CN113097072A - 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法 - Google Patents

一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法 Download PDF

Info

Publication number
CN113097072A
CN113097072A CN202110230544.7A CN202110230544A CN113097072A CN 113097072 A CN113097072 A CN 113097072A CN 202110230544 A CN202110230544 A CN 202110230544A CN 113097072 A CN113097072 A CN 113097072A
Authority
CN
China
Prior art keywords
graphene
sacrificial layer
preparing
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110230544.7A
Other languages
English (en)
Other versions
CN113097072B (zh
Inventor
曹正义
吴云
顾晓文
魏仲夏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN202110230544.7A priority Critical patent/CN113097072B/zh
Publication of CN113097072A publication Critical patent/CN113097072A/zh
Application granted granted Critical
Publication of CN113097072B publication Critical patent/CN113097072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,包括步骤如下:(1)石墨烯转移;(2)隔离区工艺;(3)介质牺牲层生长;(4)源/漏电极制备;(5)自对准工艺;(6)栅电极制备;完成石墨烯场效应晶体管制备。本发明采用干法刻蚀形成凹槽,腐金液腐蚀受到介质牺牲层形成的凹槽限制,腐蚀间距小于常规工艺中腐蚀形成的对准间距,降低了寄生电阻;石墨烯场效应晶体管完成后,介质牺牲层对石墨烯场效应晶体管形成保护,相当于完成钝化,有利于在电路流片工艺中应用中。

Description

一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法
技术领域
本发明涉及制备石墨烯场效应晶体管的方法,尤其涉及一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法。
背景技术
基于石墨烯的超高速、超低噪声、超低功耗场效应晶体管及其集成电路,有望突破当前电子器件的高成本、低分辨率及高功耗的瓶颈,为开发更高性能电子器件提供新的思路和方案。
开发石墨烯电学性能的研究以石墨烯场效应晶体管及电路的研制为主,就现状而言,石墨烯晶体管及电路在制备工艺方面与传统工艺有很大区别,主要在于石墨烯是二维材料,暴露在衬底表面容易受到损伤,影响石墨烯晶体管及电路性能。此外,石墨烯场效应晶体管制备多采用腐蚀自对准工艺来控制源漏极间距,可以有效控制栅源和栅漏间距,但是为了提高石墨烯场效应晶体管性能,需要不断缩小栅长,此过程中出现电子束胶型在沟道区金属上外扩,腐蚀金溶液沿着胶底面渗入形成侧向腐蚀,腐蚀边界不平整等问题。
发明内容
发明目的:本发明的目的是提供一种有效保护石墨烯在多步工艺流程中不受损的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法。
技术方案:本发明的生产工艺,包括步骤如下:
(1)石墨烯转移:采用CVD生长石墨烯,在石墨烯表面蒸发一层金属,采用金属转移石墨烯工艺,将石墨烯转移到绝缘衬底上;
(2)隔离区工艺:在衬底表面,采用平面光刻显影技术制备出隔离区图形,湿法腐蚀去除隔离区外的金属,再氧化去除隔离区外的石墨烯;
(3)介质牺牲层生长:采用干法生长工艺,在衬底表面生长一层介质牺牲层,将石墨烯上金属表面上覆盖一层介质牺牲层;
(4)源/漏电极制备:在衬底表面,采用平面光刻显影技术制备出源/漏电极图形,干法刻蚀去除生长的介质牺牲层,蒸发完成金属化,辅以溶胶剥离技术,制备出源/漏电极;
(5)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅极图形,干法刻蚀去除生长的介质牺牲层,以湿法腐蚀技术将连接源/漏电极的金属从栅级图形下断开,实现自对准;
(6)栅电极制备:采用ALD方法生长高K栅介质,蒸发完成金属化,辅以溶胶剥离技术,制备出栅电极,完成石墨烯场效应晶体管制备。
进一步,步骤(1)中,石墨烯表面蒸发金属为能被腐蚀溶解;选用Au,或Cu,或Pd,蒸发金属厚为30-100nm。
进一步,步骤(3)中,介质牺牲层为氧化硅,或氮化硅,厚度为30-100nm。
进一步,步骤(5)中,栅极线宽在为20-500nm。
进一步,步骤(6)中,所述高k栅介质的厚度为5-20nm。
本发明与现有技术相比,其显著效果如下:1、干法刻蚀形成凹槽,腐金液腐蚀受到介质牺牲层形成的凹槽限制,腐蚀间距小于常规工艺中腐蚀形成的对准间距,降低了寄生电阻;2、石墨烯晶体管完成后,介质牺牲层对石墨烯晶体管形成保护,相当于完成钝化,有利于在电路流片工艺中应用。
附图说明
图1为本发明在衬底材料转移石墨烯与Au示意图;
图2为本发明石墨烯隔离示意图;
图3为本发明生长介质层示意图;
图4为本发明源漏电极制备示意图;
图5为本发明自对准腐蚀意图;
图6为本发明栅电极制备示意图。
具体实施方式
下面结合说明书附图和具体实施方式对本发明做进一步详细描述。
本发明的生产工艺,具体制备步骤如下:
(1)采用Cu衬底,CVD(Chemical Vapor Deposition,化学气相淀积)生长石墨烯,在石墨烯表面蒸发一层Au,厚度为50nm,采用FeCl3溶液将Cu衬底腐蚀掉,采用Au转移石墨烯工艺,将石墨烯和Au均转移到Si/SiO2衬底上,如图1所示。
(2)在Si/SiO2衬底上,采用平面光刻显影技术制备出隔离区图形,采用湿法腐蚀去除隔离区外的金属,再使用干法氧化(氧等离子体)去除隔离区外的石墨烯,如图2所示。
(3)采用PECVD(Plasma Enhanced Chemical Vapor Deposition等离子体增强化学的气相沉积法)生长工艺,在Si/SiO2衬底表面生长一层氮化硅介质层,介质厚度为30nm,将石墨烯与Au表面覆盖一层氮化硅介质层,如图3所示。
(4)采用平面光刻显影技术制备出源/漏电极图形,干法刻蚀去除生长的氮化硅介质牺牲层,蒸发20nmTi/200nmAu作为源/漏金属,辅以溶胶剥离技术,制备出源/漏电极,如图4所示。
(5)在Si/SiO2衬底表面,采用电子束光刻显影技术制备出栅极图形,栅极线宽为100nm,干法刻蚀去除生长的氮化硅介质牺牲层,在自对准法中Au层连接源/漏电极,以湿法腐蚀技术将Au层从栅级图形下断开,实现自对准,如图5所示。
(6)采用ALD(Atomic Layer Deposition原子层沉积)工艺,生长Al2O3作为栅介质,厚度为10nm,蒸发20nmTi/500nmAu,完成金属化,辅以溶胶剥离技术,制备出栅电极,完成石墨烯场效应晶体管制备,如图6所示。

Claims (6)

1.一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,包括步骤如下:
(1)石墨烯转移:采用CVD生长石墨烯,在石墨烯表面蒸发一层金属,采用金属转移石墨烯工艺,将石墨烯转移到绝缘衬底上;
(2)隔离区工艺:在衬底表面,采用平面光刻显影技术制备出隔离区图形,湿法腐蚀去除隔离区外的金属,再氧化去除隔离区外的石墨烯;
(3)介质牺牲层生长:采用干法生长工艺,在衬底表面生长一层介质牺牲层,将石墨烯上金属表面覆盖一层介质牺牲层;
(4)源/漏电极制备:在衬底表面,采用平面光刻显影技术制备出源/漏电极图形,干法刻蚀去除生长的介质牺牲层,蒸发完成金属化,辅以溶胶剥离技术,制备出源/漏电极;
(5)自对准工艺:在衬底表面以电子束光刻显影技术制备出栅极图形,干法刻蚀去除生长的介质牺牲层,以湿法腐蚀技术将连接源/漏电极的金属从栅级图形下断开,实现自对准;
(6)栅电极制备:采用ALD方法生长高K栅介质,蒸发完成金属化,辅以溶胶剥离技术,制备出栅电极,完成石墨烯场效应晶体管制备。
2.根据权利要求1所述的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,所述步骤(1)中,所述石墨烯表面蒸发金属为能被腐蚀溶解的金属。
3.根据权利要求2所述的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,所述石墨烯表面蒸发金属选用Au,或Cu,或Pd,蒸发金属厚度为30-100nm。
4.根据权利要求1所述的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,所述步骤(3)中,所述介质牺牲层为氧化硅或氮化硅,厚度为30-100nm。
5.根据权利要求1所述的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,所述步骤(5)中,所述栅极线宽为20-500nm。
6.根据权利要求1所述的采用介质牺牲层工艺制备石墨烯场效应晶体管的方法,其特征在于,所述步骤(6)中,所述高k栅介质的厚度为5-20nm。
CN202110230544.7A 2021-03-02 2021-03-02 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法 Active CN113097072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110230544.7A CN113097072B (zh) 2021-03-02 2021-03-02 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110230544.7A CN113097072B (zh) 2021-03-02 2021-03-02 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法

Publications (2)

Publication Number Publication Date
CN113097072A true CN113097072A (zh) 2021-07-09
CN113097072B CN113097072B (zh) 2022-07-22

Family

ID=76666206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110230544.7A Active CN113097072B (zh) 2021-03-02 2021-03-02 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法

Country Status (1)

Country Link
CN (1) CN113097072B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834206A (zh) * 2010-04-12 2010-09-15 清华大学 半导体器件结构及其形成方法
CN202633239U (zh) * 2011-03-18 2012-12-26 中国科学院微电子研究所 一种半导体器件
CN103295912A (zh) * 2013-05-21 2013-09-11 中国电子科技集团公司第十三研究所 一种基于自对准技术的石墨烯晶体管制造方法
KR20140060070A (ko) * 2012-11-09 2014-05-19 연세대학교 산학협력단 유전율을 변화시킬 수 있는 그라핀 옥사이드 캐패시터 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834206A (zh) * 2010-04-12 2010-09-15 清华大学 半导体器件结构及其形成方法
CN202633239U (zh) * 2011-03-18 2012-12-26 中国科学院微电子研究所 一种半导体器件
KR20140060070A (ko) * 2012-11-09 2014-05-19 연세대학교 산학협력단 유전율을 변화시킬 수 있는 그라핀 옥사이드 캐패시터 및 그 제조방법
CN103295912A (zh) * 2013-05-21 2013-09-11 中国电子科技集团公司第十三研究所 一种基于自对准技术的石墨烯晶体管制造方法

Also Published As

Publication number Publication date
CN113097072B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US8680512B2 (en) Graphene transistor with a self-aligned gate
US6914295B2 (en) Tri-gate devices and methods of fabrication
US20090194819A1 (en) Cmos structures and methods using self-aligned dual stressed layers
CA2695715A1 (en) Self-aligned nanotube field effect transistor and method of fabricating same
KR20050018398A (ko) 반도체 기판과 ″l″형 스페이서 사이에 에어 갭을구비하는 반도체 소자 및 그 제조 방법
CN105789032B (zh) 一种石墨烯场效应晶体管及其制造方法
CN106684151A (zh) 一种GaN侧墙绝缘栅鳍式高电子迁移率晶体管及其制造方法
CN111863808B (zh) 基于肖特基-欧姆混合漏电极的单片异质集成Cascode晶体管及制作方法
US8658461B2 (en) Self aligned carbide source/drain FET
CN111446288B (zh) 基于二维材料的ns叠层晶体管及其制备方法
CN113097072B (zh) 一种采用介质牺牲层工艺制备石墨烯场效应晶体管的方法
CN106952959A (zh) 一种锗硅沟道鳍式场效应晶体管及其制备方法
WO2015096239A1 (zh) 一种薄膜电晶体场效应管及其制造方法
CN112309846B (zh) 一种二维材料场效应晶体管的制备方法
CN102569079B (zh) 具有自对准金属硅化工艺的双栅ldmos的制备方法
CN107919397A (zh) 一种高线性场效应晶体管器件及其制作方法
CN107068567B (zh) 一种射频vdmos晶体管的金属栅与场板结构及其制备方法
CN113314605A (zh) 半导体结构及半导体结构的形成方法
WO2018045612A1 (zh) 氧化物薄膜晶体管的制备方法
CN106898553A (zh) 一种鳍式场效应晶体管及其制备方法
CN110571332B (zh) 晶体管及其制造方法
CN113035958B (zh) 一种半导体场效应晶体管及其制造方法
US20230037927A1 (en) 2d channel with self-aligned source/drain
WO2022021672A1 (en) Transistor and method for fabricating the same
CN107123672B (zh) 射频LDMOS的PolySi薄栅结构及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant