CN113262651A - 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法 - Google Patents

一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法 Download PDF

Info

Publication number
CN113262651A
CN113262651A CN202110562307.0A CN202110562307A CN113262651A CN 113262651 A CN113262651 A CN 113262651A CN 202110562307 A CN202110562307 A CN 202110562307A CN 113262651 A CN113262651 A CN 113262651A
Authority
CN
China
Prior art keywords
iron oxide
preparation
ultrafiltration membrane
water
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110562307.0A
Other languages
English (en)
Other versions
CN113262651B (zh
Inventor
李娇
任嵬
李鹏
龙杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Blue Sea Chemical Group Co ltd
Original Assignee
Wuhan Juneng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Juneng Technology Co ltd filed Critical Wuhan Juneng Technology Co ltd
Priority to CN202110562307.0A priority Critical patent/CN113262651B/zh
Publication of CN113262651A publication Critical patent/CN113262651A/zh
Application granted granted Critical
Publication of CN113262651B publication Critical patent/CN113262651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制备方法。首先通过硅烷偶联剂对氧化铁的表面进行改性,得到氨基化氧化铁;在活化剂碳酸钠的作用下进一步与3‑溴基‑1‑丙烯反应,使得丙烯基与氧化铁共价接枝,得到丙烯基氧化铁;然后在引发剂的作用下,丙烯基氧化铁与丙烯腈共聚,得到氧化铁共价接枝的聚丙烯腈;然后将制孔剂聚乙二醇400和氧化铁接枝的聚丙烯腈固化成膜,得到应用于超滤膜的氧化铁改性的聚丙烯腈。本发明制备的改性聚丙烯腈超滤膜,改善了氧化铁在聚丙烯腈基体中的分散性和界面相容性,减少了团聚现象,可以实现高效吸附水中的磷酸盐物质。

Description

一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法
技术领域
本发明涉及聚丙烯腈超滤膜技术领域,具体为一种应用于水中磷酸盐去除的改性聚丙烯腈及其制法。
背景技术
随着人类人口密度和活动的不断增长,过量磷营养元素随市政和工业排放进入天然水体,从而导致水体中的微生物大量生长。在适宜的温度下,以蓝藻为代表的藻类和其他水生浮游生物在富营养化的水体中大量生长,导致了水中鱼类、无脊椎动物和水生植物的死亡,破坏了当地的生态平衡与生物多样性,也给人类带来了各种健康问题,对废水进行除磷处理能够有效的预防水体富营养化,废水除磷技术也受到了越来越多的关注。
迄今为止,大部分除磷的报道都基于将镧引入膜中,但是,由于镧属于稀土元素,价格昂贵且难以再生,因此负载镧的膜并不是适用于工业化,过渡金属氧化物可以通过表面的羟基吸附磷物质,但是往往需要较高的负载量,才能够将水中磷物质的浓度降低至相当低的水平(例如低于20μg/L)来大大减少微生物的生长。
中国专利CN105817148A公开了一种具有同步脱氮除磷功能的超滤膜及其制备方法。该超滤膜所使用的超滤膜铸膜液,其原料由按质量份计的以下组分组成:5~25质量份的金属季铵共聚物、8~25质量份的高聚物、1~10质量份的添加剂和65~86质量份的溶剂。上述超滤膜铸膜液的制备方法,包括以下步骤:将金属季铵共聚物、高聚物、添加剂、溶剂混合,搅拌,超声后静置脱泡,即得到混合均匀的铸膜液。使用该铸膜液获得的超滤膜可以在超滤运行条件下实现对水体中氮磷的同步高效去除,其膜通量大、抗污染性能好、易于再生。但是以磷酸根浓度为2mg/L的生活污水作为原水,进行超滤实验,前6h内滤膜对磷酸根的去除只达到了98.1%,这主要是由于过渡金属负载量较少,提供的吸附位点较少,但是较多的金属负载量会导致聚集,聚集体的内部存在大量的难以接触的吸附位点。
(一)解决的技术问题
针对现有技术的不足,本发明一种应用于水中磷酸盐去除的改性聚丙烯腈及其制法,解决了传统负载较少过渡金属的聚丙烯腈膜除磷效果差,而较多的过渡金属负载量会导致聚集的问题。
(二)技术方案
基于此,本发明提供的第一个发明点为:一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将制孔剂聚乙二醇400和氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴24-36h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
优选的,所述聚乙二醇400、氧化铁接枝聚丙烯腈的质量比为10-20:100;
基于第一个发明点,本发明提供的第二个发明点为:所述氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂偶氮二异丁腈、丙烯基氧化铁,进行反应,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
优选的,所述丙烯腈、偶氮二异丁腈、丙烯基氧化铁的质量比为100:0.3-0.6:30~70;
优选的,所述反应的条件为在60-75℃下反应10-25h。
基于第二个发明点,本发明提供的第三个发明点为:所述丙烯基氧化铁的制备方法,具体包括如下步骤:
将活化剂碳酸钠、氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加3-溴基-1-丙烯,进行反应,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
优选的,所述碳酸钠、氨基化氧化铁、3-溴基-1-丙烯的质量比为90-150:80-130:100;
优选的,所述反应的条件为在15-30℃下反应18-30h。
基于第三个发明点,本发明提供的第四个发明点为:所述氨基化氧化铁的制备方法,具体包括如下步骤:
将氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将氨丙基三乙氧基硅烷逐滴添加到上述溶液中,搅拌反应,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
优选的,所述氧化铁纳米颗粒、氨丙基三乙氧基硅烷的质量比为5:18~20;
优选的,所述搅拌反应的条件为,在室温下反应24~30h;
优选的,所述氧化铁纳米颗粒的直径为10~20nm。
(三)有益的技术效果
与现有技术相比,本发明具备以下有益的技术效果:
该一种应用于水中磷酸盐去除的改性聚丙烯腈,通过硅烷偶联剂氨丙基三乙氧基硅烷对氧化铁的表面进行改性,得到氨基化氧化铁,引入丰富的氨基基团,在活化剂碳酸钠的作用下,进一步与3-溴基-1-丙烯反应,氨基上的氢原子和3-溴基-1-丙烯上的溴原子消去,使得丙烯基与氧化铁共价接枝,得到丙烯基氧化铁,引入丰富的烯基基团,进一步在引发剂偶氮二异丁腈的作用下,与丙烯腈共聚,得到氧化铁共价接枝聚丙烯腈复合材料,改善了氧化铁在聚丙烯腈基体中的分散性和界面相容性,使得氧化铁均匀分散在聚丙烯腈基体中,减少了团聚现象,在膜过滤过程中,携带磷物质的水会以较快的速度通过超滤膜,超滤膜上高负载的氧化铁对含磷物质具有较强的吸附力,能够将水中磷的含量降低到20μg/L以下。
该一种应用于水中磷酸盐去除的改性聚丙烯腈,均匀分散的氧化铁增大了与聚丙烯腈的接触面积,当受到外力作用时,可以转移吸收更多的应力,从而提高了复合材料的拉伸强度、断裂伸长率等机械性能,均匀分散的氧化铁改善了溶剂与非溶剂的交换速度,改变了成膜的动力学和热力学,从而使孔隙分布的更加均匀,提高了孔隙率,且氧化铁的表面含有丰富的亲水性基团-OH,加之丰富的孔隙结构提高了更大的自由体积与溶剂接触,显著提高了超滤膜的亲水性,从而提高了超滤膜的水通量。
具体实施方式
实施例1
氨基化氧化铁的制备方法,具体包括如下步骤:
将直径是10nm的氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将18g氨丙基三乙氧基硅烷逐滴添加到上述溶液中,室温搅拌反应24h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
丙烯基氧化铁的制备方法,具体包括如下步骤:
将90g活化剂碳酸钠、80g氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加100g3-溴基-1-丙烯,15℃进行反应18h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将100g丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂0.3g偶氮二异丁腈、30g丙烯基氧化铁,60℃进行反应10h,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将10g制孔剂聚乙二醇400和100g氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴24h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
实施例2
氨基化氧化铁的制备方法,具体包括如下步骤:
将直径是12nm的氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将18.5g氨丙基三乙氧基硅烷逐滴添加到上述溶液中,室温搅拌反应25h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
丙烯基氧化铁的制备方法,具体包括如下步骤:
将100g活化剂碳酸钠、90g氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加100g3-溴基-1-丙烯,18℃进行反应19h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将100g丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂0.35g偶氮二异丁腈、35g丙烯基氧化铁,62℃进行反应12h,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将12g制孔剂聚乙二醇400和100g氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴25h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
实施例3
氨基化氧化铁的制备方法,具体包括如下步骤:
将直径是14nm的氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将19g氨丙基三乙氧基硅烷逐滴添加到上述溶液中,室温搅拌反应26h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
丙烯基氧化铁的制备方法,具体包括如下步骤:
将110g活化剂碳酸钠、100g氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加100g3-溴基-1-丙烯,19℃进行反应20h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将100g丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂0.4g偶氮二异丁腈、40g丙烯基氧化铁,65℃进行反应14h,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将15g制孔剂聚乙二醇400和100g氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴26h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
实施例4
氨基化氧化铁的制备方法,具体包括如下步骤:
将直径是16nm的氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将20g氨丙基三乙氧基硅烷逐滴添加到上述溶液中,室温搅拌反应27h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
丙烯基氧化铁的制备方法,具体包括如下步骤:
将130g活化剂碳酸钠、110g氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加100g3-溴基-1-丙烯,20℃进行反应22h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将100g丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂0.5g偶氮二异丁腈、50g丙烯基氧化铁,70℃进行反应16h,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将18g制孔剂聚乙二醇400和100g氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴28h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
对比例1
将10g制孔剂聚乙二醇400和100g聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴24h,固化成膜,得到应用于超滤膜的聚丙烯腈。
对比例2
氨基化氧化铁的制备方法,具体包括如下步骤:
将直径是10nm的氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将18g氨丙基三乙氧基硅烷逐滴添加到上述溶液中,室温搅拌反应24h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到所述氨基化氧化铁。
丙烯基氧化铁的制备方法,具体包括如下步骤:
将90g活化剂碳酸钠、80g氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加100g3-溴基-1-丙烯,15℃进行反应18h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到所述丙烯基氧化铁。
氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:
将100g丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂0.3g偶氮二异丁腈、80g丙烯基氧化铁,60℃进行反应10h,用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到所述氧化铁接枝聚丙烯腈。
一种应用于水中磷酸盐去除的改性聚丙烯腈的制备方法,具体包括如下步骤:
将10g制孔剂聚乙二醇400和100g氧化铁接枝聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,将混合液循环过滤、真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴24h,固化成膜,得到应用于超滤膜的氧化铁改性聚丙烯腈。
将实施例和对比例中得到的应用于超滤膜的氧化铁改性聚丙烯腈或纯聚丙烯腈裁剪成直径2cm的圆形膜,置于纯水中,采用SY-1S型错流过滤器,测试其水通量。
Figure BDA0003079466860000081
以磷酸根浓度为2mg/L的生活污水作为原水,进行超滤实验得出滤膜对磷酸根的去除率。
Figure BDA0003079466860000091
实施例1-4进行超滤实验得出前6h内滤膜对磷酸根的去除率很高,达到了99%以上,水中磷物质的浓度降低至相当低的水平,都低于20μg/L,可以大大减少微生物的生长,能够有效的预防水体富营养化。
对比例1中聚丙烯腈没有接枝氧化铁,对磷酸根的吸附性能大大下降。没有氧化铁表面丰富的亲水性基团-OH和-COOH,没有氧化铁丰富的孔隙结构,降低了自由体积与溶剂的接触,显著降低了超滤膜的亲水性,从而降低了超滤膜的水通量。没有氧化铁均匀分散在聚丙烯腈基体中,会出现团聚现象,在膜过滤过程中,携带磷物质的水会以较慢的速度通过超滤膜,不能够将水中磷的含量降低到20μg/L以下。对比例2中虽然聚丙烯腈接枝了氧化铁,但是丙烯基氧化铁过量了,造成氧化铁接枝过多,造成水通量很快就达到饱和,虽然吸附能力不变,但是由于水通量下降,导致吸附磷酸根能力受到限制,不能够将水中磷的含量降低到20μg/L以下。

Claims (9)

1.一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,包括以下步骤:将制孔剂聚乙二醇400和氧化铁接枝的聚丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,然后将混合液循环过滤,真空抽泡,在玻璃板上刮制初生态膜,置于去离子水中进行凝固浴24-36h,固化成膜,得到氧化铁改性的聚丙烯腈超滤膜。
2.根据权利要求1所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述聚乙二醇400与氧化铁接枝的聚丙烯腈的质量比为10-20:100。
3.根据权利要求1或2所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述氧化铁接枝聚丙烯腈的制备方法,具体包括如下步骤:将丙烯腈加入到N,N-二甲基甲酰胺溶剂中,超声分散均匀,在氮气氛围中,加入引发剂偶氮二异丁腈、丙烯基氧化铁,于60-75℃下反应10-25h,然后用去离子水沉淀产物,离心分离,用去离子水、无水乙醇洗涤干净并干燥,得到氧化铁接枝的聚丙烯腈。
4.根据权利要求3所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述丙烯腈、偶氮二异丁腈、丙烯基氧化铁的质量比为100:0.3-0.6:30~70。
5.根据权利要求3所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述丙烯基氧化铁的制备方法,具体包括如下步骤:将活化剂碳酸钠、氨基化氧化铁加入N,N-二甲基甲酰胺溶剂中,超声分散均匀,在搅拌状态下逐滴滴加3-溴基-1-丙烯,于15-30℃下反应18-30h,抽滤,用去离子水、甲醇洗涤干净并干燥,得到丙烯基氧化铁。
6.根据权利要求5所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述碳酸钠、氨基化氧化铁、3-溴基-1-丙烯的质量比为90-150:80-130:100。
7.根据权利要求5所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述氨基化氧化铁的制备方法,具体包括如下步骤:将氧化铁纳米颗粒加入到乙醇中,超声分散均匀,再将氨丙基三乙氧基硅烷逐滴添加到上述溶液中,在室温下搅拌反应24~30h,反应结束后,用去离子水、乙醇洗涤干净并干燥,得到氨基化氧化铁。
8.根据权利要求7所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述氧化铁纳米颗粒、氨丙基三乙氧基硅烷的质量比为5:18~20。
9.根据权利要求7所述的一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜的制备方法,其特征在于,所述氧化铁纳米颗粒的直径为10~20nm。
CN202110562307.0A 2021-05-24 2021-05-24 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法 Active CN113262651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110562307.0A CN113262651B (zh) 2021-05-24 2021-05-24 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110562307.0A CN113262651B (zh) 2021-05-24 2021-05-24 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法

Publications (2)

Publication Number Publication Date
CN113262651A true CN113262651A (zh) 2021-08-17
CN113262651B CN113262651B (zh) 2022-12-20

Family

ID=77232330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110562307.0A Active CN113262651B (zh) 2021-05-24 2021-05-24 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法

Country Status (1)

Country Link
CN (1) CN113262651B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225785A (zh) * 2011-04-26 2011-10-26 东华大学 一种apts修饰的氧化铁磁性纳米颗粒的制备方法
US20190193033A1 (en) * 2016-08-31 2019-06-27 South Dakota Board Of Regents Multilayer thin film nanocomposite membranes prepared by molecular layer-by-layer assembly
CN110052177A (zh) * 2019-04-04 2019-07-26 天津工业大学 一种中空微球增强高通量聚丙烯腈过滤膜的制备方法
CN110141975A (zh) * 2019-05-17 2019-08-20 李文国 一种多壁碳纳米管-聚丙烯腈(mwcnt-pan)复合超滤膜及其制备方法
CN112481724A (zh) * 2020-11-27 2021-03-12 桐乡市创辉科技合伙企业(有限合伙) 一种Cu掺杂TiO2接枝聚丙烯腈的复合抗菌纤维及其制法
CN112473403A (zh) * 2020-11-18 2021-03-12 广州耀满科技有限公司 一种高疏油性的二氧化硅改性聚丙烯腈复合膜及其制法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225785A (zh) * 2011-04-26 2011-10-26 东华大学 一种apts修饰的氧化铁磁性纳米颗粒的制备方法
US20190193033A1 (en) * 2016-08-31 2019-06-27 South Dakota Board Of Regents Multilayer thin film nanocomposite membranes prepared by molecular layer-by-layer assembly
CN110052177A (zh) * 2019-04-04 2019-07-26 天津工业大学 一种中空微球增强高通量聚丙烯腈过滤膜的制备方法
CN110141975A (zh) * 2019-05-17 2019-08-20 李文国 一种多壁碳纳米管-聚丙烯腈(mwcnt-pan)复合超滤膜及其制备方法
CN112473403A (zh) * 2020-11-18 2021-03-12 广州耀满科技有限公司 一种高疏油性的二氧化硅改性聚丙烯腈复合膜及其制法
CN112481724A (zh) * 2020-11-27 2021-03-12 桐乡市创辉科技合伙企业(有限合伙) 一种Cu掺杂TiO2接枝聚丙烯腈的复合抗菌纤维及其制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SIYUAN PAN ET AL.: "Mesoporous polyacrylonitrile membrane with ultrahigh loading of well-dispersed Fe2O3 nanoparticles: A powerful phosphate scavenger Enabling inhibition of microbial regrowth in Treated Water", 《JOURNAL OF MEMBRANE SCIENCE》 *
陈磊等: "硅烷偶联剂 KH-550表面改性纳米γ-Fe2O3", 《造纸化学品》 *

Also Published As

Publication number Publication date
CN113262651B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN103446897B (zh) 一种过滤用化学和离子交联海藻酸盐水凝胶平板膜及其制备方法
CN108579709B (zh) 一种用于海水提铀的多孔结构弹性复合材料及其制备方法
CN111004411B (zh) 一种用于选择性分离四环素的生物质基分子印迹复合膜的制备方法
CN106621842B (zh) 一种螯合微滤膜的制备方法、再生方法和应用
CN111249920A (zh) 聚酰胺薄层复合反渗透膜及其制备方法和应用
CN103990384A (zh) 一种新型有机-无机杂化微孔分离膜的制备方法
CN109354165A (zh) 一种采用复合式mbr一体化处理生活污水的方法
CN109529792B (zh) 一种用于含重金属污水处理中的吸附剂及其制备方法
CN114904398B (zh) 一种聚丙烯腈基海水提铀-海水淡化联产膜及其制备方法
CN106242052B (zh) 一种超声辅助纳米氧化铝改性聚乙烯醇-海藻酸钠包埋材料及其制备方法和应用
CN114870813B (zh) 一种不溶胀型纤维素基复合水凝胶的制备及对重金属离子吸附的方法
CN113262651B (zh) 一种应用于水中磷酸盐去除的改性聚丙烯腈超滤膜及其制法
CN114904404A (zh) 一种基于MOF-808(Zr)的混合基质正渗透膜及其制备方法
CN114773627B (zh) 一种三维互连多级大孔结构凝胶聚合物电解质的制备方法
CN1673272A (zh) 一种亲水性聚四氟乙烯微孔薄膜及其加工方法
CN111389378B (zh) 一种两性自上浮吸附剂、制备方法和应用
CN112774648A (zh) 一种重金属废水吸附剂及其制备方法
CN109289561A (zh) 一种截留氨氮和抗膜污染的正渗透膜及其制备方法与应用
CN110903015A (zh) 一种环保复合型污泥调理剂的生产方法
CN113277619B (zh) 一种厌氧生物流化床
CN1156335C (zh) 一种荷正电膜及其制造方法
CN117563569A (zh) 一种复合提铀材料的制备方法、复合提铀材料及其应用
CN117563439B (zh) 一种改性聚四氟乙烯膜材料及其制备方法
CN113718346B (zh) 一种改性二氧化硅、铸膜液和纤维膜及其制备方法和应用
CN109225358B (zh) 一种亲水纤维-水凝胶复合型阴离子交换树脂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20221130

Address after: 625000 Shimian Industrial Park, Ya'an City, Sichuan Province

Applicant after: SICHUAN BLUE SEA CHEMICAL (GROUP) CO.,LTD.

Address before: 815-a02, 3rd floor, phase I training building (Building 2), Dawning Plaza, China Optical Valley creative industry base, 465 Guanshan Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province, 430000

Applicant before: Wuhan Juneng Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant