000rpm条件下离心5-10min,将上清液旋转蒸发,真空干燥。
进一步,所述步骤(6)中C11G3、碳酸铯和TBP的摩尔比为1:80:40。
所述步骤(7)中三甲基溴硅烷和TBP-C11G3的摩尔比为160:1,所述加入三甲基溴硅烷,室温搅拌反应的时间为12-24h;纯化的工艺条件为:依次用甲醇和无水乙醚洗涤,甲醇和无水乙醚的体积比例为1:2~1:6;所述氢氧化钠和TBP-C11G3的摩尔比70:1~90:1,氢氧化钠的浓度为0.1-0.2mol/L,所述加入氢氧化钠溶液,室温搅拌反应时间为30-60min;纯化的工艺条件为:冷冻干燥。
进一步地,所述步骤(7)中甲醇和无水乙醚的体积比例为1:4;所述氢氧化钠和TBP-C11G3的摩尔比80:1。
本发明的一种所述载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束在制备抗炎和抗氧化双重治疗药物中的应用。
本发明的一种所述载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束在制备用于急性肺损伤治疗药物中的应用。
所述亚磷酸钠盐基团修饰的两亲性含磷树冠大分子纳米胶束TBP-C11G3通过抑制巨噬细胞的核转录因子(NF-кB)的激活,抑制促炎性细胞因子的表达,从而发挥抗炎效果。
本发明还提供了一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束的药物载体应用,包括如下步骤:
(1)对C11G3-TBP进行梯度稀释,制备不同浓度梯度的C11G3-TBP溶液。然后分别加入芘的丙酮溶液,超声震荡30min,静置过夜。通过稳态荧光仪测定混合液在333nm激发波长下的荧光光谱,以I373/I394荧光强度比作为对数函数分析C11G3-TBP的临界胶束浓度(CMC)。
(2)首先制备固定摩尔浓度的C11G3-TBP的水溶液,按照不同的C11G3-TBP与Cur的摩尔比,分别加入不同摩尔量的Cur甲醇溶液,避光敞口搅拌过夜,制备得到C11G3-TBP@Cur。对未上载的Cur通过紫外分光光度计进行定量。计算最终的药物包封率和上载率。
(3)通过纳米粒度分析仪分别对C11G3-TBP和C11G3-TBP@Cur水合粒径与表面电势进行表征。
本发明还提供了一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米药物的传递效率与化疗效果评价方法,包括如下步骤:
(1)将小鼠肺泡巨噬细胞(MH-S)种于96孔板,于37℃、5%CO2环境中培养24h,加入LPS溶液孵育24h,更换新鲜培养基并加入C11G3-TBP@Cur与细胞共孵育24h,利用CCK-8法评价材料的细胞毒性;
(2)将MH-S细胞种于12孔板上,于37℃、5%CO2培养24h,加入LPS溶液孵育24h,更换成无血清培养基,加入所得的C11G3-TBP@Cur和游离的Cur,混合均匀,在培养基箱中培育4h,利用流式细胞仪检测细胞对材料的内吞效率;
(3)将MH-S细胞种于12孔板上,在37℃、5%CO2环境中培养24h,加入LPS溶液孵育24h,更换成无血清培养基,加入C11G3-TBP@Cur与细胞共孵育4h,用pH为7.4的磷酸盐缓冲液(PBS)洗涤三次后,更换新鲜培养基,培养24h,收集上清,PBS洗涤三次,胰酶消化后离心收集细胞,利用实时荧光定量PCR(RT-PCR)和免疫印迹法(Westernblot)对MH-S细胞中促炎性细胞因子的表达进行分析。利用酶联免疫吸附测定法(ELISA)对细胞培养基上清中促炎性细胞因子的分泌进行分析。
(4)将MH-S细胞种于12孔板,在37℃、5%CO2环境中培养24h,加入LPS溶液孵育24h,更换成无血清培养基,加入C11G3-TBP@Cur与细胞共孵育6h,用PBS洗涤三次后,利用氧化物敏感荧光素探针(ROS BriteTM 670)检测ROS水平;
(5)分别将PBS、C11G3-TBP、C11G3-TBP@Cur和Cur雾化给药至四组肺损伤小鼠肺部,正常组小鼠也用PBS处理,治疗周期为24h;
(6)治疗结束后,分别取各实验组老鼠的肺部组织,组织碾磨提取总RNA,测定RNA浓度后利用RT-PCR检测肺部组织中促炎性细胞因子相关基因表达;
(7)治疗结束后,分别取各实验组老鼠的肺部组织,组织碾磨提取总蛋白,测定蛋白浓度后利用Westernblot检测肺部组织中促炎性细胞因子蛋白表达;
(8)治疗结束后,分别取各实验组老鼠的肺部组织,清洗干净后用4%多聚甲醛浸泡,组织切片后用苏木精/伊红染色法(H&E)分析肺部病理组织结构;
本发明使用核磁共振(1H NMR和31P NMR)、AFM、Zeta电势及水合粒径表征制备的纳米材料。然后利用CCK-8法评价纳米材料C11G3-TBP@Cur的对MH-S细胞毒性。利用ROSBriteTM 670试剂盒作为氧化物敏感荧光素探针来测试MH-S细胞内ROS水平。利用流式细胞仪、RT-PCR和Western blot评价纳米药物体外抗炎与抗氧化效果。利用RT-PCR、West ernblot、ELISA和H&E染色评价纳米药物的体内抗炎与抗氧化效果。
本发明的有益效果
(1)本发明的方法简单,反应可控性强,易操作,成本低廉,终产物分子量均一,原料来源商业化,具有良好的发展前景;
(2)本发明制备得到的亚磷酸酯钠盐修饰的两亲性含磷树冠大分子可在水中自组装为纳米胶束,其内部的疏水空腔能够包裹疏水药物形成稳定的复合物。细胞实验结果显示,亚磷酸酯钠盐修饰的两亲性含磷树冠大分子在一定浓度条件下未表现出明显细胞毒性。同时,与纯Cur相比,C11G3-TBP@Cur对MH-S内ROS表现出了更强的清除能力。因此,此类两亲性含磷树冠大分子具有用于药物传递的优良前景。
(3)本发明的材料生物实验过程易于操作,同时有具有良好的Cur抗氧化和含磷树冠大分子的自身抗炎药物联合作用效果,在炎症类疾病治疗方面具有良好的应用潜力。
(4)本发明提供一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束负载姜黄素在制备用于急性肺损伤治疗药物中的应用,本发明方法简单,易于操作,得到的纳米药物负载效率高,在制备用于急性肺损伤治疗药物中具有良好的应用前景。
(5)本发明的树冠大分子表面具有抗炎活性的亚磷酸酯钠盐亲水基团,内部具有疏水的烷基长链,可在水溶液中自组装形成具有疏水空腔的纳米胶束用于包裹疏水化疗药物,用于急性肺损伤抗炎抗氧化治疗。本发明原料为商品化来源,制备的两亲性含磷树冠大分子的分子量均一,制备方法简单,反应过程可控性高,易于操作;本发明制备的纳米材料可用做疏水性抗氧化药物的载体且富含抗炎活性的亚磷酸酯钠盐基团,与已报道的聚酰胺-胺型树冠大分子纳米胶束相比具有更高的包封率、上载率和更好的抗炎效果,能够有效地提高疏水性药物的治疗效果,拥有良好的应用前景。
附图说明
图1为本发明的亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米材料的合成示意图;
图2为实施例1制备的月桂酸酰胺的核磁共振氢谱图;
图3为实施例1制备的C11G0.5的核磁共振氢谱图(a)和磷谱图(b);
图4为实施例1制备的C11G1的核磁共振氢谱图(a)和磷谱图(b);
图5为实施例1制备的C11G2的核磁共振氢谱图(a)和磷谱图(b);
图6为实施例1制备的C11G3的核磁共振氢谱图(a)和磷谱图(b);
图7为实施例1制备的TBP的核磁共振氢谱图(a)和磷谱图(b);
图8为实施例1制备的TBP-C11G3的核磁共振氢谱图(a)和磷谱图(b);
图9为实施例1制备的C11G3-TBP的核磁共振氢谱图(a)和磷谱图(b);
图10为实施例2中用荧光染料芘测定了两亲性树冠大分子C11G3-TBP的临界胶束浓度;
图11为实施例4中的C11G3-TBP@Cur、C11G3-TBP和C11G3-TBP稀释液的水合粒径;
图12为实施例4中的C11G3-TBP@Cur、C11G3-TBP和C11G3-TBP稀释液的表面电势;
图13为实施例4中制备的纳米材料C11G3-TBP(图a,图c)和C11G3-TBP@Cur(图b,图d)的AFM形貌图和高度轮廓图;
图14为实施例5中的C11G3-TBP、C11G3-TBP@Cur和Cur对MH-S的细胞毒性测试结果图;
图15为实施例6中的MH-S细胞对C11G3-TBP@Cur和Cur内吞的流式细胞术分析图;
图16为实施例7中的C11G3-TBP、C11G3-TBP@Cur和Cur处理细胞后对于MH-S细胞炎症细胞因子编码基因调控的RT-PCR测试图;
图17为实施例8中的C11G3-TBP、C11G3-TBP@Cur和Cur处理细胞后对于MH-S细胞炎症细胞因子(a)TNF-α、(b)IL-1β和(c)IL-6分泌调控的ELISA测试图;
图18为实施例9中C11G3-TBP、C11G3-TBP@Cur和Cur对于MH-S细胞处理后的细胞核和细胞质中NF-κB表达的Westernblot试验结果图(a)和定量灰度值分析图(b)和(c);
图19为实施例10中C11G3-TBP、C11G3-TBP@Cur和Cur处理细胞后对于MH-S细胞内活性氧ROS影响的测试结果图;
图20为实施例11中的各实验组小鼠肺泡灌洗液中促炎性细胞因子(a)TNF-α、(b)IL-1β和(c)IL-6含量的ELISA测试结果图;
图21为实施例12中各实验组小鼠肺部组织中NF-κB表达的Westernblot试验结果图(a)和定量灰度值分析图(b)和(c);
图22为实施例13中各实验组小鼠肺部组织促炎性细胞因子编码基因(a)TNF-α、(b)IL-1β和(c)IL-6的RT-PCR定量分析结果图;
图23为实施例14中各实验组小鼠肺部组织的组织学切片分析;其中实线箭头表示炎症细胞,虚线箭头表示肺泡壁充血,三角形表示肺泡。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。六氯三聚磷腈、对羟基苯甲醛、硫代磷酰氯、甲基肼、无水碳酸铯、无水硫酸钠、无水二氯甲烷、无水氯仿、无水四氢呋喃、戊烷等有机溶剂购买自Sigma-Aldrich公司;姜黄素购买自百灵威科技有限公司;MH-S细胞购买自中科院-上海生化与细胞所,RPMI 1640细胞培养基、胎牛血清(FBS)、青霉素-链霉素溶液和β-巯基乙醇溶液购买自上海中乔新舟生物科技有限公司;PVDF膜、Western封闭液、Western洗涤液、Western抗体稀释液、12%预制胶购买自上海麦约尔生物技术有限公司;总RNA抽提试剂盒、BeyoRTTM III cDNA合成试剂盒、实时荧光定量PCR预混液BeyoFastTM SYBR Green qPCR Mix、一氧化氮检测试剂盒、细胞核蛋白与细胞浆蛋白抽提试剂盒购买自Sigma-Aldrich公司碧云天生物技术公司。
实施例1
(1)取月桂酸(1.82mmol)溶于10mL无水二氯甲烷中,加入EDC·HCl(1.82mmol)活化;然后逐滴加入10mL溶有酪胺(1.82mmol)的甲醇溶液,室温反应12h,薄层色谱分析(TLC)检测反应进程,通过柱层析进行纯化(二氯甲烷和甲醇,v:v=1:19),最后真空干燥得到月桂酸酰胺(如图1b所示)。
(2)取六氯环三磷腈(17.25mmol)溶于50mL无水四氢呋喃中,加入无水碳酸铯(172.5mmol),冰浴20min,逐滴加入5mL溶有对羟基苯甲醛(86.25mmol)的四氢呋喃溶液,室温反应12h,核磁(31P NMR)检测反应进程,然后通过柱层析进行纯化(正己烷和乙酸乙酯,v:v=1:3),最后真空干燥得到修饰有五个对羟基苯甲醛的环三磷腈AB5(如图1b所示)。
(3)取硫代磷酰氯(30.7mmol)溶于100mL无水三氯甲烷中,-61℃条件下逐滴加入10mL溶有甲基肼(61.4mmol)的三氯甲烷溶液,滴加完毕后室温搅拌过夜,核磁(31P NMR)检测反应,然后过滤得到修饰有一个甲基肼的硫代磷酰氯MMHPSCl2的三氯甲烷溶液。
(4)将(1)中的月桂酸酰胺(0.495mmol)溶于10mL无水四氢呋喃中,加入无水碳酸铯或无水碳酸钾(0.99mmol),冰浴20min,逐滴加入10mL溶有AB5(0.33mmol)的四氢呋喃溶液,室温反应12h,核磁(31P NMR)检测反应进程,然后通过柱层析进行纯化(正己烷和乙酸乙酯,v:v=4:6),真空干燥得到第0.5代的含磷树冠大分子C11G0.5(如图1b所示)。
(5)将0.35mmol的C11G0.5溶于50mL无水二氯甲烷中,加入无水硫酸钠(4.2mmol),冰浴20min,逐滴加入2.1mmol的MMHPSCl2溶液,室温反应6h,核磁(31P NMR和1H NMR)检测反应进程,过滤除去沉淀,旋转蒸发除去有机溶剂,添加10mL无水四氢呋喃重新溶解产物,逐滴加至100mL戊烷中,搅拌0.5h,移除上清后真空干燥,得到第一代含磷树冠大分子C11G1(如图1c所示)。
(6)将硫代磷酰氯(3.5mmol)溶于10mL的无水四氢呋喃中,加入无水碳酸铯,冰浴20min,逐滴加入5mL溶有对羟基苯甲醛(7mmol)的无水四氢呋喃溶液,室温反应,纯化,真空干燥制得硫化磷的叠氮衍生物前体,随后将PS前体溶于10mL的无水四氢呋喃中,冰浴,逐滴加入2mL含有3.5mmol叠氮化钠的无水四氢呋喃溶液,室温反应12h,过滤纯化,真空干燥制得硫化磷的叠氮衍生物(PS),如图1a所示。
(7)将二苯基膦(1mmol)溶于5mL的无水无氧二甲基乙酰胺中,冰浴20min,逐滴加入2mL溶有对碘苯酚(1mmol)的二甲基乙酰胺无水无氧溶液,130℃反应3h,真空干燥制得(4-羟基苯基)二苯基磷(PN),如图1a所示。
(8)将(6)中的PS(2mmol)溶于10mL的无水无氧二甲基乙酰胺中,冰浴20min,逐滴加入5mL溶有PN的二甲基乙酰胺无水无氧溶液,室温反应12h,核磁(31P NMR和1H NMR)检测反应进程。通过柱层析进行纯化(乙酸乙酯和正己烷,v:v=1:1.5),真空干燥得到苯基磷衍生物(PN=PS),如图1a所示。
(9)将(5)中的C11G1(0.1mmol)溶于10mL无水二氯甲烷中,加入无水碳酸铯,冰浴20min,逐滴加入5mL溶有PN=PS(0.5mmol)的二氯甲烷溶液,室温反应12h,核磁(31P NMR和1H NMR)检测反应进程。过滤除去沉淀,旋转蒸发除去有机溶剂,添加10mL无水四氢呋喃重新溶解产物,逐滴加至100mL戊烷与乙醚的混合液中,搅拌0.5h,移除上清后真空干燥,得到C11G2(如图1e所示)。
(10)将(9)中的C11G2(0.05mmol)溶于10mL二氯甲烷中,加入无水硫酸钠,冰浴20min,逐滴加入1mmol的MMHPSCl2溶液,室温反应6h,核磁(31P NMR和1H NMR)检测反应进程,过滤除去沉淀,旋转蒸发除去有机溶剂,添加10mL无水四氢呋喃重新溶解产物,逐滴加至100mL戊烷中,搅拌0.5h,移除上清后真空干燥,得到C11G3(如图1f所示)。
(11)将酪胺(51.2mmol)溶于50mL无水四氢呋喃中,冰浴,然后滴加入8mL甲醛溶液(含水37%),室温搅拌反应30min,然后滴加入亚磷酸二甲酯溶液(10mL,110mmol),搅拌反应24h,核磁(31P NMR和1H NMR)检测反应进程。加入50mL饱和食盐水,用200mL乙酸乙酯萃取3次,再加入无水硫酸镁干燥并真空干燥。通过柱层析进行纯化(丙酮),真空干燥得到TBP(如图1d所示)。
(12)将步骤(10)制得的C11G3(9.4μmol)、步骤(11)制得的TBP(0.38mmol)和碳酸铯(0.75mmol)溶于15mL无水四氢呋喃中,搅拌反应24h,离心后将上清液旋转蒸发,真空干燥,得到两亲性含磷树冠大分子纳米材料TBP-C11G3(如图1g所示)。
(13)将步骤(12)制得的TBP-C11G3(4.1μmol)溶于15mL乙腈中,冰浴,然后滴加入三甲基溴硅烷(0.33mmol),室温搅拌反应24h,旋转蒸发并洗涤。将产物悬浮于水,然后滴加入0.2M氢氧化钠溶液(1.63mL,0.33mmol),室温搅拌反应30min,冻干后得到TBP-C11G3钠盐,记为C11G3-TBP(如图1h所示)。
合成过程中对相关中间体分子和树冠大分子产物用核磁进行表征:
本发明使用400MHz核磁共振仪进行氢谱(1H NMR)和磷谱(31P NMR)测试,结果如下:
月桂酸酰胺:
Figure BDA0003063015570000111
1H NMR(400MHz,MeOD)δ=0.91(t,3J(H-H)=8Hz,3H,
Figure BDA0003063015570000112
),1.31(m,16H,
Figure BDA0003063015570000113
and
Figure BDA0003063015570000114
),1.60(m,2H,
Figure BDA0003063015570000115
),2.15(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000116
),2.70(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000117
Figure BDA0003063015570000118
),3.36(m,2H,
Figure BDA0003063015570000119
),4.88(HDO),6.72(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001110
),7.04(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001111
)ppm.
C11G0.5:
Figure BDA0003063015570000121
1H NMR(400MHz,CDCl3)δ=0.87(t,3J(H-H)=8Hz,3H,
Figure BDA0003063015570000122
),1.30(m,16H,
Figure BDA0003063015570000123
Figure BDA0003063015570000124
and
Figure BDA0003063015570000125
),1.59(m,2H,
Figure BDA0003063015570000126
),2.13(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000127
),2.79(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000128
Figure BDA0003063015570000129
),3.47(m,2H,
Figure BDA00030630155700001210
),5.67(t,3J(H-H)=6Hz,1H,NH),6.93(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001211
),7.04(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001212
),7.13(m,10H,
Figure BDA00030630155700001213
),7.74(t,3J(H-H)=8Hz,10H,
Figure BDA00030630155700001214
),9.94(m,5H,CHO)ppm.
31P NMR(162MHz,CDCl3)δ=7.40(m,P3N3)ppm.
C11G1:
Figure BDA00030630155700001215
1H NMR(400MHz,CDCl3)δ=0.89(t,3J(H-H)=8Hz,3H,
Figure BDA00030630155700001216
),1.27(m,16H,
Figure BDA00030630155700001217
Figure BDA00030630155700001218
and
Figure BDA00030630155700001219
),1.59(m,2H,
Figure BDA00030630155700001220
),2.12(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001221
),2.77(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001222
Figure BDA00030630155700001223
),3.44(m,2H,
Figure BDA00030630155700001224
),3.50(m,15H,CH3-N-P1),5.47(t,3J(H-H)=8Hz,1H,NH),6.92(d,3J(H-H)=12Hz,2H,
Figure BDA00030630155700001225
),7.03(m,10H,
Figure BDA00030630155700001226
),7.61(m,15H,C30,CH=N),7.70(brs,2H,
Figure BDA00030630155700001227
)ppm.
31P NMR(162MHz,CDCl3)δ=8.28(m,P3N3),62.40,62.44(s,P1)ppm.
C11G2:
Figure BDA00030630155700001228
1H NMR(400MHz,CDCl3)δ=0.85(t,3J(H-H)=8Hz,3H,
Figure BDA00030630155700001243
),1.22(m,18H,
Figure BDA00030630155700001229
and
Figure BDA00030630155700001230
),1.96(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001231
),2.60(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001232
),2.80(m,2H,
Figure BDA00030630155700001233
Figure BDA00030630155700001234
),3.32(m,15H,CH3-N-P1),5.98(t,3J(H-H)=6Hz,1H,NH),6.94(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001235
),7.09(m,12H,
Figure BDA00030630155700001236
and
Figure BDA00030630155700001237
),7.26(m,40H,
Figure BDA00030630155700001238
),7.42(m,50H,
Figure BDA00030630155700001239
and
Figure BDA00030630155700001240
),7.58(m,105H,
Figure BDA00030630155700001241
and CH=N),7.75(m,40H,
Figure BDA00030630155700001242
),9.86(m,20H,CHO)ppm.
31P NMR(162MHz,CDCl3)δ=7.84(m,P3N3),13.75(d,2J(PN-P2)=31Hz,PN),49.81(td,2J(P2-PN)=31Hz,P2),60.49,60.58(s,P1)ppm.
C11G3:
Figure BDA0003063015570000131
1H NMR(400MHz,CDCl3)δ=0.85(t,3J(H-H)=8Hz,3H,
Figure BDA0003063015570000132
),1.19(m,18H,
Figure BDA0003063015570000133
Figure BDA0003063015570000134
and
Figure BDA0003063015570000135
),1.98(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000136
),2.57(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000137
),3.25(m,2H,
Figure BDA0003063015570000138
),3.32(m,15H,CH3-N-P1),3.45(m,60H,CH3-N-P3),5.91(t,3J(H-H)=4Hz,1H,NH),6.90(d,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000139
),7.05(m,12H,
Figure BDA00030630155700001310
and
Figure BDA00030630155700001311
),7.15(m,40H,
Figure BDA00030630155700001312
),7.29(m,10H,
Figure BDA00030630155700001313
),7.39(m,40H,
Figure BDA00030630155700001314
),7.60(m,165H,
Figure BDA00030630155700001315
CH=N)ppm.
31P NMR(162MHz,CDCl3)δ=7.76(m,P3N3),13.16(d,2J(PN-P2)=30Hz,PN),50.95(td,2J(P2-PN)=30Hz,P2),60.70,60.79(s,P1),62.96(s,P3)ppm.
TBP:
Figure BDA00030630155700001316
1H NMR(400MHz,CDCl3)δ=2.71(m,2H,C5-H);3.04(m,2H,C6-H);3.21(d,2JHP=9.0Hz,4H,C7-H),3.78(d,3JHP=10.6Hz,12H,OMe);6.79(m,2H,C2-H);7.01(m,2H,C3-H);8.46(brs,1H,OH)
31P NMR(162MHz,CDCl3)δ=27.21(s,PO3Me2)
TBP-C11G3:
Figure BDA00030630155700001317
1H NMR(400MHz,CDCl3)δ=0.87(t,3J(H-H)=8Hz,3H,
Figure BDA00030630155700001318
),1.28(m,18H,
Figure BDA00030630155700001319
Figure BDA00030630155700001320
and
Figure BDA00030630155700001321
),1.90(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001322
),2.70(t,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001323
),3.04(m,2H,C5-H),3.18(m,2H,
Figure BDA00030630155700001324
),3.31(m,15H,CH3-N-P1),3.71(m,60H,CH3-N-P3),3.78(d,3JHP=10.6Hz,12H,OMe),5.71(t,3J(H-H)=4Hz,1H,NH),6.79(m,2H,
Figure BDA00030630155700001325
),6.80(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001326
),7.03(m,2H,
Figure BDA00030630155700001327
),7.04(m,12H,
Figure BDA00030630155700001328
and
Figure BDA00030630155700001329
),7.16(m,40H,
Figure BDA00030630155700001330
),7.29(m,10H,
Figure BDA00030630155700001331
),7.38(m,40H,
Figure BDA00030630155700001332
),7.63(m,165H,
Figure BDA00030630155700001333
CH=N)ppm.
31P NMR(162MHz,CDCl3)δ=7.67(m,P3N3),13.03(d,2J(PN-P2)=30Hz,PN),50.95(td,2J(P2-PN)=30Hz,P2),26.82(s,P4),61.06,62.12(s,P1),63.31(s,P3)ppm.
C11G3-TBP:
Figure BDA0003063015570000141
1H NMR(400MHz,D2O/CD3CN 9:1)δ=0.89(t,3J(H-H)=8Hz,3H,
Figure BDA0003063015570000142
),1.29(m,18H,
Figure BDA0003063015570000143
Figure BDA0003063015570000144
and
Figure BDA0003063015570000145
),1.90(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000146
),2.50(t,3J(H-H)=8Hz,2H,
Figure BDA0003063015570000147
),2.97(m,2H,C5-H),3.10(m,2H,
Figure BDA0003063015570000148
),3.25(m,15H,CH3-N-P1),3.60(m,60H,CH3-N-P3),3.77(d,3JHP=10.6Hz,12H,OMe),6.60(m,2H,
Figure BDA0003063015570000149
),6.63(d,3J(H-H)=8Hz,2H,
Figure BDA00030630155700001410
),7.12(m,2H,
Figure BDA00030630155700001411
),7.13(m,12H,
Figure BDA00030630155700001412
and
Figure BDA00030630155700001413
),7.22(m,40H,
Figure BDA00030630155700001414
),7.30(m,10H,
Figure BDA00030630155700001415
),7.39(m,40H,
Figure BDA00030630155700001416
),7.63(m,165H,
Figure BDA00030630155700001417
CH=N)ppm.
31P NMR(162MHz,D2O/CD3CN 9:1)δ=8.66(s,P4),9.97(m,P3N3),11.81(m,PN),26.82(s,P4),54.40(brs,P2),64.42(brs,P1)ppm.
实施例2
将9mg的C11G3-TBP溶于3mL超纯水中配制3mg/mL的母液,随后梯度稀释成1mL且浓度为0.001-3mg/mL的工作液。每份工作液中加入10μL浓度为4.0×10-4M芘(Py)的丙酮溶液,超声30min后室温保存过夜。设置稳态荧光仪入射狭缝宽度1.0mm,接收狭缝宽度1.2mm,在激发波长为333nm下,扫描每份溶液在350nm-435nm范围内的荧光曲线。取373nm与394nm处的荧光值比值I373/I394作纵坐标,工作液浓度lg值为横坐标,拟合曲线,曲线的拐点处横坐标即为C11G3-TBP临界胶束浓度的lg值(附图10)。结果显示,随着C11G3-TBP浓度的升高I373/I394的荧光强度比值在27.35μM处有一个明显的下降,这说明材料C11G3-TBP能够形成胶束,且临界胶束浓度为27.35μM。
实施例3
取Cur(姜黄素)溶于甲醇中,然后按照不同的摩尔比(C11G3-TBP:Cur=1:10、1:15、1:20和1:25)将300μL不同浓度的Cur甲醇溶液加入到C11G3-TBP的水溶液中,室温敞口搅拌过夜。随后将混合溶液移入离心管,10000r/min条件下离心20min,离心结束后取出上清液,再用适量超纯水重悬沉淀后再进行下一次离心。将沉淀溶于1mL甲醇中,测定其在425nm处的紫外吸收值,通过与纯Cur甲醇溶液的标准曲线对比计算Cur的包封率和上载率(表1)。结果显示,比例从1:10到1:20,Cur的上载率逐渐上升,当达到1:25时,包封率和上载率下降明显,可以得出两者最佳混合比例为1:20。
表1不同投药比的1-C11G3@Cur包封率和上载率
Figure BDA0003063015570000151
实施例4
分别配制材料浓度相同的C11G3-TBP和C11G3-TBP@Cur水溶液(C11G3-TBP和Cur的摩尔比为1:20,C11G3-TBP浓度为41.7μM),通过马尔文激光粒度仪(Malvern,UK,633nm激光)对C11G3-TBP及C11G3-TBP@Cur的水动力学粒径及表面电势进行表征。结果显示,相较于C11G3-TBP(122.2nm),C11G3-TBP@Cur(199.2nm)的水合粒径有所增大(附图11),而Zeta电势有一定程度的降低(附图12)。将41.7μM的C11G3-TBP溶液稀释10倍,制备低于CMC的C11G3-TBP溶液,通过动态光散射仪测量其粒径。结果显示,胶束形成后将溶液稀释至CMC以下,胶束形态不会被破坏,但此时的水合粒径为213.5nm,基本维持不变(附图11)。配制2.5mg/mL的C11G3-TBP和C11G3-TBP@Cur溶液样品超声处理5min并稳定2h,然后用超纯水稀释至0.25mg/mL。将样品溶液滴在原子力显微镜(AFM)专用硅片上,室温静置2h,随后用氮气将液体吹离硅片,将样品置于AFM中进行观察和AFM图片拍摄。通过粒径分布分析,纳米胶束C11G3-TBP(附图13a和13c)和C11G3-TBP@Cur(附图13b和13d)的高度分别为39.1nm和40.2nm,这说明C11G3-TBP纳米胶束的内部疏水空腔负载疏水药物Cur后并没有明显改变纳米胶束的结构。
实施例5
收集对数生长期MH-S细胞,按照8000个细胞每孔的密度接种在96孔细胞培养板上,置于5%CO2,37℃条件下孵育过夜,添加2μg/mL LPS孵育细胞24h,弃掉培养基后,每孔更换90μL无血清(FBS)培养基,并添加10μL含不同浓度的材料(最终相对Cur浓度为0、1.25、2.5、5、10、20μM;最终相对C11G3-TBP浓度为0、4.45、8.9、17.8、35.6、71.2μM)。之后将细胞培养板继续放置在5%CO2,37℃继续孵育24h。随后弃掉原培养基,加入含100μL含有10%CCK-8的无血清培养基,继续培养3h后,放置在多功能酶标仪中于测试波长450nm下测试吸光值,结果如图14所示。与对照组(材料浓度为0,PBS溶液)相比,C11G3-TBP@Cur、C11G3-TBP和游离的Cur在试验浓度范围内对MH-S细胞没有毒性,浓度为20μM时,细胞存活率均为超过75%。
实施例6
将每孔1×105MH-S细胞种植于12孔板中,加入LPS孵育24h,替换成不含FBS的培养基,加入不同浓度的Cur或C11G3-TBP@Cur(含Cur浓度为2.5、5、10μM)与细胞共培养4h。孔板离心去除培养基,胰酶消化并离心收集细胞,利用流式细胞术分析细胞的吞噬情况。结果显示(附图15),随着Cur浓度的增加,细胞内荧光强度随之增强,而由于Cur的荧光淬灭作用,使得C11G3-TBP@Cur组的荧光强度弱于纯Cur组。
实施例7
将每孔1×105MH-S细胞种植于12孔板中,培养过夜加入LPS孵育24h建立细胞模型,以不添加LPS作为对照组。弃去培养基,替换成不含FBS的培养基,分别加入100μL的一定浓度的Cur(浓度为0.18μM),C11G3-TBP@Cur(Cur浓度为0.18μM)和C11G3-TBP(浓度为10μM)与细胞共培养4h。弃去培养基,用PBS洗3遍,更换新鲜培养基培养24h。用胰酶消化并收集细胞,利用RT-PCR检测促炎性细胞因子编码基因的表达。具体实验步骤如下:
(1)总RNA抽提:裂解细胞样本,低温离心提取总RNA,加入无RNA酶的水(DEP C)溶解RNA。(2)反转录:取一个PCR管,加入含1μg RNA的溶液。加入1μLgDNAEZ eraser和1μLgDNAEZeraser buffer(10×)去除基因组污染,用DEPC水补足至10μL。于PCR仪上55℃保温5min,迅速置冰上冷却。加入cDNA第一链合成预混液(反转录酶、核糖核酸酶抑制剂、随机引物、脱氧核糖核酸、氯化镁和反转录反应缓冲液)用枪抽吸混匀。于PCR仪上42℃保温60min,结束后80℃保温5min灭活反转录酶。(3)定量PCR:取0.25ml PCR管,配制如下反应体系,每个反转录产物配制3管,2×qPCR Mix,5μM基因引物混合物,反转录产物,DEPC水。(4)PCR扩增:在PCR仪中进行变性、退火和延伸的多次循环以扩增目的基因。结果显示(附图16),相对于LPS处理组,C11G3-TBP和Cur处理组能在一定程度上抑制抗炎性细胞因子(TNF-α、IL-1β和IL-6)编码基因表达。与纯Cur和C11G3-TBP处理组相比,C11G3-TBP@Cur组的TNF-α、IL-1β和IL-6编码基因的表达量抑制更明显。这说明亚磷酸酯钠盐修饰的C11G3-TBP@Cur能够实现增强型抗炎效果。
实施例8
按实施例7中相同的方法处理细胞,随后进行ELISA测定实验,具体实验步骤如下:
利用孔板离心机将12孔板在1700rpm,5min条件下离心,吸取培养上清液。加待检样品100μL于已包被抗体的反应孔中,用封板膜封板后置37℃孵育1-2h。弃去液体,每孔加入300μL洗液,浸泡1-2min,在吸水纸上拍干,于各孔中加稀释好的抗体工作液100μL。用封板膜封板后37℃孵育1h。弃去液体,每孔加入300μL洗液,浸泡1-2min,在吸水纸上拍干。向各孔中加稀释好的酶结合物工作液100μL,并用封板膜封板后置37℃避光孵育30min。弃去液体,每孔加入300μL洗液,浸泡1-2min,在吸水纸上拍干。向各孔中加入辣根过氧化物酶底物TMB溶液100μL,37℃避光反应30min。然后向各反应孔中加入2M硫酸100μL终止酶促反应,溶液颜色由蓝色变为黄色。最后,利用酶标仪上,测定450nm处各孔OD值。结果显示(附图17):相对于LPS处理组,C11G3-TBP和Cur处理组能在一定程度上抑制上清液中促炎性细胞因子(TNF-α、IL-1β和IL-6)的表达。与纯Cur和C11G3-TBP处理组相比,C11G3-TBP@Cur组的TNF-α、IL-1β和IL-6的抑制效果更明显。这说明亚磷酸酯钠盐修饰的C11G3-TBP@Cur能够实现联合抗炎治疗。
实施例9
按实施例7中相同的方法处理细胞,随后进行Western blot实验,具体实验步骤如下:
将细胞样本冰浴裂解,核蛋白抽提试剂分离细胞核蛋白与细胞浆蛋白,制作标准曲线对蛋白质含量进行检测。临时保存蛋白质样本,快速完成SDS-PAGE电泳清洗和灌胶等准备工作,上样后连接80V电压电泳4-5h。转膜后,配制好一抗和二抗稀释液进行免疫反应,随后进行显影和定影工作,最后扫描胶片进行凝胶图像分析以及灰度分析。结果显示(附图18),相对于LPS诱导组,C11G3-TBP和Cur处理组均能够在一定程度上抑制NF-κB激活后的核转移,C11G3-TBP@Cur处理组能够显著抑制NF-κB激活后的核转移,从而抑制促炎性细胞因子的表达。
实施例10
将每孔1×105MH-S细胞种植于12孔板中,加入LPS孵育24h,替换成含10%FBS的培养基,加入一定浓度的C11G3-TBP、Cur和C11G3-TBP@Cur复合物与细胞共培养4h。弃去培养基,用PBS洗3遍,按照1:1000用无血清培养液稀释探针ROS BriteTM 670,使其终浓度为10μM,每孔加入500μL的探针,37℃细胞培养箱内避光孵育45min。弃去培养液,PBS洗3遍,利用胰酶消化并收集细胞,并用流式细胞仪检测细胞内探针荧光强度。测试结果显示(附图19),相对于阳性对照(LPS)处理组,ROS的含量:C11G3-TBP@Cur处理组<Cur处理组,结果表明含磷树冠大分子的负载可以提高Cur的水溶性,从而提高Cur的抗氧化作用。
实施例11
所有动物实验均经过东华大学伦理委员会批准,并严格按照标准进行。实验用的6周龄雄性BALB/c小白鼠购自上海斯莱克实验动物中心(中国,上海)。利用腹腔注射LPS(5mg/kg),24h后将白鼠随机分为5组(对照组,LPS处理组,C11G3-TBP处理组,Cur处理组,C11G3-TBP@Cur处理组),每组7只。100μL的PBS、C11G3-TBP、Cur和C11G3-TBP@Cur溶液(Cur的最终剂量为5mg/kg,C11G3-TBP最终剂量为21.8mg/kg,C11G3-TBP@Cur最终剂量为21.8mg/kg)通过雾化给药器注射到各组白鼠肺部。在治疗后第24h,从5组实验组中各挑选一只小鼠,利用PBS灌注肺部,抽提肺泡灌洗液,4℃条件下4000转速,离心5min,将上层血清转移到新的离心管中,存于-80℃。随后利用ELISA法检测肺泡灌洗液中促炎性细胞因子(TNF-α、IL-1β和IL-6)的含量,ELISA具体操作参照实施例8。实验结果显示(附图20),相对于对照组,C11G3-TBP、Cur和1-C11G3@Cur处理组小鼠肺泡灌洗液中的促炎性细胞因子含量明显降低,呈现为C11G3-TBP@Cur治疗组<C11G3-TBP治疗组<Cur治疗组,说明负载Cur的C11G3-TBP表现出了优良的联合抗炎效果。
实施例12
在治疗后第24h,从5组实验组中各挑选一只小鼠,取其肺部组织于液氮中快速碾磨,提取肺部组织蛋白,核蛋白抽提试剂分离细胞核蛋白与细胞浆蛋白。测定蛋白质浓度,随后依次进行SDS-PAGE电泳、转膜、免疫反应、ECL化学显影剂定影实验,并对凝胶图像进行分析。实验结果显示(附图21),对于单独LPS处理组而言,C11G3-TBP和Cur均能够抑制NF-κB的激活,并抑制NF-κB由细胞质向细胞核转移,C11G3-TBP@Cur能够实现联合抑制NF-κB的激活,从而抑制促炎性细胞因子的表达。
实施例13
在治疗后第24h,从5组实验组中各挑选一只小鼠,取其肺部组织于液氮中快速碾磨,提取肺部组织总RNA。实验结果显示(附图22),相对于对照组,C11G3-TBP、Cur和C11G3-TBP@Cur处理组小鼠肺部的促炎性细胞因子编码基因含量明显降低,C11G3-TBP@Cur治疗组<C11G3-TBP治疗组<Cur治疗组,C11G3-TBP@Cur处理组降低幅度最大,各实验组促炎性细胞因子基因水平的表达情况和蛋白质水平表达情况基本一致。
实施例14
在治疗后第24h,从5组实验组中各挑选一只小鼠,取其肺部组织于组织固定液中浸泡24h,运用H&E染色分析肺部组织损伤恢复程度。实验结果显示(附图23),相对于对照组,C11G3-TBP、Cur和C11G3-TBP@Cur处理组小鼠,肺泡壁充血程度和炎症细胞浸润程度均有所降低。C11G3-TBP和Cur的联合治疗下,肺泡壁充血和肺部炎症浸润程度有明显改善,基本上恢复至正常。综上所述,本发明制备的含磷树冠大分子与Cur纳米材料复合物具有抗炎和抗氧化双重治疗作用治疗急性肺损伤。

Claims (10)

1.种如结构式所示亚磷酸酯钠盐修饰的两亲性含磷树冠大分子,
Figure FDA0003511270090000011
2.一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束,其特征在于,所述纳米胶束以权利要求1所述亚磷酸酯钠盐修饰的两亲性含磷树冠大分子为原料,通过在水中自组装获得。
3.一种载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束,其特征在于,药物负载在权利要求2所述亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束的内部空腔;其中药物为疏水药物。
4.根据权利要求3所述纳米胶束,其特征在于,所述药物为姜黄素。
5.一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子的制备方法,包括:
(1)将月桂酸酰胺溶于溶剂中,加入无水碳酸铯或无水碳酸钾,冰浴,加入修饰有五个对羟基苯甲醛的环三磷腈AB5溶液,反应,纯化,真空干燥,得到第0.5代的含磷树冠大分子C11G0.5;其中月桂酸酰胺为
Figure FDA0003511270090000012
其中修饰有五个对羟基苯甲醛的环三磷腈AB5
Figure FDA0003511270090000013
第0.5代的含磷树冠大分子C11G0.5为
Figure FDA0003511270090000014
(2)将步骤(1)制得的C11G0.5溶于溶剂中,加入无水硫酸钠,冰浴,加入修饰有一个甲基肼的硫代磷酰氯MMHPSCl2溶液,反应,纯化,真空干燥,得到第1代的含磷树冠大分子C11G1;其中修饰有一个甲基肼的硫代磷酰氯MMHPSCl2
Figure FDA0003511270090000015
第1代的含磷树冠大分子C11G1为
Figure FDA0003511270090000016
(3)将苯基磷衍生物PN=PS溶于溶剂中,加入无水碳酸铯,冰浴,将其加入到C11G1溶液中,反应,纯化,真空干燥,得到第2代的含磷树冠大分子C11G2;其中苯基磷衍生物PN=PS为
Figure FDA0003511270090000017
第2代的含磷树冠大分子C11G2为
Figure FDA0003511270090000021
(4)将步骤(3)制得的C11G2溶于溶剂中,加入无水硫酸钠,冰浴,加入修饰有一个甲基肼的硫代磷酰氯MMHPSCl2溶液,反应,纯化,真空干燥,得到第3代的含磷树冠大分子C11G3
Figure FDA0003511270090000022
(5)将酪胺溶于溶剂中,冰浴,然后加入甲醛溶液,室温搅拌反应,然后加入亚磷酸二甲酯溶液,搅拌反应过夜,纯化后得到亚磷酸二甲酯修饰的酪胺TBP
Figure FDA0003511270090000023
(6)将步骤(4)制得的C11G3、步骤(5)制得的TBP和碳酸铯溶于溶剂中,搅拌反应,纯化,得到两亲性含磷树冠大分子纳米材料TBP-C11G3
Figure FDA0003511270090000024
(7)将步骤(6)制得的TBP-C11G3溶于乙腈中,冰浴,然后加入三甲基溴硅烷,室温搅拌反应,纯化,将产物悬浮于水,然后加入氢氧化钠溶液,室温搅拌反应,冻干后得到亚磷酸酯钠盐修饰的两亲性含磷树冠大分子TBP-C11G3钠盐
Figure FDA0003511270090000025
6.根据权利要求5所述制备方法,其特征在于,所述步骤(5)中酪胺和亚磷酸二甲酯的摩尔比为1:1~1:4;溶剂为无水四氢呋喃,酪胺溶于溶剂后的浓度为0.012~1.2mmol/mL;冰浴的时间为30~60min;所述加入甲醛溶液,室温搅拌反应30min;所述纯化的工艺条件为:向反应混合液中加入等量体积的饱和食盐水,然后利用4~5倍体积的乙酸乙酯溶液萃取,加入过量硫酸镁搅拌,收集上清后真空干燥,采用溶剂为丙酮的柱层析进行纯化。
7.根据权利要求5所述制备方法,其特征在于,所述步骤(6)中C11G3、碳酸铯和TBP的摩尔比为1:70~90:30~50;搅拌反应的时间为12~24h;纯化的工艺条件为:8000rpm条件下离心5~10min,将上清液旋转蒸发,真空干燥。
8.根据权利要求5所述制备方法,其特征在于,所述步骤(7)中三甲基溴硅烷和TBP-C11G3的摩尔比为160:1,所述加入三甲基溴硅烷,室温搅拌反应的时间为12~24h;纯化的工艺条件为:依次用甲醇和无水乙醚洗涤,甲醇和无水乙醚的体积比例为1:2~1:6;所述氢氧化钠和TBP-C11G3的摩尔比70:1~90:1,氢氧化钠的浓度为0.1~0.2mol/L,所述加入氢氧化钠溶液,室温搅拌反应时间为30~60min。
9.一种权利要求3所述载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束在制备抗炎和抗氧化双重治疗药物中的应用。
10.一种权利要求3所述载药亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束在制备用于急性肺损伤治疗药物中的应用。
CN202110518653.9A 2021-05-12 2021-05-12 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用 Active CN113292600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110518653.9A CN113292600B (zh) 2021-05-12 2021-05-12 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110518653.9A CN113292600B (zh) 2021-05-12 2021-05-12 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用

Publications (2)

Publication Number Publication Date
CN113292600A CN113292600A (zh) 2021-08-24
CN113292600B true CN113292600B (zh) 2022-08-19

Family

ID=77321569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110518653.9A Active CN113292600B (zh) 2021-05-12 2021-05-12 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用

Country Status (1)

Country Link
CN (1) CN113292600B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957680B (zh) * 2022-03-21 2023-05-30 东华大学 一种氨基吡咯烷修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902264A (zh) * 2003-11-24 2007-01-24 罗狄亚英国有限公司 具有二膦酸末端的新型树枝状聚合物,它们的衍生物,制备它们的方法,以及它们的用途
US20100173871A1 (en) * 2008-08-01 2010-07-08 Centre National De La Recherche Scientifique Phosphorylated dendrimers as antiinflammatory drugs
CN110294777A (zh) * 2019-04-15 2019-10-01 东华大学 一种含磷树冠大分子基杂化纳米材料及其制备方法和应用
CN111848685A (zh) * 2020-06-12 2020-10-30 东华大学 一种两亲性pn=ps型含磷树冠大分子纳米胶束的制备方法及其药物载体应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1902264A (zh) * 2003-11-24 2007-01-24 罗狄亚英国有限公司 具有二膦酸末端的新型树枝状聚合物,它们的衍生物,制备它们的方法,以及它们的用途
US20100173871A1 (en) * 2008-08-01 2010-07-08 Centre National De La Recherche Scientifique Phosphorylated dendrimers as antiinflammatory drugs
CN110294777A (zh) * 2019-04-15 2019-10-01 东华大学 一种含磷树冠大分子基杂化纳米材料及其制备方法和应用
CN111848685A (zh) * 2020-06-12 2020-10-30 东华大学 一种两亲性pn=ps型含磷树冠大分子纳米胶束的制备方法及其药物载体应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Cyclotriphosphazene core-based dendrimers for biomedical applications:an update on recent advances";Le Wang等;《Journal of Materials Chemistry B》;20180111;第6卷;第884-895页 *

Also Published As

Publication number Publication date
CN113292600A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN110591075B (zh) 一种PEG-Peptide线性-树状给药系统及其制备方法和用途
Liu et al. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy
CN107412196B (zh) 奥利司他纳米微球及其制备方法和在抗肿瘤药物中的应用
Zhang et al. Hypoxia-responsive drug–drug conjugated nanoparticles for breast cancer synergistic therapy
CN111848544B (zh) 可荧光示踪的氨基酸衍生物及其制备方法和应用
CN103705534A (zh) 一种天然活性物质构建的高分子复合药物的制备及其在抑制血管生成中的应用
CN113292600B (zh) 一种亚磷酸酯钠盐修饰的两亲性含磷树冠大分子纳米胶束及其制备和应用
Lu et al. Acid-responsive endosomolytic polymeric nanoparticles with amplification of intracellular oxidative stress for prodrug delivery and activation
CN112679535B (zh) 小分子pad4抑制剂及其制备方法和应用
Zhang et al. Drug displacement strategy for treatment of acute liver injury with cyclodextrin-liposome nanoassembly
CN110623964B (zh) 麦角甾醇联合吉非替尼复方脂质体冻干粉的制备方法、脂质体及用途
CN111944140A (zh) 具有还原响应性的聚合物前药胶束及其制备方法和应用
CN104147608A (zh) 一种聚乙二醇-叶酸修饰的氨基化锂皂石纳米颗粒及其制备和应用
CN109096495B (zh) 一种酸敏感两亲性嵌段聚合物及合成方法和应用
CN110917139A (zh) 多分枝生物素修饰的乳腺癌靶向脂质体的制备和应用
CN107970242B (zh) 一种负载紫杉醇/厄洛替尼的介孔二氧化硅-透明质酸混合靶向纳米颗粒
CN107913249B (zh) 一种组合物及含有该组合物的纳米胶束与应用
CN111848685B (zh) 一种两亲性pn=ps型含磷树冠大分子纳米胶束的制备方法及其药物载体应用
CN110279856B (zh) 一种PEG-Peptide光动力-化疗联用给药系统及其制备方法和用途
CN109679087B (zh) 一种硼酸酯功能化的普兰尼克聚合物、制备方法及在制备药物传递系统中的应用
CN111840254B (zh) 纳米雄黄复合药物及其制备方法和应用
CN113214171B (zh) 两亲性树形分子、合成及其作为药物递送系统的应用
CN108403665B (zh) EpDT3适配体修饰的前列腺癌靶向给药载体、递送系统及其制备与应用
Han et al. Bone targeted miRNA delivery system for miR-34a with enhanced anti-tumor efficacy to bone-associated metastatic breast cancer
Qian et al. Biologically active Camellia oleifera protein nanoparticles for improving the tumor microenvironment and drug delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant