CN113199026B - 硼化钛增强钛基复合材料及其制备方法 - Google Patents

硼化钛增强钛基复合材料及其制备方法 Download PDF

Info

Publication number
CN113199026B
CN113199026B CN202110349590.9A CN202110349590A CN113199026B CN 113199026 B CN113199026 B CN 113199026B CN 202110349590 A CN202110349590 A CN 202110349590A CN 113199026 B CN113199026 B CN 113199026B
Authority
CN
China
Prior art keywords
titanium
composite material
reinforced
based composite
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110349590.9A
Other languages
English (en)
Other versions
CN113199026A (zh
Inventor
路新
张策
潘宇
刘博文
徐伟
高营
张嘉振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongkehong Titanium New Material Technology Co ltd
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110349590.9A priority Critical patent/CN113199026B/zh
Publication of CN113199026A publication Critical patent/CN113199026A/zh
Application granted granted Critical
Publication of CN113199026B publication Critical patent/CN113199026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals

Abstract

本发明提供了一种硼化钛增强钛基复合材料及其制备方法,该制备方法包括以下步骤:氢化,将钛原料进行氢化处理;所述氢化处理采用氢气和硼氢化合物气体;破碎,将经过氢化处理后的钛原料进行破碎处理,得到含硼的氢化钛复合粉末;将所述氢化钛复合粉末依次进行成形及烧结处理,得到硼化钛增强钛基复合材料。该制备方法采用气态硼氢化合物和氢气混合气体对钛物料进行氢化,达到吸氢破碎目的的同时,在粉末颗粒中均匀复合引入硼元素,后续将破碎粉末直接成形和烧结致密化制备硼化钛增强钛基复合材料,并且最终制备的硼化钛增强钛基复合材料杂质含量低、第二相分布均匀、综合力学性能优异。

Description

硼化钛增强钛基复合材料及其制备方法
技术领域
本发明涉及复合材料制备技术领域,具体涉及一种硼化钛增强钛基复合材料及其制备方法。
背景技术
钛基复合材料是指在钛或钛合金基体中引入增强体的一种复合材料。它兼具钛基体的轻质、高强、耐蚀等一系列优异性能,同时兼具增强体的高强度、高模量,从而获得比钛或钛合金更高的比强度、比刚度、硬度和抗高温性能。同时得益于多元增强相的可设计性,近年来日益受到国内外钛研究者的重视。在钛基复合材料中,硼化钛(TiB)被认为是最佳增强相。一方面是由于其高弹性模量、高硬度、以及与钛之间好的相容性或稳定性,给复合材料带来优异性能及延长使用寿命;其次它与基体钛之间非常相近的密度和热膨胀系数,降低复合材料中残余应力。钛基复合材料的制备技术中,粉末冶金法具有晶粒细小、第二相分布均匀等优势而广受关注。
TiB强化钛基复合材料的粉末冶金制备方法一般是将钛粉和硼源粉末进行混料后进行压制烧结原位生成TiB或者直接外加TiB或二硼化钛(TiB2)粉末制备TiB增强钛基复合材料,如专利号为CN112063869A,CN111014669A,CN110592426A等的中国专利公开的均是这种方法。但这种方法存在一些问题:(1)增强相的分布:通过固体粉末的硼(B)元素引入方式制备TiB增强钛基复合材料的增强相分布不均匀,尤其是当加入的是纳米尺度的粉末,传统的三维混料过程难以将团聚的纳米粉末分散开,因此如何获得均匀分布的TiB是首要解决的问题;(2)过程杂质控制:外加含B固体粉末的纯度以及混料过程中杂质气体元素(氧、氮等)都会对最终材料性能产生很大的影响。
发明内容
本发明的主要目的在于提供一种硼化钛增强钛基复合材料及其制备方法,该硼化钛增强钛基复合材料的制备方法采用气态硼氢化合物和氢气混合气体对钛物料进行氢化,达到吸氢破碎目的的同时,在粉末颗粒中均匀复合引入硼元素,后续将破碎粉末直接成形和烧结致密化制备硼化钛增强钛基复合材料,并且最终制备的硼化钛增强钛基复合材料杂质含量低、第二相分布均匀、综合力学性能优异,以解决现有技术中固相粉末混合法带来的间隙原子增加和第二相粉末不均匀的技术问题。
为了实现上述目的,根据本发明的第一方面,提供了一种硼化钛增强钛基复合材料的制备方法。
该硼化钛增强钛基复合材料的制备方法包括以下步骤:
S1:氢化,将钛原料进行氢化处理;所述氢化处理采用氢气和硼氢化合物气体;
S2:破碎,将经过步骤S1氢化处理后的钛原料进行破碎处理,得到含硼的氢化钛复合粉末;
S3:将所述氢化钛复合粉末依次进行成形及烧结处理,得到硼化钛增强钛基复合材料。
进一步的,所述制备方法还包括:
S0:原料准备,选取用于氢化的钛原料;所述钛原料为海绵钛、钛屑和钛合金中的至少一种。
在本发明中,原料可以选取海绵钛、钛屑等用于氢化的钛原料,钛原料还可以是添加各种合金元素粉末或中间合金粉末配比成的TA、TB和TC等各类钛合金牌号,而不局限于某一种钛合金。
进一步的,步骤S1中,所述氢化处理的温度为400~550℃,压力在0.01~0.1MPa之间;
优选的,在所述氢化处理之前先抽真空至10-3~10-1Pa。
在本发明中,氢气和硼氢化合物气体的体积比控制最终复合材料中的TiB第二相比例。
进一步的,所述硼氢化合物气体为气态少氢硼烷(BnHn+4类)和多氢硼烷(BnHn+6类)。
进一步的,所述硼氢化合物气体与所述氢气的体积比为1:(1~10)。
进一步的,步骤S2中,所述破碎处理采用锤式破碎或气流粉碎方式;所述氢化钛复合粉末的粒度为5~80μm。
进一步的,步骤S3中,所述成形处理采用模压、冷等静压或注射成形方式。
进一步的,所述冷等静压成形的压制压力为200~300Mpa,保压时间为10~20s。
进一步的,步骤S3中,所述烧结处理采用气氛或真空烧结方式;烧结温度为1100~1350℃,保温时间为2~5h。
为了实现上述目的,根据本发明的第二方面,提供了一种硼化钛增强钛基复合材料。
该硼化钛增强钛基复合材料是采用上述的制备方法制备得到。
本发明提供了一种全新的TiB增强钛基复合材料的制备方法。该方法将氢化制粉和TiB第二相的引入相结合,利用气相硼氢化合物(硼烷)和氢气共同对钛原料进行氢化,该过程发生以下反应:
Ti+H2→TiH2,Ti+BnHn+2→TiB+TiH2
破碎后获得含B元素的复合氢化钛粉末,后续将粉末直接压制成形和真空烧结致密化制备TiB增强钛基复合材料。
本发明的制备方法将吸氢和B元素引入过程进行一体化集成,实现了高纯且均匀的含B的钛复合粉末的制备,最终制备的TiB增强钛基复合材料杂质含量低、第二相分布均匀、综合力学性能优异,并且大大简化了钛基复合材料的制备流程,具有极强的推广应用价值。
具体实施方式
下面将更详细地描述本公开的示例性实施方式。应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明提供了一种TiB增强钛基复合材料的短流程制备方法,该制备方法主要将氢化脱氢制粉过程与增强相引入进行一体化集成,通过硼氢化合物气体和氢气组成混合气体对钛物料进行氢化,随后通过破碎、脱氢、成形和烧结等过程制备TiB增强钛基复合材料。通过该技术引入TiB增强相相比粉末混合法更加均匀,同时大幅降低了制备过程中增氧、增氮等,实现了短流程制备TiB增强钛基复合材料产品,成材率高,成本低,产品性能优异。
以下将通过具体实施例对本发明中的硼化钛增强钛基复合材料的制备方法进行详细说明。
实施例1:
3~5vol%TiB-Ti复合材料制备
S1:原料准备,称取100kg高品质海绵钛。
S2:氢化,将上述原料放入氢化炉中,抽真空至10-3~10-1Pa,加热至450℃,保温30min后停止加热;随后通入B2H6与H2为1:10的混合气体,吸氢开始。吸氢饱和后停止通入气体。吸氢结束后冷却至室温。
S3:破碎,将经过步骤S2处理的原料进行保护气氛下的锤式破碎,破碎后密封筛分出粒度≤80μm的粉末颗粒。
S4:成形,将步骤S3得到的复合粉末装入橡胶包套,采用冷等静压成形,压制压力为200MPa,保压时间10s。
S5:烧结,将步骤S4得到的冷等静压坯料进行真空烧结致密化,最高温度为1200℃,升温速率为5℃/min,保温时间为2h。
实施例2:
5~8vol%TiB-Ti64复合材料制备
S1:原料准备,称取100kg高品质Ti-6Al-4V钛屑,清洗、真空烘干以避免油污污染。
S2:氢化,将上述原料放入氢化炉中,抽真空至10-3~10-1Pa,加热至500℃,保温30min后停止加热;随后通入B2H6与H2为1:5的混合气体,吸氢开始。吸氢饱和后停止通入气体。吸氢结束后冷却至室温。
S3:破碎,将经过步骤S2处理的原料进行氩气的气流破碎,破碎后密封筛分出粒度≤80μm的粉末颗粒。
S4:成形,将步骤S3得到的复合粉末装入橡胶包套,采用冷等静压成形,压制压力为200MPa,保压时间10s。
S5:烧结,将步骤S4得到的冷等静压坯料进行真空烧结致密化,最高温度为1250℃,升温速率为5℃/min,保温时间为2h。
实施例3:
8~15volTiB-Ti复合材料微型注射成形产品制备
S1:原料准备,称取100kg高品质海绵钛。
S2:氢化,将上述原料放入氢化炉中,抽真空至10-3~10-1Pa,加热至450℃,保温30min后停止加热;随后通入B2H6与H2为1:3的混合气体,吸氢开始。吸氢饱和后停止通入气体。吸氢结束后冷却至室温。
S3:破碎,将经过步骤S2处理的原料进行保护气氛下的锤式破碎,破碎后密封筛分出粒度≤30μm的粉末颗粒。
S4:成形,将步骤S3得到的复合粉末和粘结剂进行混炼、最后注射成形脱脂后获得近终成形脱脂坯。
S5:烧结,将步骤S4得到的冷等静压坯料进行真空烧结致密化,最高温度为1200℃,升温速率为5℃/min,保温时间为2h。
本发明所制备的TiB增强钛基复合材料最大的优势是短流程化,传统工艺路线为氢化—破碎—脱氢—外加二次相—混合—压制成形—烧结,而本工艺路线为复合氢化—破碎—脱氢—压制成形—烧结,将氢化过程和二次相引入进行集成后会有以下优势。
一方面,通过气相引入B元素相比添加固体含B粉末混合能够显著降低材料杂质元素含量。实验利用99.95%纯度的硼烷气体制备的TiB增强钛基复合材料氧含量一般为0.1~0.16wt.%,氮含量一般为0.015~0.035wt.%,而采用TiB2粉末粉末原料的纯度(通常为99%左右),制备同样TiB比例的钛基复合材料氧含量一般为0.15~0.25wt.%,氮含量为0.03~0.08wt.%。降低材料的杂质含量后,使得材料塑性得到一定程度的提高,相比固体含B粉末的添加方式,所制备材料的延伸率能够提高2~5%。
另一方面,气相引入二次相的方式大大提高了二次相的均匀性,所制备的材料不需进行后续热加工破碎团聚的二次相,材料成品率显著提高。
综上所述,该创新方法能够显著改善目前TiB增强钛基复合材料的固体外加二次相的制备方法,实现短流程的制造,并且具有降低杂质含量和提高材料性能的双重优势。
同时,该方法也有潜力向其他含B金属基复合材料进行推广应用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种硼化钛增强钛基复合材料的制备方法,其特征在于,包括以下步骤:
S1:氢化,将钛原料进行氢化处理;所述氢化处理采用氢气和硼氢化合物气体;所述氢化处理工艺的温度为400~550℃,压力在0.01~0.1MPa之间;
S2:破碎,将经过步骤S1氢化处理后的钛原料进行破碎处理,得到含硼的氢化钛复合粉末;
S3:将所述氢化钛复合粉末依次进行成形及烧结处理,得到硼化钛增强钛基复合材料。
2.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,所述制备方法还包括:
S0:原料准备,选取用于氢化的钛原料;所述钛原料为海绵钛、钛屑和钛合金中的至少一种。
3.根据权利要求1或2所述的硼化钛增强钛基复合材料的制备方法,其特征在于,步骤S1中,
在所述氢化处理之前先抽真空至10-3~10-1Pa。
4.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,所述硼氢化合物气体为气态少氢硼烷和多氢硼烷。
5.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,所述硼氢化合物气体与所述氢气的体积比为1:(1~10)。
6.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,步骤S2中,所述破碎处理采用锤式破碎或气流粉碎方式;所述氢化钛复合粉末的粒度为5~80μm。
7.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,步骤S3中,所述成形处理采用模压、冷等静压或注射成形方式。
8.根据权利要求7所述的硼化钛增强钛基复合材料的制备方法,其特征在于,所述冷等静压成形的压制压力为200~300Mpa,保压时间为10~20s。
9.根据权利要求1所述的硼化钛增强钛基复合材料的制备方法,其特征在于,步骤S3中,所述烧结处理采用气氛或真空烧结方式;烧结温度为1100~1350℃,保温时间为2~5h。
10.一种硼化钛增强钛基复合材料,其特征在于,其采用权利要求1-9任一项所述的制备方法制备得到。
CN202110349590.9A 2021-03-31 2021-03-31 硼化钛增强钛基复合材料及其制备方法 Active CN113199026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110349590.9A CN113199026B (zh) 2021-03-31 2021-03-31 硼化钛增强钛基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110349590.9A CN113199026B (zh) 2021-03-31 2021-03-31 硼化钛增强钛基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113199026A CN113199026A (zh) 2021-08-03
CN113199026B true CN113199026B (zh) 2022-03-29

Family

ID=77025967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110349590.9A Active CN113199026B (zh) 2021-03-31 2021-03-31 硼化钛增强钛基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113199026B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044792B (zh) * 2022-05-09 2022-12-20 哈尔滨工业大学 一种颗粒增强钛基复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB903676A (en) * 1959-04-22 1962-08-15 Du Pont Improvements relating to powder metallurgy compositions and products made therefrom
CN107815561A (zh) * 2017-10-24 2018-03-20 王书杰 钛合金制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560028B2 (ja) * 1987-05-07 1996-12-04 新技術事業団 ホウ化チタンの製造方法
US7410610B2 (en) * 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
AU2003295609A1 (en) * 2002-11-15 2004-06-15 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
CN101934373B (zh) * 2010-09-07 2013-06-26 昆明冶金研究院 氢化钛粉末制备钛及钛合金制品工艺
CN105734316B (zh) * 2016-03-07 2018-03-06 上海交通大学 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN107746999B (zh) * 2017-10-24 2018-08-17 海门市新艺金属装饰工程有限公司 钛合金制备装置
CN108193064B (zh) * 2017-12-26 2020-03-20 天钛隆(天津)金属材料有限公司 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB903676A (en) * 1959-04-22 1962-08-15 Du Pont Improvements relating to powder metallurgy compositions and products made therefrom
CN107815561A (zh) * 2017-10-24 2018-03-20 王书杰 钛合金制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钛及钛合金渗硼技术的发展;潘婷等;《热处理》;20140425;第29卷(第2期);第27-33页 *

Also Published As

Publication number Publication date
CN113199026A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN105734316B (zh) 一种利用氢化钛粉末直接制备成型钛基复合材料的方法
CN113373335B (zh) 一种高强钛基复合材料的制备方法
KR20100010976A (ko) 분말사출 성형체 제조방법
CN112063869B (zh) 一种氢辅粉末冶金钛基复合材料的制备方法
CN111347048A (zh) 低成本的钛合金间接增材制造方法
CN112143924B (zh) 一种用于腐蚀环境的多尺度高强高熵合金材料的制备方法
CN107971499A (zh) 制备球形钛铝基合金粉末的方法
CN108193064B (zh) 一种低成本工业化生产TiC颗粒增强钛基复合材料的方法
CN108546863A (zh) 一种多主元高温合金及其制备方法
CN113199026B (zh) 硼化钛增强钛基复合材料及其制备方法
CN101696474B (zh) 一种含稀土氧化物强化相钛合金的粉末冶金制备方法
CN102876921B (zh) 原位合成TiC颗粒增强钛-铝-钼合金材料及其制备方法
CN108411154B (zh) 一种阻燃石墨烯钛铝基复合材料及制备方法
CN113403517B (zh) 异质结构的CrCoNi-Al2O3纳米复合材料及制备方法
CN111485141B (zh) 一种SiC颗粒增强铝钛基复合材料及其制备方法
CN102851538B (zh) 原位合成TiC颗粒增强钛-铝-钼-锰合金材料及其制备方法
CN102851541B (zh) 原位合成TiC颗粒增强钛-铝-钼-硅合金材料及其制备方法
CN102876919B (zh) 原位合成TiC颗粒增强钛铝合金材料及其制备方法
CN102864336B (zh) 原位合成TiC颗粒增强钛-铝-钒合金材料及其制备方法
CN102876920B (zh) 原位合成TiC颗粒增强钛-铝-钼-铁合金材料及其制备方法
JPH06100969A (ja) Ti−Al系金属間化合物焼結体の製造方法
CN115109959B (zh) 一种双尺度等轴结构的钛合金及其制备方法与应用
CN102851537B (zh) 原位合成TiC颗粒增强钛-铝-钼-钯合金材料及其制备方法
CN114990403B (zh) 一种钨钽铌合金材料及其制备方法
CN114643359B (zh) 一种高强度粉末冶金Ti-W合金棒材的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221107

Address after: Room 605, 6/F, Building 8, China Aluminum Institute, Future Science City, Beiqijia Town, Changping District, Beijing 102209

Patentee after: Beijing Zhongkehong Titanium New Material Technology Co.,Ltd.

Address before: 100083 No. 30, Haidian District, Beijing, Xueyuan Road

Patentee before: University OF SCIENCE AND TECHNOLOGY BEIJING

TR01 Transfer of patent right