CN113161408A - 高压SiC肖特基二极管的结终端结构及其制备方法 - Google Patents

高压SiC肖特基二极管的结终端结构及其制备方法 Download PDF

Info

Publication number
CN113161408A
CN113161408A CN202011588662.7A CN202011588662A CN113161408A CN 113161408 A CN113161408 A CN 113161408A CN 202011588662 A CN202011588662 A CN 202011588662A CN 113161408 A CN113161408 A CN 113161408A
Authority
CN
China
Prior art keywords
type
region
protection ring
type protection
schottky diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011588662.7A
Other languages
English (en)
Other versions
CN113161408B (zh
Inventor
邓小川
胡睿
吴昊
刘瑞
姜春艳
严静融
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Smart Grid Research Institute Co ltd
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Global Energy Interconnection Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Global Energy Interconnection Research Institute filed Critical University of Electronic Science and Technology of China
Priority to CN202011588662.7A priority Critical patent/CN113161408B/zh
Publication of CN113161408A publication Critical patent/CN113161408A/zh
Application granted granted Critical
Publication of CN113161408B publication Critical patent/CN113161408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种高压SiC肖特基二极管的结终端结构及其制备方法,包括第一金属电极层、N+型衬底、N‑型漂移区、N型沟道和N型保护环;相邻N型沟道之间的N‑型漂移区内设有源区P+型保护环,相邻N型保护环之间的N‑型漂移区内设有终端P+型保护环,相邻N型沟道和N型保护环之间设有过渡区,相邻的N型沟道之间、N型过渡区和N型保护环之间、相邻N型保护环之间都为沟槽;本发明同时形成有源区肖特基金属下的沟道区域和终端区嵌入钝化层的N型保护环结构,能够在重复雪崩、高温高压、长时间老化等极端应力下保持稳定的阻断电压而不发生漂移,且提高器件可靠性的同时不牺牲器件其他电学参数。

Description

高压SiC肖特基二极管的结终端结构及其制备方法
技术领域
本发明涉及半导体器件技术领域,特别是涉及高压SiC肖特基二极管整流器的结终端结构及其制备方法。
背景技术
碳化硅(Silicon Carbide,SiC)材料作为第三代宽禁带半导体材料的代表之一,基于SiC材料制作的高压功率器件较传统的硅器件具有优异的电、热性能,可以满足更苛刻的应用环境,被认为是大功率、高温及高频电力电子领域如电源、光伏发电、电动汽车、航天航空等最有潜力的材料。利用SiC材料制备的高压肖特基二极管属于多数载流子器件,无额外载流子的注入和储存、开关速度快、开关损耗小,目前,基于SiC材料的大功率结势垒肖特基二极管已广泛应用于DC-DC变换器、功率因数校正、不间断电源、电机控制等领域。虽然功率SiC肖特基二极管由于其优越的性能而得到学术界的肯定,在当前市场上也有很高的商业价值,但是要使功率4H-SiC JBS真正在电子系统中得到广泛的应用,必须对器件的可靠性进行进一步提升。
基于应用环境,SiC功率器件往往被要求具有比Si功率器件更高的可靠性,其中维持电学参数的稳定性是提升功率器件可靠性的重要方面。对于高压SiC功率器件,终端结构是实现高击穿电压的重要保障,目前业界普遍采用的场限环结构工艺简单、效率高,且相对于其他终端结构具有最高的可靠性,但在极端环境应力下仍被发现有明显退化现象。近年来,SiC肖特基二极管在正反向应力、重复雪崩、高低温储存、HAST老化条件等环境应力下的可靠性问题得到了广泛关注和研究,其中高温高压环境如重复雪崩、高温反偏、高温存储等被报道具有相似的击穿电压漂移现象,并被认为具有相同的退化机制,即SiC衬底的热载流子进入SiC/SiO2界面改变有效界面电荷密度,引起SiC肖特基二极管击穿电压的漂移。为了抑制这一现象,研究者们提出了增加环数缩减环间距、制作埋层结构、改变终端钝化层介质等措施,但这些方案又会引入新的弊端,不能从根本上提高SiC肖特基二极管在极端环境应力下的可靠性。
针对上诉应用需要,本发明提出了一种抑制击穿电压漂移的高压SiC肖特基二极管的结终端及其制作方法,根据高电压及高温度应力下热电子发射并通过场限环之间的间隔区域注入SiC/SiO2界面使终端开始退化这一机制,在场限环之间的间隔区域设置N型保护环,增大SiC衬底和SiO2介质间势垒使电子跨越难度加大,从而抑制热电子的注入。由于N型保护环在场限环结构上方,不改变漂移区电场分布,不会降低场限环对电场的调制效果。此外,终端区的N型保护环和有源区的N型沟道能够在同一步工艺完成,不额外增加工艺步骤。综上,本结构能够在多种极端环境应力下保持稳定的反向阻断电压,具有高可靠性和低工艺复杂度。
发明内容
针对上述问题,本发明提出一种具有高反向阻断电压参数稳定性的高压SiC肖特基二极管的结终端结构,在提高器件可靠性的同时不牺牲器件其他电学参数,且工艺复杂度和成本低。其结构特点是在N-型漂移区上通过外延生长和沟槽刻蚀形成有源区肖特基金属下的沟道区域和终端区潜入钝化层的N型保护环结构。沟槽侧壁能够加强电荷耦合作用,让器件在承受高反压的情况下更好地夹断,使有源区的肖特基接触区域和终端区的SiC/SiO2界面受到保护。有源区的N型区域能够帮助降低二极管导通压降,终端区的N型区域能够防止注入保护环之间的热电子进入SiC/SiO2界面,抑制二极管反向阻断电压的漂移。本发明使得SiC肖特基二极管具有高环境应力耐受能力,能够在重复雪崩、高温高压等极端应力条件下保持良好的电学参数值和参数稳定性,提高了SiC肖特基二极管的可用性和可靠性。
为达到上述目的,本发明采用下述技术方案:
一种高压SiC肖特基二极管的结终端结构,包括第一金属电极层1、第一金属电极层1上方的N+型衬底2、N+型衬底2上方的N-型漂移区3、N-型漂移区3上方的N型沟道5和N型保护环8;相邻N型沟道5之间的N-型漂移区3内设有源区P+型保护环4,相邻N型保护环8之间的N-型漂移区3内设有终端P+型保护环7,相邻N型沟道5和N型保护环8之间设有过渡区,分为N-型漂移区3上方的N型过渡区6-1和N-型漂移区3内的P+型过渡区6-2,源区P+型保护环4上方相邻的N型沟道5之间为沟槽,P+型过渡区6-2上方的N型过渡区6-1和N型保护环8之间为沟槽,终端P+型保护环7上方的相邻N型保护环8之间为沟槽;所述N型沟道5上方和N型过渡区6-1设有肖特基接触电极9,N型保护环8和P+型过渡区6-2的上方设有SiO2钝化层10。
作为优选方式,所述N型沟道5和N型保护环8为化学气相沉积外延生长形成。避免了多次离子注入造成的晶格损伤。
作为优选方式,N型沟道5的宽度保持一致,N型保护环8的宽度从主结边缘到终端末尾线性增加。
作为优选方式,所述沟槽的槽深与N型沟道5或N型保护环8的纵向厚度相同。
作为优选方式,所述终端区的N型保护环8和有源区的N型沟道5在工艺中同时形成,不需要额外工艺步骤,所述有源区P+型保护环4和终端P+型保护环7工艺中同时形成。不需要额外工艺步骤。
作为优选方式,所述第一金属电极层1使用Ni进行N型欧姆接触退火,肖特基接触金属电极9采用Ti、Ni、Mo金属或其合金形成,所述第一金属电极层1的封装加厚金属为Ti、Ni、Ag三者的合金,所述肖特基接触电极9的封装加厚金属为Al金属。
作为优选方式,所述高压SiC肖特基二极管能够在重复雪崩、高温高压、长时间老化极端应力下保持稳定的阻断电压而不发生漂移。
本发明还提供一种所述的高压SiC肖特基二极管的结终端结构的制备方法,包括以下步骤:
第一步:清洗SiC外延片,刻蚀形成沟槽;
第二步:注入铝离子形成P+型欧姆接触区和P+型保护环并激活退火;
第三步:淀积SiO2场氧化层;
第四步:刻蚀SiO2场氧化层暴露出阳极区域;
第五步:正面淀积金属形成肖特基接触;
第六步:背面淀积金属形成欧姆接触;
第七步:金属电极加厚,正面光刻金属图形并腐蚀去除多余金属;
第八步:使用聚酰亚胺胶进行最外层的加厚钝化保护。
作为优选方式,所述带N型保护环8的结终端结构适用于硅基和宽禁带半导体整流器、化合物半导体整流器、金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管或晶体管功率器件中任意一种。
本发明的有益效果为:本发明通过外延生长和刻蚀同时形成有源区肖特基金属下的沟道区域和终端区嵌入钝化层的N型保护环结构,工艺复杂度和成本低,能够在重复雪崩、高温高压、长时间老化等极端应力下保持稳定的阻断电压而不发生漂移,且提高器件可靠性的同时不牺牲器件其他电学参数。
附图说明
图1是工业界普遍采用的一般高压SiC肖特基二极管结构示意图;
图2是本发明高压SiC肖特基二极管的结终端结构示意图;
图3是本发明制备方法的在N+衬底上外延形成N-漂移区和N型层的外延片示意图;
图4是本发明制备方法的刻蚀N型外延层形成N型沟道和N型保护环的示意图;
图5是本发明制备方法的在沟槽底部注入铝离子形成P+型保护环的示意图;
图6是本发明制备方法的使用淀积SiO2作为场氧化层的示意图;
图7是本发明制备方法的刻蚀SiO2场氧化层以暴露出阳极区域的示意图;
图8是本发明制备方法的淀积阳极和阴极金属并加厚刻蚀的示意图;
1为第一金属电极层,2为N+型衬底,3为N-型漂移区,4为有源区P+型保护环,5为N型沟道,6-1为N型过渡区,6-2为P+型过渡区,7为终端P+型保护环,8为N型保护环,9为肖特基接触金属电极,10为SiO2钝化介质层。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如图2所示,一种高压SiC肖特基二极管的结终端结构,
包括第一金属电极层1、第一金属电极层1上方的N+型衬底2、N+型衬底2上方的N-型漂移区3、N-型漂移区3上方的N型沟道5和N型保护环8;相邻N型沟道5之间的N-型漂移区3内设有源区P+型保护环4,相邻N型保护环8之间的N-型漂移区3内设有终端P+型保护环7,相邻N型沟道5和N型保护环8之间设有过渡区,分为N-型漂移区3上方的N型过渡区6-1和N-型漂移区3内的P+型过渡区6-2,源区P+型保护环4上方相邻的N型沟道5之间为沟槽,P+型过渡区6-2上方的N型过渡区6-1和N型保护环8之间为沟槽,终端P+型保护环7上方的相邻N型保护环8之间为沟槽;所述N型沟道5上方和N型过渡区6-1设有肖特基接触电极9,N型保护环8和P+型过渡区6-2的上方设有SiO2钝化层10。
所述N型沟道5和N型保护环8为化学气相沉积外延生长形成。避免了多次离子注入造成的晶格损伤。
N型沟道5的宽度保持一致,N型保护环8的宽度从主结边缘到终端末尾线性增加。
所述沟槽的槽深与N型沟道5或N型保护环8的纵向厚度相同。
所述终端区的N型保护环8和有源区的N型沟道5在工艺中同时形成,不需要额外工艺步骤,所述有源区P+型保护环4和终端P+型保护环7工艺中同时形成。不需要额外工艺步骤。
所述第一金属电极层1使用Ni进行N型欧姆接触退火,肖特基接触金属电极9采用Ti、Ni、Mo金属或其合金形成,所述第一金属电极层1的封装加厚金属为Ti、Ni、Ag三者的合金,所述肖特基接触电极9的封装加厚金属为Al金属。
如图3-图8所示,本实施例还提供一种所述的高压SiC肖特基二极管的结终端结构的制备方法,包括以下步骤:
第一步:清洗SiC外延片,刻蚀形成沟槽;
第二步:注入铝离子形成P+型欧姆接触区和P+型保护环并激活退火;
第三步:淀积SiO2场氧化层;
第四步:刻蚀SiO2场氧化层暴露出阳极区域;
第五步:正面淀积金属形成肖特基接触;
第六步:背面淀积金属形成欧姆接触;
第七步:金属电极加厚,正面光刻金属图形并腐蚀去除多余金属;
第八步:使用聚酰亚胺胶进行最外层的加厚钝化保护。
所述带N型保护环8的结终端结构适用于硅基和宽禁带半导体整流器、化合物半导体整流器、金属-氧化物半导体场效应晶体管、绝缘栅双极型晶体管或晶体管功率器件中任意一种。
本实施例通过外延生长和刻蚀同时形成有源区肖特基金属下的沟道区域和终端区潜入钝化层的N型保护环结构,工艺复杂度和成本低,能够在重复雪崩、高温高压、长时间老化等极端应力下保持稳定的阻断电压而不发生漂移,且提高器件可靠性的同时不牺牲器件其他电学参数。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种高压SiC肖特基二极管的结终端结构,其特征在于:包括第一金属电极层(1)、第一金属电极层(1)上方的N+型衬底(2)、N+型衬底(2)上方的N-型漂移区(3)、N-型漂移区(3)上方的N型沟道(5)和N型保护环(8);相邻N型沟道(5)之间的N-型漂移区(3)内设有源区P+型保护环(4),相邻N型保护环(8)之间的N-型漂移区(3)内设有终端P+型保护环(7),相邻N型沟道(5)和N型保护环(8)之间设有过渡区,分为N-型漂移区(3)上方的N型过渡区(6-1)和N-型漂移区(3)内的P+型过渡区(6-2),源区P+型保护环(4)上方相邻的N型沟道(5)之间为沟槽,P+型过渡区(6-2)上方的N型过渡区(6-1)和N型保护环(8)之间为沟槽,终端P+型保护环(7)上方的相邻N型保护环(8)之间为沟槽;所述N型沟道(5)上方和N型过渡区(6-1)设有肖特基接触电极(9),N型保护环(8)和P+型过渡区(6-2)的上方设有SiO2钝化层(10)。
2.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:所述N型沟道(5)和N型保护环(8)为化学气相沉积外延生长形成。
3.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:N型沟道(5)的宽度保持一致,N型保护环(8)的宽度从主结边缘到终端末尾线性增加。
4.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:所述沟槽的槽深与N型沟道(5)或N型保护环(8)的纵向厚度相同。
5.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:所述终端区的N型保护环(8)和有源区的N型沟道(5)在工艺中同时形成,所述有源区P+型保护环(4)和终端P+型保护环(7)工艺中同时形成。
6.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:所述第一金属电极层(1)使用Ni进行N型欧姆接触退火,肖特基接触金属电极(9)采用Ti、Ni、Mo金属或其合金形成,所述第一金属电极层(1)的封装加厚金属为Ti、Ni、Ag三者的合金,所述肖特基接触电极(9)的封装加厚金属为Al金属。
7.根据权利要求1所述高压SiC肖特基二极管的结终端结构,其特征在于:所述高压SiC肖特基二极管能够在重复雪崩、高温高压、长时间老化极端应力下保持稳定的阻断电压而不发生漂移。
8.权利要求1至7任意一项所述的高压SiC肖特基二极管的结终端结构的制备方法,其特征在于,包括以下步骤:
第一步:清洗SiC外延片,刻蚀形成沟槽;
第二步:注入铝离子形成P+型欧姆接触区和P+型保护环并激活退火;
第三步:淀积SiO2场氧化层;
第四步:刻蚀SiO2场氧化层暴露出阳极区域;
第五步:正面淀积金属形成肖特基接触;
第六步:背面淀积金属形成欧姆接触;
第七步:金属电极加厚,正面光刻金属图形并腐蚀去除多余金属;
第八步:使用聚酰亚胺胶进行最外层的加厚钝化保护。
CN202011588662.7A 2020-12-28 2020-12-28 高压SiC肖特基二极管的结终端结构及其制备方法 Active CN113161408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011588662.7A CN113161408B (zh) 2020-12-28 2020-12-28 高压SiC肖特基二极管的结终端结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011588662.7A CN113161408B (zh) 2020-12-28 2020-12-28 高压SiC肖特基二极管的结终端结构及其制备方法

Publications (2)

Publication Number Publication Date
CN113161408A true CN113161408A (zh) 2021-07-23
CN113161408B CN113161408B (zh) 2022-06-07

Family

ID=76878134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011588662.7A Active CN113161408B (zh) 2020-12-28 2020-12-28 高压SiC肖特基二极管的结终端结构及其制备方法

Country Status (1)

Country Link
CN (1) CN113161408B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116760A (zh) * 2023-10-19 2023-11-24 珠海格力电子元器件有限公司 碳化硅器件的制作方法和碳化硅器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258153A1 (en) * 2007-04-18 2008-10-23 Denso Corporation Silcon carbide semiconductor device having schottky barrier diode and method for manufacturing the same
CN103579375A (zh) * 2013-11-18 2014-02-12 中国科学院微电子研究所 一种SiC肖特基二极管及其制作方法
CN104871316A (zh) * 2013-01-16 2015-08-26 住友电气工业株式会社 碳化硅半导体器件
CN108122995A (zh) * 2017-12-14 2018-06-05 北京世纪金光半导体有限公司 一种沟槽型双势垒肖特基二极管及其制备方法
CN108346688A (zh) * 2018-01-25 2018-07-31 中国科学院微电子研究所 具有CSL输运层的SiC沟槽结势垒肖特基二极管及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258153A1 (en) * 2007-04-18 2008-10-23 Denso Corporation Silcon carbide semiconductor device having schottky barrier diode and method for manufacturing the same
CN104871316A (zh) * 2013-01-16 2015-08-26 住友电气工业株式会社 碳化硅半导体器件
CN103579375A (zh) * 2013-11-18 2014-02-12 中国科学院微电子研究所 一种SiC肖特基二极管及其制作方法
CN108122995A (zh) * 2017-12-14 2018-06-05 北京世纪金光半导体有限公司 一种沟槽型双势垒肖特基二极管及其制备方法
CN108346688A (zh) * 2018-01-25 2018-07-31 中国科学院微电子研究所 具有CSL输运层的SiC沟槽结势垒肖特基二极管及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117116760A (zh) * 2023-10-19 2023-11-24 珠海格力电子元器件有限公司 碳化硅器件的制作方法和碳化硅器件

Also Published As

Publication number Publication date
CN113161408B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
EP1947700B1 (en) Low voltage diode with reduced parasitic resistance and method for fabricating
JP5044117B2 (ja) 炭化珪素バイポーラ型半導体装置
EP0847598A2 (en) SiC SEMICONDUCTOR DEVICE COMPRISING A PN JUNCTION WITH A VOLTAGE ABSORBING EDGE
US20020017647A1 (en) Junction termination for SiC schottky diode
CN106876256B (zh) SiC双槽UMOSFET器件及其制备方法
CN113644129B (zh) 一种具有台阶式P型GaN漏极结构的逆阻型HEMT
CN115411095B (zh) 具有介电调控混合场板终端的sbd结构及其制备方法
CN110534559B (zh) 一种碳化硅半导体器件终端及其制造方法
CN113161408B (zh) 高压SiC肖特基二极管的结终端结构及其制备方法
CN111129137B (zh) 具有NiO/SiC pn异质结的SiC绝缘栅双极晶体管
KR20160066811A (ko) 경사 이온 주입을 이용한 실리콘 카바이드 트렌치 모스 장벽 쇼트키 다이오드 및 그의 제조 방법
CN108695396B (zh) 一种二极管及其制作方法
CN112242449B (zh) 一种基于SiC衬底沟槽型MPS二极管元胞结构
CN111799338B (zh) 一种沟槽型SiC JBS二极管器件及其制备方法
CN210349845U (zh) 一种碳化硅结势垒肖特基二极管
CN110534582B (zh) 一种具有复合结构的快恢复二极管及其制造方法
CN109065638B (zh) 一种功率二极管器件
CN111969053A (zh) 低导通压降二极管器件及制备方法
CN113555448A (zh) 一种基于Ga2O3终端结构的4H-SiC肖特基二极管及制作方法
CN112951906A (zh) 一种SiC绝缘栅双极型晶体管器件及其制造方法
CN113725295B (zh) 一种逆导型mos栅控晶闸管及其制造方法
CN215342616U (zh) 一种具有埋层结构的深层肖特基功率器件
CN111799336B (zh) 一种SiC MPS二极管器件及其制备方法
CN110676307B (zh) 肖特基二极管的制备方法
CN113903790B (zh) 一种具有复合沟槽结构的碳化硅肖特基器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wu Hao

Inventor after: Hu Rui

Inventor after: Deng Xiaochuan

Inventor after: Liu Rui

Inventor after: Jiang Chunyan

Inventor after: Yan Jingrong

Inventor after: Zhang Bo

Inventor before: Deng Xiaochuan

Inventor before: Hu Rui

Inventor before: Wu Hao

Inventor before: Liu Rui

Inventor before: Jiang Chunyan

Inventor before: Yan Jingrong

Inventor before: Zhang Bo

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 102209 18 Riverside Avenue, Changping District science and Technology City, Beijing

Patentee after: State Grid Smart Grid Research Institute Co.,Ltd.

Patentee after: University of Electronic Science and Technology of China

Address before: 102209 18 Riverside Avenue, Changping District science and Technology City, Beijing

Patentee before: GLOBAL ENERGY INTERCONNECTION RESEARCH INSTITUTE Co.,Ltd.

Patentee before: University of Electronic Science and Technology of China