CN113198437A - 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法 - Google Patents

一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法 Download PDF

Info

Publication number
CN113198437A
CN113198437A CN202110396294.4A CN202110396294A CN113198437A CN 113198437 A CN113198437 A CN 113198437A CN 202110396294 A CN202110396294 A CN 202110396294A CN 113198437 A CN113198437 A CN 113198437A
Authority
CN
China
Prior art keywords
fullerene
solid
phase microextraction
stainless steel
iron wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110396294.4A
Other languages
English (en)
Other versions
CN113198437B (zh
Inventor
徐生瑞
刘海林
刘统信
陈长坡
冯素玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202110396294.4A priority Critical patent/CN113198437B/zh
Publication of CN113198437A publication Critical patent/CN113198437A/zh
Application granted granted Critical
Publication of CN113198437B publication Critical patent/CN113198437B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开了一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,包括以下步骤:将不锈钢铁丝清洗后,采用蜡烛火焰灼烧的方式使不锈钢铁丝表面氧化并形成一定量未燃尽碳的沉积;将预处理后的不锈钢铁丝浸入所配制的富勒烯‑二硫化碳过饱和溶液中,加热过程中随着二硫化碳溶剂的蒸发,富勒烯材料重结晶于不锈钢铁丝表面;重复重结晶步骤直至获得所需厚度的固相微萃取探头涂层;将所制备富勒烯沉积的不锈钢铁丝组装于固相微萃取空针中获得富勒烯固相微萃取探头,使用前老化处理。该方法操作步骤简单、成本低廉,且所制备涂层萃取分析灵敏度高,具有广阔的应用前景。

Description

一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂 层的方法
技术领域
本发明属于样品前处理技术领域,涉及固相微萃取技术,具体涉及一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法。
背景技术
固相微萃取技术(Soild-phase microextraction,SPME)是加拿大滑铁卢大学Janusz Pawliszyn教授及其合作者于20世纪90年代提出的一种集采样、萃取、浓缩、进样于一体的样品前处理技术。其萃取原理是利用载体上涂渍的萃取相,对样品中的分析物进行萃取和富集;再将涂层上的分析物通过高温解析或者溶剂洗脱的方法解析到分析仪器中。由于固相微萃取技术具有操作简单、无需萃取溶剂、可在线或活体取样、可自动化和可在分析系统直接脱附等优点,该技术已在环境、食品、医药、临床、法庭科学等领域展现出良好的应用前景。
对于固相微萃取技术而言,萃取纤维涂层的物化性质是至关重要的因素,因为其完全决定了基于该技术所建方法的灵敏度、准确度、和精密度等诸多关键参数。 已有研究表明,富勒烯作为一种新型的碳材料,具有热稳定性和化学稳定性优良、机械强度高、对具有共轭苯环结构环境污染物分子有较强的吸附能力等优点,可在萃取吸附领域拥有广阔的应用前景。如何简单、方便制备基于富勒烯材料固相微萃取探头涂层则成为了研究的关键。目前对于固相微萃取探头涂层的制备方法主要有物理涂覆法、溶胶-凝胶技术、原位生长等。其中物理涂覆法虽然操作简单,但利用该法制备的涂层不够均匀,并且涂层材料在使用过程中容易脱落;溶胶-凝胶法得到的三维网状结构的涂层热稳定性提高,不仅表面积大,传质快,而且在酸、碱、有机溶剂中都很稳定,溶胶凝胶还易于改性,可以掺杂其他化合物,但该方法制备过程中步骤繁琐,耗时长;此外在材料制备过程中可利用涂层材料与石英纤维表面的键合作用,原位生长法制备固相微萃取探头涂层,这种方法制备的探头涂层均匀、不易脱落,但是只能针对部分特定的材料(如石墨烯、金属有机骨架材料等)原位生长获得均匀的探头涂层。
鉴于当前制备固相微萃取探头涂层方法所存在的不足之处,针对富勒烯这一新型碳材料的特性,需要开发一种新型操作简单、方便的固相微萃取探头涂层的制备方法。
发明内容
针对目前固相微萃取探头涂层制备方法的不足之处,本发明的目的是提供了一种成本较低、操作步骤简单的基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法。
本发明为实现上述目的采用如下技术方案,一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,其特征在于具体步骤为:
步骤S1:不锈钢铁丝的净化处理:分别采用稀盐酸、氢氧化钠溶液、丙酮溶液超声清洗不锈钢铁丝,干燥后获得洁净的不锈钢铁丝;
步骤S2:采用蜡烛燃烧火焰对步骤S1净化后的不锈钢铁丝进行预处理,使不锈钢铁丝表面氧化并沉积未燃尽炭;
步骤S3:富勒烯溶液的制备:选取二硫化碳为溶剂,制备富勒烯过饱和溶液;
步骤S4:富勒烯固相微萃取探头涂层的制备:将步骤S2中处理后的不锈钢铁丝浸入步骤S3中配制的富勒烯过饱和溶液中,加热至30~50℃,使二硫化碳溶液缓慢的蒸发,此时溶液中的富勒烯重新析出重结晶于不锈钢铁丝表面;
步骤S5:重复上述步骤S3和步骤S4直至获得的涂层厚度为10~20μm;
步骤S6:富勒烯固相微萃取探头涂层的老化处理:将步骤S5制备的富勒烯固相微萃取探头组装于固相微萃取空针中,并置于气相色谱仪进样口中老化处理,最终获得基于富勒烯材料的固相微萃取探头。
进一步限定,步骤S2中所述蜡烛燃烧火焰为内焰,预处理时间为10~15s。
进一步限定,步骤S4中加热温度为40℃。
进一步限定,步骤S6中老化处理在高纯氮气或氦气中进行,进样口温度为250℃,老化处理时间为10min。
本发明与现有技术相比具有以下优点:
1、本发明操作简单,成本较低,设备要求简单;
2、本发明所制备的探头涂层均匀,涂层厚度易调控,不易脱落;
3、本发明以不锈钢铁丝为基体提高了探头的机械强度;
4、本发明所制备的以富勒烯为涂层材料的固相微萃取探头萃取分析灵敏度高,且富勒烯分子结构易改性。
附图说明
图1是本发明基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的流程示意图;
图2是本发明所制备的富勒烯固相微萃取探头涂层的扫描电镜图;
图3是本发明制备的富勒烯固相微萃取探头涂层萃取分析水中邻苯二甲酸酯的气相色谱质谱总离子流图。萃取时间30min,萃取温度50℃,氯化钠浓度30wt%,溶液中邻苯二甲酸酯浓度为40ng/mL;图中标识1-邻苯二甲酸二甲酯,2-邻苯二甲酸二乙酯,3-邻苯二甲酸二正丁酯,4-邻苯二甲酸丁卞酯,5-邻苯二甲酸二(2-乙基已)酯,6-邻苯二甲酸二正辛酯。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
对于不锈钢铁丝的清洗和预处理步骤,如图1所示,首先将直径约为130μm的不锈钢铁丝截成长度约为10cm金属丝段,并分别采用3mol/L的盐酸溶液、3mol/L的氢氧化钠溶液和丙酮溶液对其进行超声清洗10min;干燥后将清洗后的不锈钢铁丝一端(~1.5cm长度)置于蜡烛燃烧内焰中进行灼烧10~15s,备用。
对于富勒烯溶液的配制,称取0.0200g富勒烯溶解于5mL二硫化碳溶液中,配制成富勒烯的过饱和溶液。
对于富勒烯固相微萃取探头涂层的制备,首先移取配制的富勒烯溶液500μL于0.5mL的离心管中,然后将上述清洗并预处理后的不锈钢铁丝一端垂直浸入富勒烯过饱和溶液中,进而40℃条件下加热至二硫化碳溶剂挥发完全,富勒烯重结晶于不锈钢铁丝表面获得均匀的固相微萃取探头涂层;重复该步骤,直至涂层达到所需厚度即可。
对于富勒烯固相微萃取探头涂层的老化,将上述制备的富勒烯不锈钢铁丝置于固相微萃取探头空针中,组装形成富勒烯固相微萃取探头;然后将其置于气相色谱仪进样口中,高纯氮气或氦气保护下,250℃温度老化10min,最终获得以富勒烯为涂层的固相微萃取探头。
萃取分析性能评价
为了验证所制备富勒烯固相微萃取探头涂层的萃取分析性能,我们选取了6种邻苯二甲酸酯类物质为目标分析物,结合气相色谱质谱联用仪,研究了本发明所制备固相微萃取涂层的萃取分析性能,萃取条件分别为萃取时间30min,萃取温度50℃,氯化钠浓度30wt%,溶液中邻苯二甲酸酯浓度为40ng/mL;结果如图3所示,所制备的富勒烯固相微萃取探头涂层对水样中6种邻苯二甲酸酯类物质均有优异的萃取性能,证实所制备涂层在水样污染物萃取分析中拥有很好的应用前景。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (4)

1.一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,其特征在于具体步骤为:
步骤S1:不锈钢铁丝的净化处理:分别采用稀盐酸、氢氧化钠溶液、丙酮溶液超声清洗不锈钢铁丝,干燥后获得洁净的不锈钢铁丝;
步骤S2:采用蜡烛燃烧火焰对步骤S1净化后的不锈钢铁丝进行预处理,使不锈钢铁丝表面氧化并沉积未燃尽炭;
步骤S3:富勒烯溶液的制备:选取二硫化碳为溶剂,制备富勒烯过饱和溶液;
步骤S4:富勒烯固相微萃取探头涂层的制备:将步骤S2中处理后的不锈钢铁丝浸入步骤S3中配制的富勒烯过饱和溶液中,加热至30~50℃,使二硫化碳溶液缓慢的蒸发,此时溶液中的富勒烯重新析出重结晶于不锈钢铁丝表面;
步骤S5:重复上述步骤S3和步骤S4直至获得的涂层厚度为10~20μm;
步骤S6:富勒烯固相微萃取探头涂层的老化处理:将步骤S5制备的富勒烯固相微萃取探头组装于固相微萃取空针中,并置于气相色谱仪进样口中老化处理,最终获得基于富勒烯材料的固相微萃取探头。
2.根据权利要求1所述的基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,其特征在于:步骤S2中所述蜡烛燃烧火焰为内焰,预处理时间为10~15s。
3.根据权利要求1所述的基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,其特征在于:步骤S4中加热温度为40℃。
4.根据权利要求1所述的基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法,其特征在于:步骤S6中老化处理在高纯氮气或氦气中进行,进样口温度为250℃,老化处理时间为10min。
CN202110396294.4A 2021-04-13 2021-04-13 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法 Active CN113198437B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110396294.4A CN113198437B (zh) 2021-04-13 2021-04-13 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110396294.4A CN113198437B (zh) 2021-04-13 2021-04-13 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法

Publications (2)

Publication Number Publication Date
CN113198437A true CN113198437A (zh) 2021-08-03
CN113198437B CN113198437B (zh) 2022-12-13

Family

ID=77026774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110396294.4A Active CN113198437B (zh) 2021-04-13 2021-04-13 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法

Country Status (1)

Country Link
CN (1) CN113198437B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000261A1 (en) * 2009-07-24 2010-01-07 Reza Alizadeh Method for making SPME fiber
WO2011110717A1 (es) * 2010-03-10 2011-09-15 Universidad De Barcelona Procedimiento para recubrir una fibra spme con nanotubos de carbono y fibra spme recubierta con nanotubos de carbono
CN102489248A (zh) * 2011-11-24 2012-06-13 济南大学 碳纳米颗粒萃取涂层固相微萃取纤维的制备方法
CN102847524A (zh) * 2012-09-21 2013-01-02 厦门大学 用于丙烯酰胺检测的固相微萃取萃取头及制备方法与应用
CN103028381A (zh) * 2013-01-09 2013-04-10 福州大学 一种固相微萃取涂层及其制备方法
CN104043397A (zh) * 2014-03-31 2014-09-17 中国石油大学(华东) Mil-53针管式固相微萃取探头及制备方法
US20150276780A1 (en) * 2014-03-31 2015-10-01 Gerstel Systemtechnik Gmbh & Co. Kg Device for solid-phase microextraction
US20170254732A1 (en) * 2016-03-02 2017-09-07 Janusz Boleslaw Pawliszyn Solid phase microextraction coating
US20170282156A1 (en) * 2016-04-09 2017-10-05 Alireza Ghiasvand Extraction and determination of residual organic solvents in pharmaceutical products by spme method using a new nanocomposite fiber
CN108079979A (zh) * 2017-12-15 2018-05-29 晋江瑞碧科技有限公司 多层孔活性碳膜涂层固相微萃取头的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100000261A1 (en) * 2009-07-24 2010-01-07 Reza Alizadeh Method for making SPME fiber
WO2011110717A1 (es) * 2010-03-10 2011-09-15 Universidad De Barcelona Procedimiento para recubrir una fibra spme con nanotubos de carbono y fibra spme recubierta con nanotubos de carbono
CN102489248A (zh) * 2011-11-24 2012-06-13 济南大学 碳纳米颗粒萃取涂层固相微萃取纤维的制备方法
CN102847524A (zh) * 2012-09-21 2013-01-02 厦门大学 用于丙烯酰胺检测的固相微萃取萃取头及制备方法与应用
CN103028381A (zh) * 2013-01-09 2013-04-10 福州大学 一种固相微萃取涂层及其制备方法
CN104043397A (zh) * 2014-03-31 2014-09-17 中国石油大学(华东) Mil-53针管式固相微萃取探头及制备方法
US20150276780A1 (en) * 2014-03-31 2015-10-01 Gerstel Systemtechnik Gmbh & Co. Kg Device for solid-phase microextraction
US20170254732A1 (en) * 2016-03-02 2017-09-07 Janusz Boleslaw Pawliszyn Solid phase microextraction coating
US20170282156A1 (en) * 2016-04-09 2017-10-05 Alireza Ghiasvand Extraction and determination of residual organic solvents in pharmaceutical products by spme method using a new nanocomposite fiber
CN108079979A (zh) * 2017-12-15 2018-05-29 晋江瑞碧科技有限公司 多层孔活性碳膜涂层固相微萃取头的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN-XIAWANG ET AL.: "Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection", 《JOURNAL OF CHROMATOGRAPHY A》 *
姚伟宣等: "碳纳米材料固相微萃取涂层的制备及应用", 《广东化工》 *

Also Published As

Publication number Publication date
CN113198437B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
Li et al. A hydrophobic deep eutectic solvent mediated sol-gel coating of solid phase microextraction fiber for determination of toluene, ethylbenzene and o-xylene in water coupled with GC-FID
Xia et al. Hollow fiber liquid phase microextraction combined with electrothermal vaporization ICP-MS for the speciation of inorganic selenium in natural waters
CN108543519B (zh) 一种共价有机骨架化合物固相微萃取涂层的简单快速制备方法及应用
CN109589937B (zh) 一种自组装多层卟啉有机框架化合物的固相微萃取纤维的制备方法及其应用
Djozan et al. Anodized zinc wire as a solid-phase microextraction fiber
Wang et al. A novel fluorinated polyaniline-based solid-phase microextraction coupled with gas chromatography for quantitative determination of polychlorinated biphenyls in water samples
CN108273481B (zh) 聚亚苯基-共轭微孔聚合物固相微萃取涂层的制备及其应用
Colmsjo et al. Identification of polynuclear aromatic hydrocarbons by Shpol'skii low temperature fluorescence
Chen et al. High extraction efficiency for polar aromatic compounds in natural water samples using multiwalled carbon nanotubes/Nafion solid-phase microextraction coating
CN109596398B (zh) 一种固相微萃取涂层制备方法
Tian et al. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons
CN112295552B (zh) 一种原位刻蚀法制备的分级孔UiO-66固相微萃取纤维及其应用
CN101398382A (zh) 一种快速检测痕量五氯联苯的方法
CN111135809B (zh) 一种自组装功能化氮掺杂碳纳米笼固相微萃取纤维的制备及应用
CN106841344A (zh) 一种孔状单壁碳纳米管及其修饰电极的制备和应用
Rahmani et al. Preparation and characterization of a novel nanocomposite coating based on sol-gel titania/hydroxyapatite for solid-phase microextraction
Hu et al. Solid-phase microextraction of phenol compounds using a fused-silica fiber coated with β-cyclodextrin-bonded silica particles
CN106823461A (zh) 一种功能化石墨烯涂层探头及固相微萃取手柄的制备方法
CN108079979B (zh) 多层孔活性碳膜涂层固相微萃取头的制备方法
Tian et al. Silicon carbide nanomaterial as a coating for solid‐phase microextraction
CN113198437B (zh) 一种基于溶剂蒸发重结晶技术制备富勒烯固相微萃取探头涂层的方法
CN109975455B (zh) 一种污水地下渗滤系统微生物代谢产物检测方法
Es-Haghi et al. Novel unbreakable solid-phase microextraction fibers on stainless steel wire and application for the determination of oxadiargyl in environmental and agricultural samples in combination with gas chromatography–mass spectrometry
CN108414637B (zh) 一种利用固相微萃取-气相色谱-质谱联用技术检测水中挥发性消毒副产物的方法
Zhang et al. Anodic alumina coating for extraction of volatile organic compounds in human exhaled breath vapor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant