CN113136102B - 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法 - Google Patents

一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法 Download PDF

Info

Publication number
CN113136102B
CN113136102B CN202110430972.4A CN202110430972A CN113136102B CN 113136102 B CN113136102 B CN 113136102B CN 202110430972 A CN202110430972 A CN 202110430972A CN 113136102 B CN113136102 B CN 113136102B
Authority
CN
China
Prior art keywords
titanium carbide
polyaniline
composite material
titanium
electrochromic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110430972.4A
Other languages
English (en)
Other versions
CN113136102A (zh
Inventor
刘文龙
林涛
牟自豪
冯威
何登俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202110430972.4A priority Critical patent/CN113136102B/zh
Publication of CN113136102A publication Critical patent/CN113136102A/zh
Application granted granted Critical
Publication of CN113136102B publication Critical patent/CN113136102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种具有高电致变色性能的碳化钛‑聚苯胺复合材料及其制备方法,属于电致变色技术领域。聚苯胺颗粒由于静电吸附作用可复合在碳化钛表面,形成的聚苯胺颗粒与碳化钛复合材料的多孔结构,以及碳化钛基底的导电性进一步提升了聚苯胺的电致变色性能(比如:光学对比度、循环稳定性等)。将具有导电性的片状碳化钛与颗粒状聚苯胺进行复合,该设计有效提高了聚苯胺的光学对比度,提升了本复合材料电致变色的循环稳定性,使得所制备的复合材料电致变色性能提高。

Description

一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法
技术领域
本发明涉及一种电致变色性能的复合材料及其制备方法,尤其涉及一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法,属于电致变色技术领域。
背景技术
随着电化学器件的发展,人们逐渐对“可视化”器件有了一定的性能要求,比如:器件的电致变色。其中,电致变色是指在施加一定电压的条件下,可逆的改变材料的光学性质,如透过率、响应速度等。聚苯胺用作电致变色材料,其具有对比度高、能够在不同电压下显示多种颜色等特点, 在电致变色材料及器件领域备受青睐。
目前,提升聚苯胺电致变色性能的方法主要是:以无机材料作为模板,经原位聚合与聚苯胺复合,通过无机材料的多孔结构来缩短聚苯胺的掺/脱掺杂时间。尽管该方法单方面提升聚苯胺的电致变色性能,但提升效果十分有限,其电致变色性能总体较低,循环稳定性较差等。
于2012年07月25日公开了“一种聚苯胺复合电致变色膜器件的制备方法”,其中,具体公开:先制备聚苯胺复合物及聚苯乙烯胶液,然后将聚苯胺复合物加入聚苯乙烯胶液,搅拌均匀后采用超声分散制得聚苯胺复合导电液,最终采用涂刷或喷涂方式将该导电液涂装于ITO导电玻璃或导电薄膜上得到聚苯胺复合电致变色膜;将聚苯胺复合电致变色膜与另一含电解质导电层粘合,于50-60 ℃干燥2-3 h,用环氧树脂将两层四周密封后制得聚苯胺复合电致变色膜器件。于2017年05月10日公开了“一种碳化钛/聚苯胺复合材料及其制备方法”,其中,具体公开:将二维层状纳米材料MXene-Ti3C2与盐酸溶液混合,分散均匀得到Ti3C2分散液;再向Ti3C2分散液中加入苯胺,分散均匀获得混合溶液;其中,苯胺和二维层状纳米材料MXene-Ti3C2之比为(0.1-0.3)mL:(100-600)mg;在0-5 ℃,向混合溶液中逐滴加入催化剂引发聚合,连续搅拌直至混合溶液由无色逐渐转变为黑色,离心、洗涤并干燥,得到碳化钛/聚苯胺复合材料。该发明中,在0-5 ℃低温搅拌处理制备PANI/Ti3C2复合材料,有效改善了Ti3C2在高温下容易被氧化的问题;然而,该技术方案中需要引入催化剂并对反应条件加以控制,实际操作和应用难度较大。
因此,急需一种操作简单、可操作性强且有效提升电致变色性能的材料及其制备方法。
发明内容
发明人在长期的研究中发现,聚苯胺颗粒依靠静电吸附作用可稳定复合在碳化钛表面,形成的聚苯胺颗粒与碳化钛复合材料的多孔结构,以及碳化钛基底的导电性可进一步提升了聚苯胺的电致变色性能(比如:光学对比度、循环稳定性等)。基于此,本发明针对现有技术存在的问题及难点,将具有导电性的片状碳化钛与颗粒状聚苯胺进行有效复合,从而提出了一种提升电致变色性能的复合材料及其制备方法。
为了实现上述技术目的,提出如下的技术方案:
以片状碳化钛为基底,与颗粒状聚苯胺复合制备了一种具有高电致变色性能的碳化钛-聚苯胺复合材料。其中,碳化钛与聚苯胺之间的质量比为1:5-9,碳化钛长度为500-1000 nm,聚苯胺目数为10000-12500目。
本技术方案另提出一种具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,具体包括如下步骤:
S1:取盐酸和氟化锂,将两者混合均匀;在35℃的条件下,缓慢加入碳铝钛,刻蚀24h,得呈多层片状(呈手琴状)的碳化钛粉末;
其中,涉及的化学反应式包括:HCl+LiF=LiCl+HF,Ti3AlC2+3HF=AlF3+Ti3C2+1.5H2
其中,将盐酸与氟化锂混合均匀后,原位生成HF,为碳铝钛刻蚀提供酸,避免了直接使用HF,降低了造成安全风险;“缓慢加入碳铝钛(15min内缓慢加入1g碳铝钛)”,由于该反应生成氢气,缓慢加入进一步保证了安全性;
其中,盐酸、氟化锂及碳铝钛之间的摩尔比7.5:7.5:1;
其中,碳铝钛为400目以下,纯度高,保证终产品性能好;
S2:向经步骤S1所得的碳化钛粉末中加入去离子水,水相超声剥离20-30min,获得碳化钛分散液,备用;
其中,以每克碳化钛粉末配比40mL去离子水;
其中,在超声剥离中,功率为300w,有效保证剥离质量和效率;
S3:将聚苯胺颗粒加入至二甲基亚砜溶剂中,得到聚苯胺-二甲基亚砜溶液;
其中,以每克聚苯胺颗粒配比40mL二甲基亚砜溶剂;
S4:将经S3所得的聚苯胺-二甲基亚砜溶液逐滴加入至碳化钛分散液中,收集生成的黑色絮状沉淀;向黑色絮状沉淀中加入去离子水分散,得复合材料;
其中,“逐滴加入”是指以8mL/min的滴加速度,向碳化钛分散液中加入聚苯胺-二甲基亚砜溶液;
其中,以每克黑色絮状沉淀配比40mL去离子水。
此外,对于碳化钛-聚苯胺复合材料:在100℃条件下,经喷涂,可形成碳化钛-聚苯胺薄膜;其中,喷涂组件包括加热台、喷枪及ITO玻璃。
此外,对于碳化钛-聚苯胺复合薄膜:以碳化钛-聚苯胺薄膜为工作电极,以饱和甘汞电极为参比电极,以铂片电极为对电极,三者构成三电极体系,可用于测试碳化钛-聚苯胺薄膜的电致变色性能;其中,将三电极置于电解池中,电解液为0.1 mol/L 的盐酸溶液(该条件下,性能测试较好;浓度太高,薄膜被腐蚀;浓度太低,没有测试效果。)的电解池中,通过导线连接电化学工作站。
采用本技术方案,带来的有益技术效果为:
1)本发明设计合理,依据原理严谨。其中,将片状碳化钛与颗粒状聚苯胺复合,该设计有效提高了聚苯胺的光学对比度,提升了本复合材料电致变色的循环稳定性,进而使得所制备的复合材料电致变色性能提高;
导电聚合物通常以薄膜的形式存在,其在氧化还原过程中极大阻碍了电解质离子的扩散。在本发明中,纳米级的片状碳化钛负载聚苯胺,可改善电荷传输途径,并增加材料的比表面积,进而有效增大氧化还原所需的化学场所。因此,发明人采用碳化钛与聚苯胺进行复合,制备片状结构的碳化钛-聚苯胺的电致变色纳米材料,形成的复合薄膜的三维网络多孔结构能够有效地提升了导电聚合物的电致变色性能;
2)在本发明中,碳化钛长度为500-1000nm,碳化钛长度过大影响光学透过率,长度过小则会降低其与聚苯胺结合强度,进而导致复合材料性能不佳;
3)在本发明中,所得复合材料性能稳定,具备易于保存、方便运输等优势。该复合材料使用灵活,可根据实际需求设定产品类型,比如:仅需进行常规的喷涂、旋涂或浇注等,即可实现图案化;
4)在本发明中,涉及的复合材料成本低、适合工业化大规模生产;该制备方法简单、反应条件易于实现;生产过程无需额外的添加剂、无三废产生。
附图说明
图1为本发明中复合材料模型的结构示意图;
图2为本发明实施例4中三电极装置的结构示意图;
图3为本发明实施例5中喷涂装置的结构示意图;
图4为本发明中的多层片状(呈手琴状)的碳化钛的SEM图;
图5为本发明中的片状的碳化钛的SEM图;
图6为本发明中的碳化钛-聚苯胺复合薄膜的SEM图;
图7为本发明中的碳化钛-聚苯胺复合薄膜的TEM图;
图8为碳化钛、聚苯胺、碳化钛-聚苯胺复合材料的XRD图谱;
图9为碳化钛、聚苯胺、碳化钛-聚苯胺复合材料的FTIR图谱;
图10为本发明中碳化钛-聚苯胺复合材料的XPS 衍射图谱;
图11为本发明中碳化钛-聚苯胺复合材料的CV曲线;
图12为本发明中碳化钛-聚苯胺复合材料的EIS图谱;
图13为本发明中纯聚苯胺的电致变色紫外光谱图;
图14为本发明中纯聚苯胺的电致变色循环测试图;
图15为本发明中片状碳化钛质量分数为50%时,碳化钛-聚苯胺复合材料的电致变色紫外光谱图;
图16为本发明中片状碳化钛质量分数为50%时,碳化钛-聚苯胺复合材料的电致变色循环测试图;
图17为本发明中片状碳化钛质量分数为30%时,碳化钛-聚苯胺复合材料的电致变色紫外光谱图;
图18为本发明中片状碳化钛质量分数为30%时,碳化钛-聚苯胺复合材料的电致变色循环测试图;
图19为本发明中片状碳化钛质量分数为10%时,碳化钛-聚苯胺复合材料的电致变色紫外光谱图;
图20为本发明中片状碳化钛质量分数为10%时,碳化钛-聚苯胺复合材料的电致变色循环测试图;
图中:1、聚苯胺,2、碳化钛,3、磁力搅拌器,4、转子,5、烧杯,6、加热台,7、ITO玻璃,8、喷枪,9、电解池,10、工作电极,11、铂片电极,12、饱和甘汞电极,13 导线,14、电化学工作站。
具体实施方式
下面通过对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种具有高电致变色性能的碳化钛-聚苯胺复合材料(如图1所示),以片状碳化钛(如图5所示)为基底,与颗粒状聚苯胺复合而成,其中,碳化钛与聚苯胺之间的质量比为1:5-9。
其中,片状碳化钛长度为500-1000nm。
其中,颗粒状聚苯胺目数为10000-12500目。
实施例2
一种具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,包括如下步骤:
Y1:采用酸刻蚀法,制备呈多层片状的碳化钛粉末;
Y 2:将碳化钛粉末超声剥离,获得碳化钛分散液;
Y 3:向碳化钛分散液中加入聚苯胺-二甲基亚砜溶液,即复合材料。
实施例3
一种具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,具体包括如下步骤:
S1:取盐酸和氟化锂,将两者混合均匀;在35℃的条件下,缓慢加入碳铝钛,刻蚀24h,得呈多层片状(呈手琴状)的碳化钛粉末;
其中,涉及的化学反应式包括:HCl+LiF=LiCl+HF,Ti3AlC2+3HF=AlF3+Ti3C2+1.5H2
其中,将盐酸与氟化锂混合均匀后,原位生成HF,为碳铝钛刻蚀提供酸,避免了直接使用HF,降低了造成安全风险;“缓慢加入碳铝钛(15min内缓慢加入1g碳铝钛)”,由于该反应生成氢气,缓慢加入进一步保证了安全性;
其中,盐酸、氟化锂及碳铝钛之间的摩尔比7.5:7.5:1;
其中,碳铝钛为400目以下,纯度高,保证终产品性能好;
S2:向经步骤S1所得的碳化钛粉末中加入去离子水,水相超声剥离20-30min,获得碳化钛分散液,备用;
其中,以每克碳化钛粉末配比40mL去离子水;
其中,在超声剥离中,功率为300w,有效保证剥离质量和效率;
S3:将聚苯胺颗粒加入至二甲基亚砜溶剂中,得到聚苯胺-二甲基亚砜溶液;
其中,以每克聚苯胺颗粒配比40mL二甲基亚砜溶剂;
S4:以8 mL/min的滴加速度,将经S3所得的聚苯胺-二甲基亚砜溶液逐滴加入至碳化钛分散液中,收集生成的黑色絮状沉淀;向黑色絮状沉淀中加入去离子水分散,得复合材料;
其中,以每克黑色絮状沉淀配比40mL去离子水。
实施例4
基于上述实施例,本实施例提供一种实验室用的测试碳化钛-聚苯胺薄膜的电致变色性能的三电极装置,以对本发明作进一步的说明。
如图2所示:三电极装置包括均设置在电解池中的工作电极、铂片电极及饱和甘汞电极,工作电极、铂片电极及饱和甘汞电极导线与电化学工作站连通。
基于碳化钛-聚苯胺复合材料,具体操作如下:
首先,将碳化钛-聚苯胺复合材料在100℃条件下经喷涂,形成碳化钛-聚苯胺薄膜(如图6-7所示);
其次,以碳化钛-聚苯胺薄膜为工作电极,以饱和甘汞电极为参比电极,以铂片电极为对电极,三者构成三电极体系,用于测试碳化钛-聚苯胺薄膜的电致变色性能;
其中,将构建的三电极装置置于电解液为0.1 mol/L 的盐酸溶液电解池中,三电极均通过导线连接电化学工作站。
最后,得到碳化钛-聚苯胺薄膜的电致变色性能测试结果。
实施例5
基于上述实施例,本实施例提供一种实验室用的碳化钛-聚苯胺复合材料的喷涂装置,以对本发明作进一步的说明。
如图3所示:喷涂装置包括加热台、喷枪及ITO玻璃,ITO玻璃设置在加热台上,喷枪设置在ITO玻璃工位的一侧,以此实现碳化钛-聚苯胺薄膜的制备。
实施例6
基于实施例3,本实施例讨论在不同片状碳化钛含量下的碳化钛-聚苯胺复合材料的电致变色性能,以对本发明作进一步的说明和解释。
1、分别对碳化钛、聚苯胺、不同片状碳化钛含量下形成的三类碳化钛-聚苯胺复合材料进行测试,所得结果如图8-12所示。
2、分别设置碳化钛-聚苯胺复合材料中的片状碳化钛含量为0(纯聚苯胺)、10%、30%和50%,结果如13-20所示。其中,用紫外光谱电化学测出的光学对比度大小分别为25%、28%、48%和41%;500次循环后,电致变色薄膜的循环稳定性分别为40%、42%、83%和50%;
可知:通过片状碳化钛MXene的设计,有效提高了聚苯胺光学对比度,也提升了复合材料电致变色的循环稳定性,并使得制备的复合材料电致变色性能提高。
以上所述仅为本发明的优选实例而已,并不用于限定本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,其特征在于,包括如下步骤:
Y1:取盐酸和氟化锂,将两者混合均匀;在35℃条件下缓慢加入碳铝钛,酸刻蚀24h,得呈多层片状的碳化钛粉末;
Y2:向经步骤Y1所得的碳化钛粉末中加入去离子水,将碳化钛粉末超声剥离,获得碳化钛分散液;
Y3:以8mL/min的滴加速度,向经步骤Y2所得的碳化钛分散液中逐滴加入聚苯胺-二甲基亚砜溶液,收集生成的黑色絮状沉淀;向黑色絮状沉淀中加入去离子水分散,即复合材料;
其中,经喷涂复合材料,形成碳化钛-聚苯胺薄膜:碳化钛与聚苯胺之间的质量比为1:5-9,片状碳化钛长度为500-1000nm。
2.根据权利要求1所述的具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,其特征在于,所述盐酸、氟化锂及碳铝钛之间的摩尔比7.5:7.5:1,碳铝钛为400目以下。
3.根据权利要求1所述的具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,其特征在于,在步骤Y2中,具体包括:
水相超声剥离20-30min,获得碳化钛分散液,备用;其中,超声剥离的功率为300w。
4.根据权利要求3所述的具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,其特征在于,以每克碳化钛粉末配比40mL去离子水。
5.根据权利要求1所述的具有高电致变色性能的碳化钛-聚苯胺复合材料的制备方法,其特征在于,所述聚苯胺-二甲基亚砜溶液中,以每克聚苯胺配比40mL二甲基亚砜溶剂;
在去离子水分散中,以每克黑色絮状沉淀配比40mL去离子水。
CN202110430972.4A 2021-04-21 2021-04-21 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法 Active CN113136102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110430972.4A CN113136102B (zh) 2021-04-21 2021-04-21 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110430972.4A CN113136102B (zh) 2021-04-21 2021-04-21 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113136102A CN113136102A (zh) 2021-07-20
CN113136102B true CN113136102B (zh) 2023-05-02

Family

ID=76813562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110430972.4A Active CN113136102B (zh) 2021-04-21 2021-04-21 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113136102B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114121496A (zh) * 2021-10-28 2022-03-01 中国科学院深圳先进技术研究院 柔性复合电极及其制备方法、柔性储能器件
CN113912905B (zh) * 2021-10-28 2023-01-24 哈尔滨工业大学 一种聚苯胺/MXene/多孔尼龙薄膜的制备方法
CN114956595B (zh) * 2022-05-20 2023-11-17 国家高速列车青岛技术创新中心 一种MXene衍生的二维氧化物电致变色薄膜及其制备方法和应用
CN115629501A (zh) * 2022-09-28 2023-01-20 贵州大学 一种原位自组装大面积多色电致变色器件及其制备方法和应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192893A (ja) * 2001-12-25 2003-07-09 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂組成物、ポリイミドフィルム、ポリイミド管状物及び電子写真用管状物
CN102608819B (zh) * 2012-03-29 2014-08-06 安徽工业大学 一种聚苯胺复合电致变色膜器件的制备方法
CN106674517B (zh) * 2016-12-22 2019-04-19 陕西科技大学 聚苯胺表面修饰碳化钛复合材料及其低温制备法
CN106589362B (zh) * 2016-12-22 2019-05-28 陕西科技大学 一种聚苯胺纳米颗粒/二维层状碳化钛复合材料及其低温制备法
CN106633051B (zh) * 2016-12-22 2019-04-16 陕西科技大学 一种碳化钛/聚苯胺复合材料及其制备方法
CN106633050B (zh) * 2016-12-22 2019-04-16 陕西科技大学 一种棒状聚苯胺负载改性碳化钛及其低温制备法
CN108530889B (zh) * 2017-08-30 2020-10-13 北京化工大学 一种MXene/导电聚合物复合气凝胶及其制备方法
CN110117787B (zh) * 2019-06-04 2021-05-18 成都大学 二氧化钛薄膜的制备方法
CN110330675A (zh) * 2019-06-19 2019-10-15 天津市职业大学 一种压敏薄膜的制备方法、压敏薄膜及压力传感器
CN110808178A (zh) * 2019-11-14 2020-02-18 哈尔滨工业大学 一种具有高比电容聚苯胺/碳化钛柔性电极的制备方法
CN110845844B (zh) * 2019-11-15 2022-05-17 东华大学 一种PANI/MXene/碳布复合吸波材料的制备方法

Also Published As

Publication number Publication date
CN113136102A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN113136102B (zh) 一种具有高电致变色性能的碳化钛-聚苯胺复合材料及其制备方法
Wang et al. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance
Liu et al. A prussian blue/zinc secondary battery with a bio-ionic liquid–water mixture as electrolyte
Hao et al. Synthesis of anatase TiO2 nanosheets with enhanced pseudocapacitive contribution for fast lithium storage
CN104900856B (zh) 一种基于纳米硫的锂硫电池用正极复合材料及制备方法
Jiang et al. Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage
EP2292560B1 (en) Titanium oxide structure and porous titanium oxide composition
EP3376581B1 (en) Solid electrolyte and secondary battery
JP6605457B2 (ja) オキシ水酸化コバルトを含む電気化学デバイス電極
Zhang et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage
Ren et al. Doping-induced static activation of MnO2 cathodes for aqueous Zn-ion batteries
Chen et al. Facile synthesis of MnO2/Ti3C2Tx/CC as positive electrode of all‐solid‐state flexible asymmetric supercapacitor
Cai et al. Defect-rich MoO3 nanobelt cathode for a high-performance hybrid alkali/acid Zn-MoO3 rechargeable battery
Trindade Soares et al. Self-recharging reduced graphene oxide-prussian blue electrodes for transparent batteries
Yin et al. Proton Self‐Doped Polyaniline with High Electrochemical Activity for Aqueous Zinc‐Ion Batteries
Hao et al. Bi-functional poly (vinylidene difluoride) coated Al anodes for highly rechargeable aqueous Al-ion batteries
Singh et al. A highly stable solid-state supercapacitor device based on robust layer-by-layer electrodeposited poly-(3, 4-ethylenedioxythiophene)-reduced graphene oxide–molybdenum disulfide nanocomposite electrode
Zhuge et al. Stable supercapacitor electrode based on two-dimensional high nucleus silver nano-clusters as a green energy source
Wang et al. Manipulating oxygen vacancies by K+ doping and controlling Mn2+ deposition to boost energy storage in β-MnO2
Xuan et al. A hollow tubular NiCo layacknered double hydroxide@ Ag nanowire structure for high-power-density flexible aqueous Ni//Zn battery
Xu et al. Preparation of lithium-doped NaV6O15 thin film cathodes with high cycling performance in SIBs
Shehzad et al. Improved energy storage performance of sonochemically synthesized Ni-Co-Zn ternary metal phosphate composites by incorporating PANI functionalized CNTs
Zou et al. A composite material with internal hydrophilicity and external stability as the cathode of aqueous zinc-ion batteries exhibiting excellent rate performance and energy density at high power density
Jin et al. Constructing 3D sandwich-like carbon coated Fe2O3/helical carbon nanofibers composite as a superior lithium-ion batteries anode
CN207909958U (zh) 一种柔性全固态电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant