CN113248257B - 锂离子电池共连续大孔SiOC负极材料及其制备方法 - Google Patents

锂离子电池共连续大孔SiOC负极材料及其制备方法 Download PDF

Info

Publication number
CN113248257B
CN113248257B CN202110517281.8A CN202110517281A CN113248257B CN 113248257 B CN113248257 B CN 113248257B CN 202110517281 A CN202110517281 A CN 202110517281A CN 113248257 B CN113248257 B CN 113248257B
Authority
CN
China
Prior art keywords
sioc
solution
negative electrode
electrode material
continuous macroporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110517281.8A
Other languages
English (en)
Other versions
CN113248257A (zh
Inventor
郭兴忠
王军长
田瑞
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110517281.8A priority Critical patent/CN113248257B/zh
Publication of CN113248257A publication Critical patent/CN113248257A/zh
Application granted granted Critical
Publication of CN113248257B publication Critical patent/CN113248257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5603Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides with a well-defined oxygen content, e.g. oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种锂离子电池共连续大孔SiOC负极材料及其制备方法,制备方法包括以下步骤:将硅烷前驱体、铵盐与盐酸溶液、甲醇、环氧丙烷相混合搅拌直至形成溶胶;然后依次进行凝胶化、溶剂置换、干燥、热处理和破碎,得共连续大孔SiOC负极材料。本发明方法制得的锂离子电池共连续大孔SiOC负极材料,具有高的比容量和稳定的循环性能。

Description

锂离子电池共连续大孔SiOC负极材料及其制备方法
技术领域
本发明属于锂离子电池技术领域,涉及一种锂离子电池SiOC负极材料及其制备方法。
背景技术
锂离子电池因其高的能量密度占据着消费类电池、动力电池及储能电池的市场,然而石墨负极低的比容量(372mAh/g)严重限制了人们对于更高能量密度的追求。硅具有4200mAh/g的理论比容量,且地壳储量丰富,是一种极具应用前景的锂离子电池负极材料。然而,大的比容量伴随着大的体积膨胀致使硅负极在循环过程中易发生破碎、脱落,容量衰减快,同时易引发电池结构的破坏。这使得单纯的硅负极难以应用于锂离子电池中。
现有的SiOC负极材料通常是无孔的块体或微球。
SiOC材料作为锂离子电池硅基负极材料的一种,也具有高的比容量。此外,基体中引入的氧与碳能有效缓冲脱、嵌锂过程中的体积膨胀,因此SiOC负极材料的循环稳定性较硅负极有明显改善。专利文献CN 112174674A公开了一种硅氧碳型锂离子电池负极材料的制备方法,该负极材料为SixOyCz陶瓷,具有好的循环稳定性,但其比容量仅有~500mAh/g。专利文献CN 111924847A公开了一种锂离子电池SiOC微球负极材料及其制备方法,该负极材料循环1000圈后容量未发生大幅衰减,但其比容量仅为~400mAh/g。由此可见,发展兼具循环稳定性好和比容量高的锂离子电池SiOC负极材料仍是一大挑战。
发明内容
本发明要解决的问题是提供一种锂离子电池共连续大孔SiOC负极材料及其制备方法。本发明提供的共连续大孔SiOC负极材料具有循环稳定性好、比容量高的优点。
为了解决上述技术问题,本发明提供一种锂离子电池共连续大孔SiOC负极材料的制备方法,包括以下步骤:
1)溶胶制备:
将硅烷前驱体、铵盐与盐酸溶液(0.01M)、甲醇相混合,搅拌至硅烷前驱体和铵盐均溶解(形成无色透明溶液),再加入环氧丙烷,继续搅拌直至形成溶胶(无色透明溶胶);
硅烷前驱体:铵盐=500±50mL:10g的用量比;
盐酸溶液:甲醇=1:0.5±0.1的体积比;
盐酸溶液:硅烷前驱体=1:1的体积比;
环氧丙烷:硅烷前驱体=0.5±0.1:1的体积比;
2)凝胶化:
将步骤1)所得溶胶密封后于40~60℃(优选50℃)的恒温箱中静置12~48小时,得到湿凝胶(块状的湿凝胶);
3)溶剂置换:
将步骤2)所得的湿凝胶进行溶剂置换;得溶剂置换后凝胶;
4)干燥:
将步骤3)所得的溶剂置换后凝胶干燥,得到干凝胶(块状干凝胶);
5)热处理:
将步骤4)所得的干凝胶在惰性气体保护下经700~1200℃(优选900℃)高温热处理3~5小时,然后降温至室温,得到共连续大孔SiOC块体;
6)破碎:
将共连续大孔SiOC块体经破碎处理,得共连续大孔SiOC负极材料。
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的改进,步骤1)中:
所述硅烷前驱体为甲基三甲氧基硅烷、丙基三甲氧基硅烷、己基三甲氧基硅烷、十二烷基三甲氧基硅烷、二甲基二甲氧基硅烷中的至少一种(一种或多种);
所述铵盐为氯化铵或十六烷基溴化铵。
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的进一步改进,步骤5)中:升温与降温速度为2~10℃/min(优选5℃/min)。
惰性保护气体例如为氩气或氮气。
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的进一步改进,步骤6)中:共连续大孔SiOC块体破碎至粒径≤20um。
所述破碎方式为气流破碎或机械破碎。
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的进一步改进,所述步骤3)为采用无水乙醇于50~60℃进行溶剂置换(溶剂置换时用保鲜膜封口从而尽量避免溶剂的挥发)。
每次溶剂置换的时间为12h,共置换2~4次(每次置换,需更换无水乙醇)。
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的进一步改进,步骤4)为:将步骤3)所得的溶剂置换后的湿凝胶置于60~80℃(优选70℃)恒温箱中干燥72~120小时,得到干凝胶(块状干凝胶);
作为本发明的锂离子电池共连续大孔SiOC负极材料的制备方法的进一步改进,步骤1)中:
室温下,将铵盐溶于盐酸溶液(0.01M),得溶液A;将甲醇加入溶液A,得溶液B;
20±2℃恒温水浴下,硅烷前驱体将加入至溶液B搅拌,得溶液C;环氧丙烷加入至溶液C搅拌,得溶胶。
本发明还同时提供了利用上述方法制备而得的锂离子电池共连续大孔SiOC负极材料。
本发明所得的共连续大孔SiOC负极材料具有共连续的大孔和共连续的韧带。
本发明所得的共连续大孔SiOC负极材料通过共连续的大孔可以有效缓冲脱、嵌锂过程中的体积膨胀,而且利于电解液的润湿;通过共连续的韧带,电子可以更快补给到电化学反应位点,而且微米级的韧带不会过多地造成容量的不可逆损失。
本发明的制备方法,包括甲基硅倍半硅氧烷块体的高温热处理及后续破碎处理。
本发明的制备方法能够保留前驱体的共连续大孔结构,且制备工艺简单,对设备要求低,易于工业化生产。
本发明的共连续大孔SiOC负极材料可用于制备锂离子电池。
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供的共连续大孔SiOC负极材料通过共连续的大孔和共连续的韧带的协同作用,可以在提高充、放电过程中循环稳定性的同时保证高的可逆比容量。本发明提供的共连续大孔SiOC负极材料的扣电在500mA/g的电流密度下经300圈循环后可逆容量为~700mAh/g。
(2)本发明提供的制备方法工艺简单,对设备要求低,易于工业化生产。
综上,本发明公开了一种锂离子电池共连续大孔SiOC负极材料的制备方法,采用硅烷前驱体和铵盐为原料,通过溶胶制备、凝胶化、溶剂置换、干燥、热处理、破碎等过程,制备出具有共连续大孔的SiOC锂离子电池负极材料。该方法制得的锂离子电池共连续大孔SiOC负极材料,具有高的比容量和稳定的循环性能。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为实施例1制备的共连续大孔SiOC负极材料的SEM照片;
图2为实施例1制备的共连续大孔SiOC负极材料的成分分布图;
图3为实施例1制备的共连续大孔SiOC负极材料的循环性能图;上线为库伦效率,下线为容量。
图4为对比例1制备的介孔SiOC负极材料的SEM照片;
图5为对比例1制备的介孔SiOC负极材料的循环性能图;
图6为对比例2制备的SiOC微球负极材料的SEM照片;
图7为对比例2制备的SiOC微球负极材料的循环性能图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1、一种锂离子电池共连续大孔SiOC负极材料的制备方法,依次进行以下步骤:
1)、溶胶制备:
室温下,取10g氯化铵溶于500mL盐酸溶液(0.01M),得溶液A;取250mL甲醇加入溶液A,得溶液B;
20℃恒温水浴下,取500mL甲基三甲氧基硅烷加入溶液B并机械搅拌1h,得溶液C;
20℃恒温水浴下,取250mL环氧丙烷加入溶液C并机械搅拌1min,得溶胶。
2)、凝胶陈化:
将步骤1)所得的溶胶密封后转移至50℃恒温箱中静置2天(48小时),得块状的湿凝胶A。
3)、溶剂置换:
将上述湿凝胶A浸泡在同体积量的无水乙醇中置于50℃恒温箱中进行溶剂置换(溶剂置换浸泡时采用常规的保鲜膜封口,从而尽量避免溶剂的挥发,每次置换时间为12小时),每隔12h后更换一次无水乙醇重新进行溶剂置换;溶剂置换的次数共为3次,最后一次溶剂置换12小时后,去除保鲜膜封口,倒掉置换后的无水乙醇后,得块状湿凝胶B(溶剂置换后凝胶)。
4)、干燥:
将上述块状湿凝胶B转移至70℃鼓风干燥箱中干燥4天(96h),得块状干凝胶。
5)、热处理:
取上述干凝胶块体300g置于气氛保护炉中在氩气保护下热处理,热处理温度为900℃,热处理时间为3h,然后降温至室温,得共连续大孔SiOC块体;
此步骤5)的升、降温速度均为5℃/min。
6)、破碎处理:
取共连续大孔SiOC块体250g,经气流破碎至粒径≤20um,得所述共连续大孔SiOC负极材料。
本实施例1制备得到的共连续大孔SiOC负极材料具有共连续的大孔和共连续的韧带;所述共连续的大孔尺寸为3~5um;所述共连续的韧带直径为~1um,所述共连续的韧带由均匀分散其中的元素硅、氧、碳组成,所述共连续的韧带组织为非晶态。
本实施例1制备的共连续大孔SiOC负极材料的形貌、成分分布及性能测试结果分别见图1~图3。
实施例2、一种制备共连续大孔SiOC负极材料的方法,依次进行以下步骤:
1)、溶胶制备:
室温下,取10g十六烷基三甲基溴化铵溶于500mL盐酸溶液(0.01M),得溶液A;取250mL甲醇加入溶液A,得溶液B;
20℃恒温水浴下,取500mL二甲基二甲氧基硅烷加入溶液B并机械搅拌1h,得溶液C;
20℃恒温水浴下,取250mL环氧丙烷加入溶液C并机械搅拌1min,得溶胶。
2)、凝胶陈化:
将步骤1)所得的溶胶密封后转移至60℃恒温箱中静置2天(48小时),得块状的湿凝胶A。
3)、溶剂置换:
将上述湿凝胶A浸泡在同体积量的无水乙醇中置于60℃恒温箱中进行溶剂置换(溶剂置换浸泡时采用常规的保鲜膜封口,从而尽量避免溶剂的挥发,每次置换时间为12小时),每隔12h后更换一次无水乙醇重新进行溶剂置换;溶剂置换的次数共为3次,最后一次溶剂置换12小时后,去除保鲜膜封口,倒掉置换后的无水乙醇后,得块状湿凝胶B(溶剂置换后凝胶)。
4)、干燥:
将上述块状湿凝胶B转移至80℃鼓风干燥箱中干燥4天,得块状干凝胶。
5)、热处理:
取上述干凝胶块体300g置于气氛保护炉中在氮气保护下热处理,热处理温度为1150℃,热处理时间为3h,升、降温速度均为5℃/min,降温至室温,得共连续大孔SiOC块体;
6)、破碎处理:
取共连续大孔SiOC块体250g,经机械破碎至≤20um,得共连续大孔SiOC负极材料。
本实施2制备得到的共连续大孔SiOC负极材料具有共连续的大孔和共连续的韧带。
对比例1、介孔SiOC负极材料的制备方法,依次进行以下步骤:
1)、溶胶制备:
室温下,取10g十六烷基三甲基溴化铵溶于500mL盐酸溶液(0.01M),得溶液A;取250mL甲醇加入溶液A,得溶液B;
0℃恒温水浴下,取500mL甲基三甲氧基硅烷加入溶液B并机械搅拌30min,得溶液C;
0℃恒温水浴下,取250mL环氧丙烷加入溶液C并机械搅拌2min,得溶胶。
2)、凝胶陈化:
将上述步骤1)所得的溶胶密封后转移至50℃恒温箱中静置1.5h,得块状湿凝胶A;
3)、溶剂置换:
50℃恒温箱中,将上述湿凝胶A间隔12h用依次用甲醇、异丙醇和正庚烷分别置换2次,得块状湿凝胶B;
4)、干燥:
将上述湿凝胶B转移至转移至微波干燥设备中干燥(700W,60min),得块状干凝胶;
5)~6)、高温热处理与破碎处理操作均等同于实施例1,得介孔SiOC负极材料。
制备得到的介孔SiOC负极材料具有共连续的介孔。其形貌及性能测试结果分别见图4、图5。
对比例2、SiOC微球负极材料的制备方法,依次进行以下步骤:
1)、溶胶制备:
室温下,取10g十六烷基三甲基溴化铵溶于500mL盐酸溶液(0.01M),得溶液A;
20℃恒温水浴下,取250mL甲基三甲氧基硅烷和250mL二甲基二甲氧基硅烷加入溶液A并机械搅拌1h,得溶液B;
20℃恒温水浴下,取250mL环氧丙烷加入溶液B并机械搅拌2min,得溶胶;
2)、凝胶陈化:
将上述溶胶密封后转移至50℃恒温箱中静置1.5h,得块状湿凝胶A;
3)、溶剂置换:
50℃恒温箱中,将上述湿凝胶A间隔12h用异丙醇置换3次,得块状湿凝胶B;
4)~6)、干燥、高温热处理及破碎处理操作均等同于实施例1,得SiOC微球负极材料。
该SiOC微球负极材料由粒径~2um的微球组成,其形貌及性能测试结果分别见图6~图7。
对比例3、将热处理温度由900℃改成1150℃,其余等同于对比例1。对比例3制备得到介孔SiOC负极材料。
对各实施例和对比例所得产物按照如下方法进行性能测试:
(1)首次充放电性能测试
将SiOC负极材料作为活性物质,PAA作为粘结剂,Super P作为导电剂,搅拌均匀涂覆在铜箔上,经真空干燥制得负极片,活性物质:导电剂:粘结剂=8:1:1的质量比。以金属锂片作为对电极,PP作为隔膜,LiPF6/EC+DEC+DMC(1:1:1)+5%FEC作为电解液,在水氧值低于0.01ppm的手套箱中组装扣式电池,采用蓝电5V/10mA型电池测试仪进行首次充放电测试,充、放电截止电压分别为3V和0.005V,电流密度为100mA/g。
(2)循环测试
充、放电的电流密度为500mA/g,其他工艺与首次充放电性能测试相同。
图3、图5和图7分别为实施例1制备的共连续大孔SiOC负极材料、对比例1制备的介孔SiOC负极材料和对比例2制备的SiOC微球负极材料的循环性能图,可以看出:本发明的实施例1制备的共连续大孔SiOC负极材料在具有好的循环稳定性的同时表现出最高的可逆比容量,在500mA/g的电流密度下循环300圈后比容量保持在~700mAh/g,而对比例1仅仅为~100mAh/g,对比例2仅为~500mAh/g。
实施例2制备的共连续大孔SiOC负极材料同样表现出好的循环稳定性,其容量略低于实施例1所制备的共连续大孔SiOC负极材料,约为~500mAh/g。对比例3仅仅为~40mAh/g。
综合可知,本发明提供的共连续大孔SiOC负极材料通过共连续的大孔可以有效缓冲脱、嵌锂过程中的体积膨胀,而且利于电解液的润湿;通过共连续的韧带,电子可以更快补给到电化学反应位点,而且微米级的韧带不会过多地造成容量的不可逆损失。通过共连续的大孔和共连续的韧带的协同作用,可以在提高充放电过程中循环稳定性的同时保证高的可逆比容量。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (3)

1.锂离子电池共连续大孔SiOC负极材料的制备方法,其特征在于包括以下步骤:
1)溶胶制备:
室温下,将铵盐溶于0.01 M盐酸溶液,得溶液A;将甲醇加入溶液A,得溶液B; 20±2℃恒温水浴下,硅烷前驱体将加入至溶液B搅拌,得溶液C;环氧丙烷加入至溶液C搅拌,得溶胶;
硅烷前驱体:铵盐=500±50 mL:10g;
盐酸溶液:甲醇=1:0.5±0.1的体积比;
盐酸溶液:硅烷前驱体=1:1的体积比;
环氧丙烷:硅烷前驱体=0.5±0.1:1的体积比;
所述硅烷前驱体为甲基三甲氧基硅烷或二甲基二甲氧基硅烷,所述铵盐为氯化铵或十六烷基三甲基溴化铵;
2)凝胶化:
将步骤1)所得溶胶密封后于40~60℃的恒温箱中静置12~48小时,得到湿凝胶;
3)溶剂置换:
将步骤2)所得的湿凝胶采用无水乙醇于 50~60℃进行溶剂置换;得溶剂置换后凝胶;
每次溶剂置换的时间为12h,共置换2~4次;
4)干燥:
将步骤3)所得的溶剂置换后的湿凝胶置于60~80 ℃恒温箱中干燥72~120小时,得到干凝胶;
5)热处理:
将步骤4)所得的干凝胶在惰性气体保护下升温至900℃高温热处理3~5小时,然后降温至室温,得到共连续大孔SiOC块体;
升温与降温速度均为5℃/min;
6)破碎:
将共连续大孔SiOC块体经破碎处理至粒径≤20μm ,得共连续大孔SiOC负极材料。
2.根据权利要求1所述的锂离子电池共连续大孔SiOC负极材料的制备方法,其特征在于依次进行以下步骤:
1)、溶胶制备:
室温下,取10 g氯化铵溶于500 mL的0.01 M盐酸溶液,得溶液A;取250 mL甲醇加入溶液A,得溶液B;
20 ℃恒温水浴下,取500 mL甲基三甲氧基硅烷加入溶液B并机械搅拌1 h,得溶液C;
20 ℃恒温水浴下,取250 mL环氧丙烷加入溶液C并机械搅拌1 min,得溶胶;
2)、凝胶陈化:
将步骤1)所得的溶胶密封后转移至50 ℃恒温箱中静置2天,得块状的湿凝胶A;
3)、溶剂置换:
将上述湿凝胶A浸泡在同体积量的无水乙醇中置于50 ℃恒温箱中进行溶剂置换,每隔12 h 后更换一次无水乙醇重新进行溶剂置换;溶剂置换的次数共为3次,最后一次溶剂置换12小时后,去除保鲜膜封口,倒掉置换后的无水乙醇后,得块状湿凝胶B;
4)、干燥:
将上述块状湿凝胶B转移至70 ℃鼓风干燥箱中干燥4天,得块状干凝胶;
5)、热处理:
取上述干凝胶块体300 g置于气氛保护炉中在氩气保护下热处理,热处理温度为900℃,热处理时间为3 h,然后降温至室温,得共连续大孔SiOC块体;
此步骤5)的升、降温速度均为5 ℃/min;
6)、破碎处理:
取共连续大孔SiOC块体250 g,经气流破碎至粒径≤20μm ,得所述共连续大孔SiOC负极材料。
3.如权利要求1或2所述方法制备而得的锂离子电池共连续大孔SiOC负极材料。
CN202110517281.8A 2021-05-12 2021-05-12 锂离子电池共连续大孔SiOC负极材料及其制备方法 Active CN113248257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110517281.8A CN113248257B (zh) 2021-05-12 2021-05-12 锂离子电池共连续大孔SiOC负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110517281.8A CN113248257B (zh) 2021-05-12 2021-05-12 锂离子电池共连续大孔SiOC负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113248257A CN113248257A (zh) 2021-08-13
CN113248257B true CN113248257B (zh) 2022-09-30

Family

ID=77223015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110517281.8A Active CN113248257B (zh) 2021-05-12 2021-05-12 锂离子电池共连续大孔SiOC负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113248257B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869367A1 (en) * 2012-06-27 2015-05-06 JNC Corporation Negative active material for secondary battery, process for producing same, and negative electrode and lithium-ion battery both obtained using same
CN104617265A (zh) * 2015-01-09 2015-05-13 浙江大学 一种硅氧碳复合锂离子电池负极材料的制备方法
EP3018099A1 (en) * 2014-11-06 2016-05-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives SiOC composite electrode material
CN106242610A (zh) * 2016-08-17 2016-12-21 哈尔滨工业大学 一种SiOC陶瓷气凝胶的制备方法
CN106941165A (zh) * 2017-04-13 2017-07-11 乐延伟 一种硅氧碳复合锂离子电磁负极活性材料及其制备方法
CN107910554A (zh) * 2017-10-26 2018-04-13 江苏大学 一种锂离子电池用SiOC复合负极材料及其制备方法
CN108365184A (zh) * 2018-01-02 2018-08-03 江苏大学 一种锂离子电池用富碳多孔SiOC负极材料及其制备方法
WO2020179409A1 (ja) * 2019-03-01 2020-09-10 Jnc株式会社 SiOC構造体並びにこれを用いた負極用組成物、負極及び二次電池
CN111924847A (zh) * 2020-08-06 2020-11-13 中国科学技术大学 一种SiOC微球、其制备方法及其在锂离子电池负极材料中的应用
CN112174674A (zh) * 2020-09-30 2021-01-05 厦门大学深圳研究院 一种硅氧碳型锂离子电池负极材料的制备方法
CN112421047A (zh) * 2020-11-30 2021-02-26 成都新柯力化工科技有限公司 一种提高锂电池硅基复合负极倍率性能的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582214B2 (en) * 2005-06-20 2009-09-01 Mcmaster University Methods for forming macroporous monolithic methylsilsesquioxanes
CN112259737B (zh) * 2020-10-27 2021-05-07 成都新柯力化工科技有限公司 一种锂电池介孔球形氧化亚硅负极材料的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2869367A1 (en) * 2012-06-27 2015-05-06 JNC Corporation Negative active material for secondary battery, process for producing same, and negative electrode and lithium-ion battery both obtained using same
EP3018099A1 (en) * 2014-11-06 2016-05-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives SiOC composite electrode material
CN104617265A (zh) * 2015-01-09 2015-05-13 浙江大学 一种硅氧碳复合锂离子电池负极材料的制备方法
CN106242610A (zh) * 2016-08-17 2016-12-21 哈尔滨工业大学 一种SiOC陶瓷气凝胶的制备方法
CN106941165A (zh) * 2017-04-13 2017-07-11 乐延伟 一种硅氧碳复合锂离子电磁负极活性材料及其制备方法
CN107910554A (zh) * 2017-10-26 2018-04-13 江苏大学 一种锂离子电池用SiOC复合负极材料及其制备方法
CN108365184A (zh) * 2018-01-02 2018-08-03 江苏大学 一种锂离子电池用富碳多孔SiOC负极材料及其制备方法
WO2020179409A1 (ja) * 2019-03-01 2020-09-10 Jnc株式会社 SiOC構造体並びにこれを用いた負極用組成物、負極及び二次電池
CN111924847A (zh) * 2020-08-06 2020-11-13 中国科学技术大学 一种SiOC微球、其制备方法及其在锂离子电池负极材料中的应用
CN112174674A (zh) * 2020-09-30 2021-01-05 厦门大学深圳研究院 一种硅氧碳型锂离子电池负极材料的制备方法
CN112421047A (zh) * 2020-11-30 2021-02-26 成都新柯力化工科技有限公司 一种提高锂电池硅基复合负极倍率性能的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A SiOC anode material derived from PVA-modified polysiloxane with improved Li-storage cycling stability;Huimin Shi 等;《Ionics》;20190128;第25卷;3051–3058 *
Carbon-enriched SiOC ceramics with hierarchical porous structure as anodes for lithium storage;Xia Kedong 等;《ELECTROCHIMICA ACTA》;20210310;第372卷;137899 *
Facile Synthesis of Methylsilsesquioxane Aerogels with Uniform Mesopores by Microwave Drying;Xingzhong Guo等;《Polymers》;20190228;第11卷(第2期);375 *
High temperature structure evolution of macroporous SiOC ceramics prepared by a sol–gel method;Chen Liu等;《Ceramics International》;20151130;第41卷(第9期);11091-11096 *
Submicron-sized silicon oxycarbide spheres as anodes for alkali ion batteries;M. Weinberger等;《Journal of Materials Chemistry A》;20151015(第3期);23707-23715 *
Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries;HuiminShi等;《Journal of Power Sources》;20171001;第364卷;288-298 *
高容量锂离子电池硅氧碳基负极材料的制备及性能研究;吴泽;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20200115(第1期);B020-13 *

Also Published As

Publication number Publication date
CN113248257A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN107910506B (zh) 一种NaCl改性石墨烯网包覆β-FeOOH锂离子电池负极材料的制备方法
CN105742695B (zh) 一种锂离子电池及其制备方法
CN111463419B (zh) 一种硅基@钛铌氧化物核壳结构的负极材料及其制备方法
CN104319366B (zh) 一种硅/石墨/钛酸锂复合负极材料及其制备方法
CN112133896A (zh) 一种高容量石墨-硅-氧化亚硅复合材料及其制备方法、应用
CN109346685B (zh) 一种SiOx/C球形粉体的制备方法及其应用
CN112110448A (zh) 一种氮掺杂碳与纳米硅复合负极材料及其制备方法
CN109671913A (zh) 一种低成本制备稳定性锂电池硅负极及其制备方法
CN113889594A (zh) 一种硼掺杂锆酸镧锂包覆石墨复合材料的制备方法
CN108054024A (zh) 一种混合膨胀石墨作为锂离子电容器负极材料的应用
CN107681131B (zh) 一种低成本纳米硅粉及硅碳材料的制备方法
KR20220083973A (ko) 석류 유사 구조 실리콘 기반 복합 재료 및 그 제조 방법 및 응용
CN108054385A (zh) 一种纳米金属氧化物包覆 LiFePO4微晶及其制备方法
CN113248257B (zh) 锂离子电池共连续大孔SiOC负极材料及其制备方法
CN116553514A (zh) 一种椰壳基硬碳材料的制备方法、钠离子电池
CN110797516A (zh) 一种C包覆SiO-SnSiO4-Si超粒子材料及其制备方法和应用
WO2023193369A1 (zh) 一种二氟草酸硼酸锂掺杂包覆SiO/C复合材料及其制备方法和应用
CN108682829A (zh) 一种氮掺杂碳包覆硅复合石墨材料的制备方法
CN111261862B (zh) 一种锂离子电池改性石墨负极材料及其制备方法
WO2019024221A1 (zh) 一种高首效长寿命的硅碳负极材料制备方法
CN113206213A (zh) 一种硅基复合电极及其制备方法和应用
CN109860527B (zh) 一种制备锂电池负极的碳基复合材料及其制备方法
CN108682859B (zh) 一种石墨烯改性锂离子电池负极材料的制备方法
CN112397701A (zh) 一种稻壳基硅氧化物/碳复合负极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant