CN106898553A - 一种鳍式场效应晶体管及其制备方法 - Google Patents

一种鳍式场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN106898553A
CN106898553A CN201710156386.9A CN201710156386A CN106898553A CN 106898553 A CN106898553 A CN 106898553A CN 201710156386 A CN201710156386 A CN 201710156386A CN 106898553 A CN106898553 A CN 106898553A
Authority
CN
China
Prior art keywords
fin
preparation
bars
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710156386.9A
Other languages
English (en)
Inventor
安霞
张冰馨
黎明
黄如
张兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201710156386.9A priority Critical patent/CN106898553A/zh
Publication of CN106898553A publication Critical patent/CN106898553A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公布了一种鳍式场效应晶体管及其制备方法。该器件采用高迁移率沟道材料,可以提高开态电流;在Fin条底部引入局域埋氧层,形成了体在绝缘层上(Body‑on‑Insulator,BOI)结构,切断了源漏间的泄漏电流通道,能够有效抑制泄漏电流,并且比SOI(/SGOI/GOI)FinFET具有更小的埋氧层面积,改善了散热问题。

Description

一种鳍式场效应晶体管及其制备方法
技术领域
本发明涉及一种鳍式场效应晶体管及其制备方法,属于超大规模集成电路制造技术领域。
背景技术
随着集成电路的迅速发展,半导体器件的特征尺寸不断缩小。当特征尺寸进入纳米尺度,传统硅基平面器件面临短沟道效应严重、迁移率退化等问题。因此,人们从新器件结构、新沟道材料等方面提出了一些解决方案。鳍式场效应晶体管(FinFET)能够有效抑制短沟道效应,具有栅控能力强、开态电流大、与CMOS工艺兼容等优点,已在产业界得到应用。
对于体硅FinFET,在Fin条底部存在源漏泄漏电流通道,泄漏电流较大,导致静态功耗增大。SOI FinFET能够更好地抑制短沟道效应和泄漏电流,但是由于氧化硅埋氧层的热导率约为硅的1%,导致器件散热性较差。
发明内容
针对以上问题,本发明提出了一种鳍式场效应晶体管及其制备方法,该器件采用高迁移率沟道材料,可以提高开态电流;在Fin条底部引入局域埋氧层,形成了体在绝缘层上(Body-on-Insulator,BOI)结构,切断了源漏间的泄漏电流通道,能够有效抑制泄漏电流,并且比SOI(/SGOI/GOI)FinFET具有更小的埋氧层面积,改善了散热问题。
本发明提供的鳍式场效应晶体管,包括半导体衬底,在半导体衬底上具有凸起的Fin条,在Fin条侧壁和顶部表面具有横跨Fin条的栅极结构,与栅极结构接触的Fin条部分构成沟道区,其特征在于,沟道区为高迁移率材料,沟道长度小于Fin条长度;源、漏位于沟道区两端;Fin条两端的半导体与衬底相连;Fin条与半导体衬底之间有一层局域埋氧层,形成BOI结构,该局域埋氧层的宽度大于或等于Fin条宽度。
本发明的鳍式场效应晶体管中,沟道区的高迁移率材料例如锗、锗硅、锗锡等。
本发明还提供了一种鳍式场效应晶体管的制备方法,包括以下步骤:
1)在半导体衬底上形成采用高迁移率材料的凸起Fin条;
2)在Fin条与半导体衬底之间形成局域埋氧层,该局域埋氧层的宽度大于或等于Fin条宽度;
3)在所述Fin条侧壁和顶部表面形成栅极结构,并在栅极结构的侧面形成侧墙;
4)光刻定义源漏区图形,掺杂并退火形成源漏。
上述制备方法中,步骤1)中所述半导体衬底常用的为体硅衬底,但不局限于体硅衬底,形成Fin条的方法具体可包括:
1-1)在半导体衬底上生长高迁移率材料的半导体外延层;
1-2)定义器件有源区,并形成器件之间的隔离;
1-3)在步骤1-1)形成的半导体外延层上淀积硬掩膜,光刻定义Fin条图形,干法刻蚀硬掩膜和半导体外延层,停止在衬底表面,去掉光刻胶,形成Fin条。
所述步骤1-1)中所述半导体外延层的材料包括锗、锗硅、锗锡等,但不局限于上述外延材料,可为其他高迁移率材料,厚度可以为5~200nm,其厚度决定了Fin条的高度。
所述步骤1-1)中生长半导体外延层的工艺可以采用分子束外延(Molecule BeamEpitaxy,MBE)、化学气相淀积(Chemical Vapor Deposition,CVD)等方法。
所述步骤1-3)中,硬掩膜可以是氧化硅层、氮化硅层、氧化硅/氮化硅叠层等,但不局限于上述材料,但应具有较好的保形性。淀积硬掩膜的工艺可以采用低压化学气相淀积(Low Pressure Chemical Vapor Deposition,LPCVD)、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)等方法。硬掩膜厚度可以为10~800nm;Fin条宽度可以为5~100nm。光刻优选为电子束光刻或193nm浸没式光刻等能形成纳米尺度线条的先进光刻技术。
上述制备方法中,步骤2)具体可包括:
2-1)在Fin条上淀积一层氮化硅,并进行干法刻蚀,形成氮化硅侧墙;
2-2)干法刻蚀半导体衬底至一定深度,然后通过热氧化使Fin条和衬底之间的半导体被氧化,形成局域埋氧层(对于体硅衬底来说,形成氧化硅绝缘层);
2-3)湿法腐蚀去掉氮化硅侧墙。
所述步骤2-2)中衬底的刻蚀深度决定了埋氧层的厚度,刻蚀深度可以为5~50nm;热氧化工艺可以采用湿氧氧化、氢氧合成氧化、等离子体氧化等,使Fin条与衬底之间的半导体(硅)完全被氧化,氧化时间应根据其宽度及其氧化速率而定。
所述步骤2-3)中,湿法腐蚀氮化硅可以采用浓磷酸溶液。
上述制备方法中,步骤3)和步骤4)为常规的工艺步骤。步骤3)包括淀积栅介质层,光刻、刻蚀形成栅电极,淀积氧化硅并刻蚀形成侧墙隔离层。步骤4)包括光刻定义源漏区图形,离子掺杂并退火形成源漏,以及后续的工艺步骤:光刻、刻蚀接触孔,溅射金属,光刻、刻蚀形成金属互连,合金,钝化等。
本发明优点如下:
1)采用高迁移率沟道材料,改善了沟道中载流子迁移率,提高了开态电流。
2)采用BOI结构,抑制了泄漏电流,降低了功耗。
与SOI(/SGOI/GOI)FinFET相比,BOI FinFET具有更小的埋氧层面积,改善了散热问题,并且在提升器件特性的同时降低了成本。
附图说明
图1为实施例制备的硅基锗硅BOIFinFET的结构示意图。
图2~图8为实施例制备硅基锗硅BOIFinFET的关键工艺步骤示意图,各图中(a)为沿图1中A-A’方向的剖面图,(b)为沿图1中B-B’方向的剖面图。
其中:1-硅衬底;2-锗硅外延层;3-作硬掩膜的氧化硅层;4-作硬掩膜的氮化硅层;5-锗硅Fin条;6-保护锗硅Fin条的氮化硅侧墙;7-氧化硅绝缘层;8-栅介质;9-栅电极;10-侧墙隔离层;11-源;12-漏。
具体实施方式
本发明的鳍式场效应晶体管采用高迁移率沟道材料,可以提高开态电流;在Fin条底部引入局域埋氧层,形成了BOI结构,切断了源漏间的泄漏电流通道,能够有效抑制泄漏电流。比SOI(/SGOI/GOI)FinFET具有更小的埋氧层面积,改善了散热问题,并且在提升器件特性的同时降低了成本。下面结合附图对本发明进行详细说明。
根据下列步骤可以实现硅基锗硅BOIFinFET:
步骤1.在P型(100)硅衬底1上MBE生长50nm锗硅外延层2,PECVD淀积300nm氧化硅,光刻、刻蚀形成有源区,去胶;
步骤2.PECVD淀积20nm氧化硅层3和50nm氮化硅层4作为硬掩膜,通过电子束光刻形成Fin条图形,Fin宽为20nm,干法刻蚀硬掩膜,露出锗硅外延层2上表面,去胶,所得结构如图2所示;
步骤3.以硬掩膜为掩蔽,干法刻蚀锗硅外延层2,露出硅衬底1上表面,形成锗硅Fin条5结构,如图3所示;
步骤4.PECVD淀积氮化硅,并进行干法刻蚀,在锗硅Fin条两侧形成氮化硅侧墙6,如图4所示;
步骤5.以硬掩膜和侧墙为掩蔽,干法刻蚀硅衬底1,刻蚀深度为20nm,如图5所示;
步骤6.通过氢氧合成对硅衬底1进行氧化,氧化温度为800℃,在锗硅Fin条下方形成氧化硅绝缘层7,如图6所示;
步骤7.浓磷酸加热170℃,腐蚀去除氮化硅,所得结构如图7所示;
步骤8.进行牺牲氧化或氢气退火等工艺来改善刻蚀造成的Fin表面损伤,淀积Al2O3/TiN,光刻、刻蚀形成栅电极9,淀积氧化硅并刻蚀形成侧墙隔离层10;
步骤9.通过光刻定义源漏区图形,P+注入对源漏进行掺杂,注入能量为20keV,注入剂量2E15cm-2,并通过RTA退火950℃,30s,激活杂质,形成源11、漏12,具体退火条件根据锗组分改变,如图8所示;
步骤10.PECVD淀积氧化硅,通过CMP实现平坦化;
步骤11.通过光刻、ICP刻蚀形成栅、源、漏各端的接触孔,去胶;
步骤12.溅射金属,光刻、刻蚀形成金属互连,合金。
综上所述,该方法采用高迁移率沟道材料,可以提高器件电流驱动能力;在Fin条底部引入局域埋氧层,形成BOI结构,可以切断源漏间的泄漏电流通道,能够有效抑制泄漏电流,并且比SOI(/SGOI/GOI)FinFET具有更小的埋氧层面积,改善了散热问题。

Claims (10)

1.一种鳍式场效应晶体管,包括半导体衬底,在半导体衬底上具有凸起的Fin条,在Fin条侧壁和顶部表面具有横跨Fin条的栅极结构,与栅极结构接触的Fin条部分构成沟道区,其特征在于,沟道区为高迁移率材料,沟道长度小于Fin条长度;源、漏位于沟道区两端;Fin条两端的半导体与衬底相连;Fin条与半导体衬底之间有一层局域埋氧层,形成BOI结构,该局域埋氧层的宽度大于或等于Fin条宽度。
2.如权利要求1所述的鳍式场效应晶体管,其特征在于,所述沟道区的高迁移率材料为锗、锗硅或锗锡。
3.一种鳍式场效应晶体管的制备方法,包括以下步骤:
1)在半导体衬底上形成采用高迁移率材料的凸起Fin条;
2)在Fin条与半导体衬底之间形成局域埋氧层,该局域埋氧层的宽度大于或等于Fin条宽度;
3)在Fin条侧壁和顶部表面形成栅极结构,并在栅极结构的侧面形成侧墙;
4)光刻定义源漏区图形,掺杂并退火形成源漏。
4.如权利要求3所述的制备方法,其特征在于,步骤1)包括:
1-1)在半导体衬底上生长高迁移率材料的半导体外延层;
1-2)定义器件有源区,并形成器件之间的隔离;
1-3)在步骤1-1)形成的半导体外延层上淀积硬掩膜,光刻定义Fin条图形,干法刻蚀硬掩膜和半导体外延层,停止在衬底表面,去掉光刻胶,形成Fin条。
5.如权利要求4所述的制备方法,其特征在于,步骤1-1)中所述半导体外延层的材料为锗、锗硅或锗锡,厚度为5~200nm。
6.如权利要求4所述的制备方法,其特征在于,步骤1-3)中,所述硬掩膜是氧化硅层、氮化硅层或氧化硅/氮化硅叠层,厚度为10~800nm。
7.如权利要求4所述的制备方法,其特征在于,步骤1-3)中的光刻采用电子束光刻或193nm浸没式光刻技术,形成宽度为5~100nm的Fin条。
8.如权利要求3所述的制备方法,其特征在于,步骤2)包括:
2-1)在Fin条上淀积一层氮化硅,并进行干法刻蚀,形成氮化硅侧墙;
2-2)干法刻蚀半导体衬底至一定深度,然后通过热氧化使Fin条和衬底之间的半导体被氧化,形成局域埋氧层;
2-3)湿法腐蚀去掉氮化硅侧墙。
9.如权利要求8所述的制备方法,其特征在于,步骤2-2)中衬底的刻蚀深度为5~50nm。
10.如权利要求7所述的制备方法,其特征在于,步骤2-2)采用湿氧氧化、氢氧合成氧化或等离子体氧化,使Fin条与衬底之间的半导体完全被氧化。
CN201710156386.9A 2017-03-16 2017-03-16 一种鳍式场效应晶体管及其制备方法 Pending CN106898553A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156386.9A CN106898553A (zh) 2017-03-16 2017-03-16 一种鳍式场效应晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156386.9A CN106898553A (zh) 2017-03-16 2017-03-16 一种鳍式场效应晶体管及其制备方法

Publications (1)

Publication Number Publication Date
CN106898553A true CN106898553A (zh) 2017-06-27

Family

ID=59192294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156386.9A Pending CN106898553A (zh) 2017-03-16 2017-03-16 一种鳍式场效应晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN106898553A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376709A (zh) * 2018-03-12 2018-08-07 北京大学 一种插入倒t形介质层的鳍式场效应晶体管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates
US20040075122A1 (en) * 2002-10-22 2004-04-22 Ming-Ren Lin Double and triple gate MOSFET devices and methods for making same
CN105826381A (zh) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075122A1 (en) * 2002-10-22 2004-04-22 Ming-Ren Lin Double and triple gate MOSFET devices and methods for making same
US6611029B1 (en) * 2002-11-08 2003-08-26 Advanced Micro Devices, Inc. Double gate semiconductor device having separate gates
CN105826381A (zh) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOYAN XU, RUNSHENG WANG,ETAL: "High-Performance BOI FinFETs Based", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108376709A (zh) * 2018-03-12 2018-08-07 北京大学 一种插入倒t形介质层的鳍式场效应晶体管及其制备方法

Similar Documents

Publication Publication Date Title
US10431671B2 (en) Fin field-effect transistor
CN100481514C (zh) 具有变细的下本体部分的非平面器件及制造方法
US7154118B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US9153657B2 (en) Semiconductor devices comprising a fin
JP2014131085A (ja) トリゲート・デバイス及び製造方法
CN101777499B (zh) 一种基于平面工艺自对准制备隧穿场效应晶体管的方法
US9356124B2 (en) Method for fabricating multi-gate structure device with source and drain having quasi-SOI structure
WO2015089952A1 (zh) 制备准soi源漏多栅器件的方法
CN102769033A (zh) 具有高击穿电压的hemt及其制造方法
CN106952959A (zh) 一种锗硅沟道鳍式场效应晶体管及其制备方法
CN103515283B (zh) 半导体器件制造方法
CN104465376B (zh) 晶体管及其形成方法
US10347629B2 (en) FinFET device
CN106898553A (zh) 一种鳍式场效应晶体管及其制备方法
WO2023071284A1 (zh) 沟槽栅半导体器件及其制造方法
WO2005074035A1 (ja) 電界効果型トランジスタおよびその製造方法
CN106898643B (zh) 一种高迁移率沟道双纳米线场效应晶体管及其制备方法
CN106098783B (zh) 一种鳍式场效应晶体管及其制备方法
CN107910362A (zh) 一种抗总剂量辐射的FinFET器件及其制备方法
TWI511305B (zh) 蕭特基整流元件之製造方法
CN108305830A (zh) 半导体结构及其形成方法
CN109148580B (zh) 一种FinFET器件及其制作方法
CN113380627B (zh) 一种ldmos晶体管及其形成方法
CN109817721A (zh) 半导体器件及其制造方法及包括该器件的电子设备
CN207116439U (zh) 新型沟槽式碳化硅mos管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170627