CN113185298A - 一种微孔高热导SiC基接包衬制品及其制备方法和应用 - Google Patents

一种微孔高热导SiC基接包衬制品及其制备方法和应用 Download PDF

Info

Publication number
CN113185298A
CN113185298A CN202110413222.6A CN202110413222A CN113185298A CN 113185298 A CN113185298 A CN 113185298A CN 202110413222 A CN202110413222 A CN 202110413222A CN 113185298 A CN113185298 A CN 113185298A
Authority
CN
China
Prior art keywords
percent
silicon carbide
grain diameter
product
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110413222.6A
Other languages
English (en)
Other versions
CN113185298B (zh
Inventor
张成行
宋明刚
冉江艳
钱开平
黎阳
陈麒
陈璐
冉坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guiyang Lianhe High Temperature Materials Co ltd
Original Assignee
Guiyang Lianhe High Temperature Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guiyang Lianhe High Temperature Materials Co ltd filed Critical Guiyang Lianhe High Temperature Materials Co ltd
Priority to CN202110413222.6A priority Critical patent/CN113185298B/zh
Publication of CN113185298A publication Critical patent/CN113185298A/zh
Application granted granted Critical
Publication of CN113185298B publication Critical patent/CN113185298B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种微孔高热导SiC基接包衬制品,按照重量百分比计,以碳化硅90%‑95%、活性二氧化硅超微粉1%‑3%、聚乙烯醇0.1%‑1%、羧甲基纤维素0.5%‑1%、高岭土1%‑5%和金属硅粉0.2%‑1%为原料,外加6倍聚乙烯醇重量的水制成,还公开了其制备方法和应用。本发明采用高温力学性能好、导热系数高、热膨胀系数小、耐磨性能和抗热震性能好的98%SiC为主材,选择合理的压制方式、结合剂、抗氧化剂等,有效防止气体和熔液渗透到接包衬制品的内部,产生氧化脱碳和形成变质层剥落。

Description

一种微孔高热导SiC基接包衬制品及其制备方法和应用
技术领域
本发明属于耐火材料领域,具体涉及一种微孔高热导SiC基接包衬制品及其制备方法和应用。
背景技术
棕刚玉是以优质铝矾土为原料、无烟煤和铁屑,在电炉中经高温融炼而成的棕褐色人造刚玉,以其独特的性能广泛应用于高档磨具、精密铸造,工程陶瓷,机械加工,高级耐材等行业,我国每年产棕刚玉150-200万吨,其中约三分之一的出口,棕刚玉生产厂家主要分布在河南省、贵州省、山西省和重庆市。
接包是间歇生产棕刚玉工艺过程中的关键装备,是一种容器(类似钢包),冶炼好的棕刚玉熔液倒入接包并在接包内进行沉淀、冷却等工艺,它不仅要承受2000℃以上的棕刚玉熔液的强力冲击,还要阻止在此温度下硅铁合金及其它化学元素对包衬材料的侵蚀,工作条件极其苛刻,同时随着科学技术的进步,棕刚玉冶炼设备日益大型化、自动化、无污染化、低消耗、高寿命等方向发展,对耐火材料高温性能和技术性能提出了更高、更复杂、更严格的要求,传统风锤捣打的粘土结合碳化硅接包衬大砖因其低熔物多,气孔通道多且直径大,导致其高温性能和抗氧化性能较差,使用寿命无法满足客户的需求,特别到衬体变薄后,时刻面临棕刚玉熔液穿包的风险,因此如何进一步提高接包衬材料的质量和技术指标,提高其使用寿命是耐火材料工作者必须思考和解决的问题。
发明内容
为解决现有风锤捣打粘土结合碳化硅制品气孔率高、气孔孔径大,产生结构剥落以及制品透气性高,高温性能下降的问题,本发明提供一种微孔高热导SiC基接包衬制品,其气孔孔径小、气孔率低、坯体密实耐高温,提高了棕刚玉接包包龄,降低了修包次数,并有效杜绝熔液穿包风险。
为了实现上述目标,本发明采用如下的技术方案:
一种微孔高热导SiC基接包衬制品,按照重量百分比计,以碳化硅90%-95%、活性二氧化硅超微粉1%-3%、聚乙烯醇0.1%-1%、羧甲基纤维素0.5%-1%、高岭土1%-5%和金属硅粉0.2%-1%为原料,外加6倍聚乙烯醇重量的水制成。
前述微孔高热导SiC基接包衬制品,按照重量百分比计,所述碳化硅由粒径5-3mm(即3mm<粒径≤5mm)碳化硅5%-10%、粒径3-1mm(即1mm<粒径≤3mm)碳化硅33%-38%、粒径1-0.5mm(即0.5mm<粒径≤1mm)碳化硅10%-15%、粒径0.5-0.088mm(即0.088mm<粒径≤0.5mm)碳化硅7%-12%、粒径0.088mm碳化硅18%-22%、粒径0.044mm碳化硅5%-9%和粒径5μm碳化硅2.5%-2.9%组成。
前述微孔高热导SiC基接包衬制品,所述碳化硅纯度≥98%。
前述微孔高热导SiC基接包衬制品,按照重量百分比计,所述活性SiO2超微粉中SiO2质量含量为90.0%,比表面积18.0m2/g,平均粒径为0.1-0.5μm。
前述微孔高热导SiC基接包衬制品,所述聚乙烯醇纯度≥93.5%,醇解度87.0%-89.0%。
前述微孔高热导SiC基接包衬制品的制备方法,具体步骤为:按比例称取碳化硅,依次加入羧甲基纤维素、高岭土、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
前述微孔高热导SiC基接包衬制品的制备方法,具体步骤为:按比例称取粒径5-3mm(即3mm<粒径≤5mm)、3-1mm(即1mm<粒径≤3mm)、1-0.5mm(即0.5mm<粒径≤1mm)、0.5-0.088mm(即0.088mm<粒径≤0.5mm)碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
前述微孔高热导SiC基接包衬制品的制备方法,所述聚乙烯醇水溶液中的溶剂水量即为外加水总量;所述成型为312/282×110×109.9/104.2×101.7/96.6mm[即:高(312、282)×宽110×上部厚(109.9、104.2)×下部厚(101.7、96.6)mm]的异型制品。
前述微孔高热导SiC基接包衬制品的制备方法,所述两步烘干为:60-80℃烘干48h,120-150℃烘干48h;所述烧制为1550℃烧制8h。
如前述任一项微孔高热导SiC基接包衬制品作为棕刚玉接包包衬的应用。
与现有技术相比,本发明的有益效果为:
本发明采用高温力学性能好、导热系数高、热膨胀系数小、耐磨性能和抗热震性能好的98%SiC为主材,选择合理的颗粒级配和合理的压制方式、结合剂、抗氧化剂等,有效防止气体和熔液渗透到接包衬制品的内部,产生氧化脱碳和形成变质层剥落,克服了捣打粘土碳化硅制品的不足,提高了耐火制品的技术指标。
附图说明
图1为本发明微孔高热导SiC基接包衬制品的制备工艺流程示意图。
具体实施方式
实施例1:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅93.7%(其中碳化硅由粒径5-3mm碳化硅8%、粒径3-1mm碳化硅35%、粒径1-0.5mm碳化硅12%、粒径0.5-0.088mm碳化硅9%、粒径0.088mm碳化硅20%、粒径0.044mm碳化硅7%和粒径5μm碳化硅2.7%组成),活性二氧化硅超微粉1.5%,聚乙烯醇0.5%,羧甲基纤维素0.6%,高岭土3%和金属硅粉0.7%为原料,外加6倍聚乙烯醇重量的水制成。其中碳化硅纯度99%;活性SiO2超微粉中SiO2纯度90.0%,比表面积18.0m2/g,平均粒径为0.3μm;聚乙烯醇纯度≥95.0%,醇解度87.0%。
实施例2:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅90%,活性二氧化硅超微粉3%,聚乙烯醇1%,羧甲基纤维素0.8%,高岭土4.3%和金属硅粉0.9%为原料,外加6倍聚乙烯醇重量的水制成。
实施例3:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅95%(其中碳化硅由粒径5-3mm碳化硅10%、粒径3-1mm碳化硅38%、粒径1-0.5mm碳化硅12%、粒径0.5-0.088mm碳化硅8%、粒径0.088mm碳化硅18%、粒径0.044mm碳化硅6.1%和粒径5μm碳化硅2.9%组成),活性二氧化硅超微粉2%,聚乙烯醇0.3%,羧甲基纤维素0.5%,高岭土1.7%和金属硅粉0.5%为原料,外加6倍聚乙烯醇重量的水制成。其中碳化硅纯度98%。
实施例4:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅92.5%(其中碳化硅由粒径5-3mm碳化硅5%、粒径3-1mm碳化硅33%、粒径1-0.5mm碳化硅15%、粒径0.5-0.088mm碳化硅10%、粒径0.088mm碳化硅22%、粒径0.044mm碳化硅5%和粒径5μm碳化硅2.5%组成),活性二氧化硅超微粉1%,聚乙烯醇0.1%,羧甲基纤维素1.0%,高岭土5.0%和金属硅粉0.4%为原料,外加6倍聚乙烯醇重量的水制成。其中活性SiO2超微粉中SiO2纯度95.0%,比表面积18.0m2/g,平均粒径为0.1μm;聚乙烯醇纯度93.5%,醇解度89.0%。
实施例5:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅94.6%,活性二氧化硅超微粉1.9%,聚乙烯醇0.8%,羧甲基纤维素0.7%,高岭土1.0%和金属硅粉1.0%为原料,外加6倍聚乙烯醇重量的水制成。其中活性SiO2超微粉中SiO2纯度98.0%,比表面积18.0m2/g,平均粒径为0.5μm;聚乙烯醇纯度97.0%,醇解度89.0%。
实施例6:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅92.8%(其中碳化硅由粒径5-3mm碳化硅7%、粒径3-1mm碳化硅34%、粒径1-0.5mm碳化硅13%、粒径0.5-0.088mm碳化硅7%、粒径0.088mm碳化硅21%、粒径0.044mm碳化硅8%和粒径5μm碳化硅2.8%组成),活性二氧化硅超微粉2.5%,聚乙烯醇0.2%,羧甲基纤维素0.9%,高岭土3.4%和金属硅粉0.2%为原料,外加6倍聚乙烯醇重量的水制成。其中碳化硅纯度98.7%。
实施例7:一种微孔高热导SiC基接包衬制品:
按照重量百分比计,以碳化硅91.7%(其中碳化硅由粒径5-3mm碳化硅9%、粒径3-1mm碳化硅35%、粒径1-0.5mm碳化硅11%、粒径0.5-0.088mm碳化硅8%、粒径0.088mm碳化硅20%、粒径0.044mm碳化硅6%和粒径5μm碳化硅2.7%组成),活性二氧化硅超微粉3%,聚乙烯醇0.6%,羧甲基纤维素1.0%,高岭土2.9%和金属硅粉0.8%为原料,外加6倍聚乙烯醇重量的水制成。
实施例8:微孔高热导SiC基接包衬制品的制备方法:
按比例称取粒径5-3mm,3-1mm,1-0.5mm,0.5-0.088mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
实施例9:微孔高热导SiC基接包衬制品的制备方法:
按比例称取粒径5-3mm,3-1mm,1-0.5mm,0.5-0.088mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液(聚乙烯醇:H2O=1:6)再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为高(312、282)×宽110×上部厚(109.9、104.2)×下部厚(101.7、96.6)mm的异型制品,两步烘干:60-70℃烘干48h,120-130℃烘干48h;然后1550℃烧制8h,冷却即得。
实施例10:微孔高热导SiC基接包衬制品的制备方法:
按比例称取粒径5-3mm,3-1mm,1-0.5mm,0.5-0.088mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,两步烘干:70-80℃烘干48h,140-150℃烘干48h;然后1550℃烧制8h,冷却即得。
实施例11:微孔高热导SiC基接包衬制品的制备方法:
按比例称取粒径5-3mm,3-1mm,1-0.5mm,0.5-0.088mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌,加入聚乙烯醇水溶液(聚乙烯醇:H2O=1:6)再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为高(312、282)×宽110×上部厚(109.9、104.2)×下部厚(101.7、96.6)mm的异型制品,经两步烘干后烧制,冷却即得。
实施例12:微孔高热导SiC基接包衬制品的制备方法:
按比例称取粒径5-3mm,3-1mm,1-0.5mm,0.5-0.088mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液(聚乙烯醇:H2O=1:6)再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为高(312、282)×宽110×上部厚(109.9、104.2)×下部厚(101.7、96.6)mm的异型制品,两步烘干:65-75℃烘干48h,130-140℃烘干48h;然后1550℃烧制8h,冷却即得。
实施例13:上述实施例2、5的微孔高热导SiC基接包衬制品的制备方法:
按比例称取碳化硅,依次加入羧甲基纤维素、高岭土、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
实施例14:上述实施例1-7的微孔高热导SiC基接包衬制品作为棕刚玉接包包衬的应用。
实验例:
为验证本发明的技术方案,发明人进行了以下分析和验证:
1、根据多年来国内棕刚玉接包衬耐火制品的使用状况,分析其损毁的主要因素是碳化硅材料高温氧化失碳,骤冷骤热,高温熔损,高温熔液的冲刷、熔体的磨损和各种化学物质的渗透、侵蚀造成剥落。
SiC制品最大的弊端是高温氧化失碳,一般认为,当SiC在空气中加热到900℃时即开始氧化,1000-1300℃时氧化速度缓慢,生成无定形SiO2玻璃保护膜,1300℃以上保护膜中开始结晶出方石英,相变引起保护膜开裂,从而氧化速度有所增加,在1500-1600℃时,因SiO2保护膜达到一定的厚度,进一步氧化作用变得很困难,但当温度达到1627℃以上时,由于发生化学反应2SiO2+SiC→3SiO↑+CO↑以及SiO2的蒸发,使SiO2保护膜受到破坏,因而SiC的氧化迅速进行,1627℃是SiO2保护膜能够存在的上限温度。
从以上分析可知,要提高耐火材料的使用寿命,就要阻止熔液、蒸汽与SiC制品发生化学反应,以免造成氧化脱碳和结构剥落。众所周知,熔液、蒸汽对耐火材料的渗透是沿着材料中较大的孔隙进行的,大气孔是熔液和气体渗透的主要快速通道,熔液和蒸汽渗透的深度公式为:
Figure BDA0003024859970000051
(L熔液或蒸汽渗入制品的深度,r制品气孔孔径,δ熔液或蒸汽表面张力,t熔液或蒸汽与制品的接触时间,θ熔液或蒸汽与制品的润湿角,η熔液或蒸汽的粘度),其中棕刚玉熔液和蒸汽的表面张力、润湿角、粘度都是固定的,所以可采取细化制品气孔孔径,降低制品的显气孔和贯穿气孔的通道,阻止熔液、蒸汽对耐火材料的渗入。
目前减小SiC制品中气孔孔径和降低其气孔率的方法有三个种:(1)引入超微粉填充亚微空隙;(2)引入抗氧化剂,使其在氧化过程中产生体积膨胀堵塞气孔;(3)采用多级级配,机压成型,高温烧制。
为使本发明制得理想的产品,首先对主要原料、辅助原料以及所有添加剂进行了筛选,其技术指标有一定的要求,市场上购买方便。
①SiC原料:SiC具有很强的共价键特性,高温化学稳定性好,导热系数高,热膨胀系数小,在本发明中作为主要原料,其技术指标见表-1
表-1
项目 SiC% F.C%(游离碳) Fe<sub>2</sub>O<sub>3</sub>%
指标 ≥98 ≤0.5 ≤0.5
②活性SiO2超微粉:在本发明中作亚微空隙填充剂,本发明采用金属硅或硅铁的副产品,球形无定形非晶质的SiO2粉体,具有较小的粒径(平均为0.1-0.5μm),比表面大,表面能也较大,因而活性较高,不团聚,填充性好。其技术指标见表-2
表-2
Figure BDA0003024859970000061
③聚乙烯醇:在本发明中做低温粘结剂,聚乙烯醇英文简称PVA,是一种水溶性聚合物,无臭、无味,外观为白色粉末状固体,有较好的粘结力和化学稳定性,具有好的表面活性,可降低水的表面张力。其技术指标见表-3
表-3
Figure BDA0003024859970000062
④羧甲基纤维素:在本发明中作暂时结合剂,是一种无味的白色絮状粉料,易溶于水,水溶液为透明胶体,能很好地吸附于耐火材料颗粒表面,浸润和连接颗粒,有效提高半成品的密度、强度和减小烧后组织结构不均匀现象,烧后灰分少,低熔物少,对耐火制品的高温性能影响不大。其技术指标见表-4
表-4
项目 指标
水分及挥发率(%)≤ 10
粘度(1%水溶液,25℃)mpa.s 5-40
PH(1%水溶液,25℃) 8.0-11.5
醚化度 0.8-0.7
有效成分(以干基计)%≥ 55
各种无机盐含量之和% 5
⑤高岭土:在本发明中作助烧剂,晶体化学式为2SiO2.3Al2O3.2H2O,洁白、细腻、无光泽,具有良好的可塑性,粘结性和烧结性,其技术指标见表-5
表-5
Figure BDA0003024859970000071
⑥金属硅粉:在本发明中作抗氧化剂,具有耐高温,电阻率高,高度抗氧化等性能,其技术指标见表-6
表-6
项目 Si Fe Al Ca
指标% ≥99.40 ≤0.4 ≤0.1 ≤0.1
2、辅助材料的加入量对SiC制品性能的影响
SiC是瘠性物料,表面致密且光洁度很高,结合力差,致使砖坯的半成品强度很低,同时SiC又具有很强的共键特性,其烧结温度非常高,一般工艺条件很难烧结,所以本发明对结合剂、助烧结剂以及亚微孔隙填充剂、抗氧化剂的选择和加入量都作了大量的筛选试验工作。
①SiO2超微粉加入量对SiC制品气孔孔径、气孔率及导热系数的影响
从表-8可以看出随SiO2超微粉加入量的增加气孔率、气孔孔径先降低后稍微增加,导热系数先增加后稍微降低,是由于SiO2超微粉比表面大,粒径小,填充了亚微空隙,使制品结构微孔化更加密实所致,当SiO2超微粉加入量不足时亚微空隙未填满,致密化程度不够,SiO2超微粉加入量过多时自发团聚,且SiO2超微粉中K2O、Na2O、CaO、MgO含量高(见表-2),高温下形成高粘度的液相,影响制品的导热系数及高温性能,综合考虑SiO2超微粉的加入量1.5%为宜。
表-8
Figure BDA0003024859970000072
②抗氧化剂硅粉加入量对SiC制品的抗氧化性及气孔孔径、气孔率的影响
从表-9可以看出,随金属硅粉加入量的增加,制品氧化增重率及气孔孔径、气孔率先下降明显后逐渐趋缓,主要是由于硅粉与氧的亲合力比SiC与氧的亲合力大,优先夺取氧使自身被氧化从而对SiC制品起到保护作用,同时硅粉氧化后生成新相体积要比原相体积大,有效地减少了空气、熔液向制品内部渗入和扩散的通道,增大了致密度,从而有效地防止了SiC制品的氧化,并降低了气孔率,减少了气孔孔径,其加入量一旦超过最佳值,不但效果不明显而且使SiC制品的热导率降低,热震稳定性变差,综合考虑金属硅粉的加入量0.7%为宜。
表-9
Figure BDA0003024859970000081
备注:SiC氧化后,在颗粒表面形成SiO2层时,重量会增加,SiC的分子量为40.09,SiO2的分子量为60.08。
③高岭土的加入量对SiC制品气孔孔径、气孔率及荷重软化温度的影响
从表-10可以看出随高岭土加入量的增加,SiC制品的气孔率、气孔孔径逐渐降低,荷重软化温度也逐渐降低,气孔率降低是由于高岭土有良好的分散性、可塑性和成型性,而荷重软化温度降低是由于高岭土含量增加,SiC颗粒周围的高岭土烧结收缩大,导致颗粒之间空隙率增大,同时高岭土的铝氧与SiC反应,破坏了SiC的结构所致,综合考虑高岭土的加入量3%为宜。
表-10
Figure BDA0003024859970000082
④成型方式对SiC制品气孔孔径、气孔率及体积密度的影响
多年来国内棕刚玉企业一直使用风锤捣打SiC制品,生产时将泥料分层加入模具中,并依次捣打密实,每次加料前还必须将前次捣打实的料层扒松,以免造成层与层之间明显的界面与裂纹,不但劳动强度大,噪音大,关键是泥料的挤压力不足,泥料内部存在较大的空隙,导致制品的各项性能大幅度下降。
加压过程中,压力沿压制方向由坯体表面克服颗粒与颗粒及泥料与模具的摩擦力向内部传递,使颗粒互相推挤,移动重排,填充物料内部空隙,使大部分气孔消失,内部气体排出,气孔率、气孔孔径变低,坯体更加密实,同时压力越大,颗粒获得的能量越大,坯体的性能越好,综合考虑本发明采用400t压力机生产5-12kg SiC制品,取得了良好的效果,其机压与捣打对SiC制品的性能的影响见表-11
表-11
Figure BDA0003024859970000083
3、微孔高热导SiC基接包衬制品技术指标
表-12
Figure BDA0003024859970000091
4、微孔高热导SiC基接包衬制品的使用情况
本发明产品已在近十家棕刚玉生产厂家的5000KVA、7500KVA电炉的接包衬上试用,最长包龄56次,正在密切跟踪,未发现有明显的损毁。

Claims (10)

1.一种微孔高热导SiC基接包衬制品,其特征在于:按照重量百分比计,以碳化硅90%-95%、活性二氧化硅超微粉1%-3%、聚乙烯醇0.1%-1%、羧甲基纤维素0.5%-1%、高岭土1%-5%和金属硅粉0.2%-1%为原料,外加6倍聚乙烯醇重量的水制成。
2.根据权利要求1所述微孔高热导SiC基接包衬制品,其特征在于:按照重量百分比计,所述碳化硅由3mm<粒径≤5mm碳化硅5%-10%、1mm<粒径≤3mm碳化硅33%-38%、0.5mm<粒径≤1mm碳化硅10%-15%、0.088mm<粒径≤0.5mm碳化硅7%-12%、粒径0.088mm碳化硅18%-22%、粒径0.044mm碳化硅5%-9%和粒径5μm碳化硅2.5%-2.9%组成。
3.根据权利要求1或2所述微孔高热导SiC基接包衬制品,其特征在于:所述碳化硅纯度≥98%。
4.根据权利要求1所述微孔高热导SiC基接包衬制品,其特征在于:按照重量百分比计,所述活性SiO2超微粉中SiO2质量含量为90.0%,比表面积18.0m2/g,平均粒径为0.1-0.5μm。
5.根据权利要求1所述微孔高热导SiC基接包衬制品,其特征在于:所述聚乙烯醇纯度≥93.5%,醇解度87.0%-89.0%。
6.如权利要求1所述微孔高热导SiC基接包衬制品的制备方法,其特征在于,具体步骤为:按比例称取碳化硅,依次加入羧甲基纤维素、高岭土、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
7.根据权利要求6所述微孔高热导SiC基接包衬制品的制备方法,其特征在于:具体步骤为:按比例称取3mm<粒径≤5mm、1mm<粒径≤3mm、0.5mm<粒径≤1mm、0.088mm<粒径≤0.5mm碳化硅倒入混辗机内,搅拌3min,再依次加入羧甲基纤维素、高岭土、粒径0.088mm及粒径0.044mm和粒径5μm的SiC、活性SiO2超微粉、金属硅粉搅拌10min,加入聚乙烯醇水溶液再搅拌20min,密封保水困料48h,再次搅拌15min,采用400吨压力机成型为制品,经两步烘干后烧制,冷却即得。
8.根据权利要求6或7所述微孔高热导SiC基接包衬制品的制备方法,其特征在于:所述聚乙烯醇水溶液中的溶剂水量即为外加水总量;所述成型为312/282×110×109.9/104.2×101.7/96.6mm的异型制品。
9.根据权利要求6或7所述微孔高热导SiC基接包衬制品的制备方法,其特征在于:所述两步烘干为:60-80℃烘干48h,120-150℃烘干48h;所述烧制为1550℃烧制8h。
10.如权利要求1-5任一项所述微孔高热导SiC基接包衬制品作为棕刚玉接包包衬的应用。
CN202110413222.6A 2021-04-16 2021-04-16 一种微孔高热导SiC基接包衬制品及其制备方法和应用 Active CN113185298B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110413222.6A CN113185298B (zh) 2021-04-16 2021-04-16 一种微孔高热导SiC基接包衬制品及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110413222.6A CN113185298B (zh) 2021-04-16 2021-04-16 一种微孔高热导SiC基接包衬制品及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113185298A true CN113185298A (zh) 2021-07-30
CN113185298B CN113185298B (zh) 2023-02-07

Family

ID=76977364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110413222.6A Active CN113185298B (zh) 2021-04-16 2021-04-16 一种微孔高热导SiC基接包衬制品及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113185298B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295867A (ja) * 1990-04-12 1991-12-26 Kurosaki Refract Co Ltd 混銑車受銑口内張り用流し込み耐火物
JPH07215773A (ja) * 1994-02-01 1995-08-15 Shinagawa Refract Co Ltd 炭化珪素質流し込み材
JPH1149575A (ja) * 1997-07-31 1999-02-23 Toshiba Ceramics Co Ltd 不定形耐火物
JP2986783B1 (ja) * 1998-09-30 1999-12-06 日立協和エンジニアリング株式会社 キャスタブル耐火物およびそれを用いた耐火煉瓦
CN1849276A (zh) * 2003-09-09 2006-10-18 日本碍子株式会社 氮化硅结合SiC耐火材料及其制造方法
CN102173837A (zh) * 2011-01-27 2011-09-07 无锡成博科技发展有限公司 抗高温氧化滑板润滑涂料及其制备工艺
CN103833365A (zh) * 2012-11-29 2014-06-04 宜兴中村窑业有限公司 耐高温节能型碳化硅板及其制备方法
CN103833391A (zh) * 2014-01-06 2014-06-04 宜兴市钰玺窑业有限公司 一种氮化硅复相结合碳化硅砖及其制备方法
CN103922759A (zh) * 2014-03-01 2014-07-16 唐山市腾翔耐磨耐火材料有限公司 碳化硅质耐磨耐火导风墙大梁、导风墙砖的制备方法
CN112299853A (zh) * 2020-09-24 2021-02-02 中钢宁夏耐研滨河新材料有限公司 一种海绵铁隧道窑生产用SiC复合推板材料
CN112552053A (zh) * 2020-12-08 2021-03-26 首钢集团有限公司 一种干熄焦炉用碳化硅耐火砖及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295867A (ja) * 1990-04-12 1991-12-26 Kurosaki Refract Co Ltd 混銑車受銑口内張り用流し込み耐火物
JPH07215773A (ja) * 1994-02-01 1995-08-15 Shinagawa Refract Co Ltd 炭化珪素質流し込み材
JPH1149575A (ja) * 1997-07-31 1999-02-23 Toshiba Ceramics Co Ltd 不定形耐火物
JP2986783B1 (ja) * 1998-09-30 1999-12-06 日立協和エンジニアリング株式会社 キャスタブル耐火物およびそれを用いた耐火煉瓦
CN1849276A (zh) * 2003-09-09 2006-10-18 日本碍子株式会社 氮化硅结合SiC耐火材料及其制造方法
CN102173837A (zh) * 2011-01-27 2011-09-07 无锡成博科技发展有限公司 抗高温氧化滑板润滑涂料及其制备工艺
CN103833365A (zh) * 2012-11-29 2014-06-04 宜兴中村窑业有限公司 耐高温节能型碳化硅板及其制备方法
CN103833391A (zh) * 2014-01-06 2014-06-04 宜兴市钰玺窑业有限公司 一种氮化硅复相结合碳化硅砖及其制备方法
CN103922759A (zh) * 2014-03-01 2014-07-16 唐山市腾翔耐磨耐火材料有限公司 碳化硅质耐磨耐火导风墙大梁、导风墙砖的制备方法
CN112299853A (zh) * 2020-09-24 2021-02-02 中钢宁夏耐研滨河新材料有限公司 一种海绵铁隧道窑生产用SiC复合推板材料
CN112552053A (zh) * 2020-12-08 2021-03-26 首钢集团有限公司 一种干熄焦炉用碳化硅耐火砖及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GUOZHI RUAN 等: ""Effect of the Superfine SiO2 Powder Content on the Properties of SiC Composites"", 《MATERIALS SCIENCE FORUM》 *
刘小团等: "结合相对氧化物结合SiC窑具结构和性能的影响", 《耐火材料》 *
李香平: ""碳化硅粘土质耐火制品气孔率的探讨"", 《太原理工大学学报》 *
王云峰 等: ""碳化硅耐火材料在棕刚玉接包包衬上的应用"", 《磨料磨具与磨削》 *

Also Published As

Publication number Publication date
CN113185298B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
CN111704466B (zh) 一种碳化硅-镁铝尖晶石-铝复合耐火材料
CN107473756B (zh) 一种多用途含低维碳的陶瓷/炭复合材料及其生产方法
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN110698179A (zh) 一种高性能镁碳砖及其制备方法
CN115321956B (zh) 一种利用高温液相增韧镁碳砖及其制备方法
CN113816728A (zh) 高强度冶炼特大型高炉出铁口用炮泥
CN113968724B (zh) 一种金属改性镁砂、低碳转炉镁质滑板及它们的制备方法
CN112876265A (zh) 一种钛硅碳金属复合转炉挡渣滑板砖及其制备方法
CN113185298B (zh) 一种微孔高热导SiC基接包衬制品及其制备方法和应用
CN117049883A (zh) 一种高炉主铁沟用抗氧化浇注料
KR20160064163A (ko) 시알론 매트릭스를 갖는 내화 제품
CN109400189B (zh) 一种高炉炉缸氮复合浇注料及其制备方法
CN107473719A (zh) 一种低碳高强耐火材料及其制备工艺
CN107382345B (zh) 一种微纳米尖晶石增韧的MgO-MA骨料的制备方法
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
CN114853489B (zh) 低结合相含量的β-SiC结合SiC耐火材料及其制备方法与制品
CN115057692B (zh) 一种添加钛铁合金的铝碳滑板砖及其生产方法
CN115947591A (zh) 一种高碳含量的中温烧成金属结合铝锆碳滑板砖及其制备方法
CN115417674A (zh) 一种耐磨的氮化硅/碳化硅复合陶瓷及其制备方法和应用
CN114644512A (zh) 特种钢连铸用抗侵蚀浸入式水口及其制备方法
CN114736007A (zh) 一种低导热高性能铝镁碳熔池砖及其制备方法
CN114315387A (zh) 一种长寿命的叶腊石碳化硅碳砖及其制备方法
CN114478030A (zh) 一种rh精炼炉用多形貌共存的镁阿隆耐火材料制备方法
CN1108212C (zh) 含塞隆的滑动水口砖
CN102898131B (zh) 一种钛酸铝莫来石复合整体塞棒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant