CN113088350A - 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法 - Google Patents

以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法 Download PDF

Info

Publication number
CN113088350A
CN113088350A CN202110392549.XA CN202110392549A CN113088350A CN 113088350 A CN113088350 A CN 113088350A CN 202110392549 A CN202110392549 A CN 202110392549A CN 113088350 A CN113088350 A CN 113088350A
Authority
CN
China
Prior art keywords
eutectic solvent
deep eutectic
raw material
situ
biodiesel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110392549.XA
Other languages
English (en)
Inventor
向程
曾格
赵双
张思雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiujiang University
Original Assignee
Jiujiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiujiang University filed Critical Jiujiang University
Priority to CN202110392549.XA priority Critical patent/CN113088350A/zh
Publication of CN113088350A publication Critical patent/CN113088350A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • C11B1/106Production of fats or fatty oils from raw materials by extracting using ultra-sounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法。该技术方案中,深度共熔溶剂由四丁基氯化铵和草酸共混加热后制得,作为季铵盐的四丁基氯化铵,具有相转移能力,因其结构、极性与原料油脂相近,故可以轻松将油脂从原料中萃取出来;而草酸则起到酸催化剂的作用,促进酯交换反应进行。整个反应过程中深度共熔溶剂起到了萃取剂、催化剂的作用,省去了传统工艺先萃取后催化的步骤。本发明所涉及的生物柴油生产工艺具有产品易分离,过程简单,产率高,成本较低,环境友好,易于工业化推广等优势。而且,本发明充分利用了丰富、廉价的江西栀子原料。

Description

以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声 辅助原位制备生物柴油的方法
技术领域
本发明涉及生物柴油制备技术领域,具体涉及一种以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法。
背景技术
目前,由于石油等不可再生的化石能源的过度利用,已经造成能源危机、全球变暖、环境污染等一系列关系到人类生存的重大社会问题。现在,能源和环境问题已经成为人类社会持续发展必须要解决的重要问题,为此,国内外多位研究者提出“碳中和”原则,其核心是通过多重手段抵消人类生产、生活过程产生的二氧化碳。而采用可再生的清洁能源,成为实现碳中和原则的重要手段。世界各国在开发新能源时,首先考虑的是该能源是否环保,其次是是否具有可开发价值。风能、太阳能、地热能,生物质能都是目前各国研究的热点。
生物柴油属于生物质能,其主要成分是各类脂肪酸甲/乙酯。目前,生物柴油主要以油料作物、废弃油脂为原料,通过酯交换反应制得。与化石柴油相比,生物柴油燃烧后可减少78%二氧化碳的排放、90%的颗粒排放物及碳氧化合物;燃烧能更加充分,噪声更小,排放的气体无异味;可减少硫化物、铅等有毒物质的排放,达到保护环境的目的。因此生物柴油在性能上可以替代目前广泛使用的石化柴油。生物柴油产业在我国具有巨大的发展潜力,发展生物柴油,符合我国绿色能源战略,有利于保障我国能源安全,有利于减少温室气体排放和保护生态环境。
目前制约生物柴油大规模应用的主要问题是成本过高。因此,寻找廉价的生物柴油原料,节省生产成本,有利于生物柴油的大规模生产。
江西是我国栀子四大道产地之一,为了提高江西栀子的竞争力,除提高其作为中药原料的品质之外,还需要进一步挖掘其他利用价值。根据分析江西栀子含有18%左右的油脂,适合作为生物柴油的潜在原料。
现有的生物柴油生产工艺可分为为物理法、化学法和生物法,其核心均为先萃取再反应的两步法工艺。物理法又分为“直接混合法”与“微乳化法”。物理法虽然方法简单,设备要求低,但产品质量差,燃烧过程中还存在严重的发动机积碳、润滑油污染等问题,不适合大规模推广。化学法有“高温热裂解法”和“酯交换法”,高温热裂解法主要产物为生物汽油和少量的生物柴油。酯交换法主要产物为生物柴油和甘油,酯交换法又可以分为催化法和非催化法,催化法又分为酸/碱催化法。虽然酸/碱催化法工艺成熟,但产品分离困难,催化剂回收不容易,容易造成环境污染且能耗高。若用能溶于反应物的液体酸或者碱做催化剂,反应可在均相中进行,反应速率快,但催化剂不能回收,而且对设备会造成腐蚀。固体酸催化剂虽然可以克服腐蚀和回收问题,但反应在多相条件下进行,速率慢,而且催化剂本身成本提高,虽然近几年开发出了新型的酸/碱催化剂,但仍没有很好的解决上述问题。生物法主要是以脂肪酶为催化剂制备生物柴油,尽管反应条件温和、产率高。但游离酶不能重复利用,而固定化脂肪酶价格昂贵,反应时间长,转化率较低同时酶容易受污染失活。综上,因此将油脂萃取与反应耦合的原位催化生产法越来越受到研究人员的关注。
发明内容
本发明旨在针对现有技术的技术缺陷,提供一种以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,以解决常规制备方法的工艺复杂、分离困难、产率低、成本高等技术问题。
本发明要解决的另一技术问题是,如何拓展江西栀子的资源化利用方法。
为实现以上技术目的,本发明采用以下技术方案:
以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,包括以下步骤:将干燥的江西栀子粉末与短链醇、深度共熔溶剂 /正己烷溶液混合,在超声环境中反应,对反应产物进行固液分离,取液相,静置分层,分别得到正己烷相和甘油相,对所述正己烷相进行减压蒸馏回收正己烷,得到生物柴油。
作为优选,还包括以下步骤:对所述甘油相进行减压蒸馏回收短链醇。
作为优选,所述江西栀子粉末是由以下方法制备的:将江西栀子原料经灭菌、洗净、干燥、粉碎,得到所述江西栀子粉末。进一步优选的,所述灭菌是高温高压灭菌;所述洗净是用去离子水洗;所述干燥是采用真空干燥;所述粉碎是采用粉碎机粉碎。
作为优选,所述深度共熔溶剂的成分包括四丁基氯化铵和草酸。
作为优选,所述深度共熔溶剂是由以下方法制备的:将四丁基氯化铵与草酸混合后加热搅拌,而后真空干燥。
作为优选,所述深度共熔溶剂是由以下方法制备的:将四丁基氯化铵与草酸按摩尔比1:1混合,而后以45℃、100r/min的条件恒温加热搅拌,直至溶液呈无色透明,而后以60℃的温度真空干燥36h,最后密封干燥保存;进一步优选的,所述恒温加热搅拌是在集热式磁力搅拌器上进行的,所述真空干燥是在真空干燥箱中进行的。
作为优选,所述短链醇为甲醇或乙醇。
作为优选,所述短链醇摩尔量是所述江西栀子粉末中所含油脂的摩尔量的 5~25倍;进一步优选的,醇油比为10:1。
作为优选,所述深度共熔溶剂/正己烷溶液与所述江西栀子粉末的用量比为 2:1~10:1mL:g;进一步优选的,该比值为6:1mL:g。
作为优选,所述深度共熔溶剂的质量为所述江西栀子粉末质量的5~15%;进一步优选的,该比例为9%。
作为优选,所述反应的温度为30~60℃;进一步优选的,反应温度为50℃。
作为优选,所述反应的时间为20~60min;进一步优选的,反应时间为50min。
作为优选,所述超声环境是由超声波发生设备构建的,所述超声波发生设备的功率为180w。
作为优选,所述超声波发生设备是超声波清洗器。
作为优选,所述反应是在圆底烧瓶中进行的,所述圆底烧瓶上安装有冷凝回流装置。
作为优选,所述固液分离是在反应产物冷却至室温后进行的。
作为优选,所述固液分离方法为过滤。
作为优选,所述过滤是采用布氏漏斗分离。
作为优选,所述静置分层的时间为30~60min。
作为优选,所述减压蒸馏为旋转。
作为优选,所述旋转的温度为60~70℃,真空度为0.1MPa。
本发明提供了一种以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法。该技术方案在深度共熔溶剂/正己烷体系中通过萃取-酯交换耦合原位制备生物柴油,此工艺克服了现有原位技术的不足,所获得的生物柴油易分离,过程简单,产率高,成本较低,环境友好,易于工业化推广。而且,本发明充分利用了丰富、廉价的江西栀子原料,为栀子原料的再利用提供了一种新的途径。
本发明的技术优势集中体现在以下方面:
(1)本发明工艺针对目前生物柴油生产中原料成本过高的问题,采用江西栀子为原料,其单价仅为0.4元/kg,极大的降低了原料的处理成本,不仅实现了栀子的再利用,还降低了整个工艺的成本。
(2)本发明所用深度共熔溶剂是由四丁基氯化铵和草酸共混加热后制得。作为季铵盐的四丁基氯化铵,具有相转移能力,因其结构、极性与原料油脂相近,故可以轻松将油脂从原料内部萃取出来;而草酸则起到了酸催化剂的作用,促进酯交换反应进行。整个反应过程中深度共熔溶剂起到了萃取剂、催化剂的作用。省去了传统工艺先萃取后催化的步骤。
(3)得到的生物柴油被萃取至正己烷相后,进一步促进反应正向进行。整个工艺过程中,反应原料及过程低毒,过程操作简单,成本较低,生产的柴油纯度高。
(4)本发明工艺可实现一边反应一边分离,设备技术灵活及经济性好,能够实现生产过程的连续化,适合工业化发展。
附图说明
图1是本发明的工艺流程图。
具体实施方式
以下将对本发明的具体实施方式进行详细描述。为了避免过多不必要的细节,在以下实施例中对属于公知的结构或功能将不进行详细描述。以下实施例中所使用的近似性语言可用于定量表述,表明在不改变基本功能的情况下可允许数量有一定的变动。除有定义外,以下实施例中所用的技术和科学术语具有与本发明所属领域技术人员普遍理解的相同含义。
以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,如图1所示,包括以下步骤:
(1)将江西栀子原料经灭菌、洗净、干燥、粉碎,得到栀子粉末原料;
(2)制备深度共熔溶剂;
(3)将栀子粉末与短链醇置于圆底烧瓶中,并加入一定量的深度共熔溶剂/ 正己烷溶液,将烧瓶放入超声反应器中,随后安装好冷凝回流装置;
(4)启动超声波清洗器,通过控制面板设置反应参数,待达到设定值后,按下超声开关,开始反应;
(5)反应结束后,关闭超声反应器,待冷却至室温后,拆除冷凝回流装置,取出圆底烧瓶;
(6)过滤反应后的混合物,弃去原料残渣,静置液相混合物直至分层,得到富含生物柴油的正己烷相和含有未反应的甲醇的甘油相,对分离得到的正己烷相进行减压蒸馏以回收正己烷,得到生物柴油。对甘油相进行减压蒸馏以回收短链醇。
实施例1
以江西栀子为原料在深度共熔溶剂/正己烷体系中萃取-酯交换耦合原位制备生物柴油,具体包括如下步骤:
(1)将江西栀子原料经高压灭菌,去离子水水洗,真空干燥,粉碎机粉碎得到江西栀子粉末原料;
(2)在250ML圆底烧瓶中,加入30g江西栀子粉末,醇油比为10:1,180ml 深度共熔溶剂/正己烷混合溶液,其中DES2.7g。安装好冷凝装置后,放入超声反应器中;
(3)启动超声反应器加热装置,设定反应温度30℃。达到设定值后,启动超声开关,开始反应;
(4)反应终止,等待烧瓶冷却至常温,卸下冷凝回流装置,取出反应所产生的固体剩余物及富含生物柴油等稳定组分的水相混合物,过滤除去固体剩余物,静置水相混合物,分层后用分液漏斗分离富含生物柴油的正己烷相,水洗3次, 70℃旋蒸回收正己烷得到粗生物柴油产品。
(5)水洗含有未反应甲醇的甘油相,水洗3次,60°旋蒸回收甲醇得到粗甘油。
取样品进GC分析,以月硅酸甲酯为内标物测定生物柴油中脂肪酸甲酯的含量;以甲醇的消耗量测定油脂的转化率。
实施例2
以江西栀子为原料在深度共熔溶剂/正己烷体系中萃取-酯交换耦合原位制备生物柴油,具体包括如下步骤:
(1)将江西栀子原料经高压灭菌,去离子水水洗,真空干燥,粉碎机粉碎得到江西栀子粉末原料
(2)在250ML圆底烧瓶中,加入30g江西栀子粉末,醇油比10:1,180ml 深度共熔溶剂/正己烷混合溶液,其中DES 2.7g。安装好冷凝装置后,放入超声反应器中;
(3)启动超声反应器加热装置,设定反应温度40℃。达到设定值后,启动超声开关,开始反应;
(4)反应终止,等待烧瓶冷却至常温,卸下冷凝回流装置,取出反应所产生的固体剩余物及富含生物柴油等稳定组分的水相混合物,过滤除去固体剩余物,静置水相混合物,分层后用分液漏斗分离富含生物柴油的正己烷相,水洗3次, 70℃旋蒸回收正己烷得到粗生物柴油产品。
(5)水洗含有未反应甲醇的甘油相,水洗3次,60°旋蒸回收甲醇得到粗甘油。
取样品进GC分析,以月硅酸甲酯为内标物测定生物柴油产率;以甲醇的消耗量测定油脂的转化率。
实施例3
以江西栀子为原料在深度共熔溶剂/正己烷体系中萃取-酯交换耦合原位制备生物柴油,具体包括如下步骤:
(1)将江西栀子原料经高压灭菌,去离子水水洗,真空干燥,粉碎机粉碎得到江西栀子粉末原料;
(2)在250ML圆底烧瓶中,加入30g江西栀子粉末,醇油比为10:1,180ml 深度共熔溶剂/正己烷混合溶液,其中DES2.7g。安装好冷凝装置后,放入超声反应器中;
(3)启动超声反应器加热装置,设定反应温度50℃。达到设定值后,启动超声开关,开始反应;
(4)反应终止,等待烧瓶冷却至常温,卸下冷凝回流装置,取出反应所产生的固体剩余物及富含生物柴油等稳定组分的水相混合物,过滤除去固体剩余物,静置水相混合物,分层后用分液漏斗分离富含生物柴油的正己烷相,水洗3次, 70℃旋蒸回收正己烷得到粗生物柴油产品。
(5)水洗含有未反应甲醇的甘油相,水洗3次,60°旋蒸回收甲醇得到粗甘油。
取样品进GC分析,以月硅酸甲酯为内标物测定生物柴油中脂肪酸甲酯的含量;以甲醇的消耗量测定油脂的转化率。
实施例4
以江西栀子为原料在深度共熔溶剂/正己烷体系中萃取-酯交换耦合原位制备生物柴油,具体包括如下步骤:
(1)将江西栀子原料经高压灭菌,去离子水水洗,真空干燥,粉碎机粉碎得到江西栀子粉末原料;
(2)在250ML圆底烧瓶中,加入30g江西栀子粉末,醇油比10:1,180ml 深度共熔溶剂/正己烷混合溶液,其中DES2.7g。安装好冷凝装置后,放入超声反应器中;
(3)启动超声反应器加热装置,设定反应温度60℃。达到设定值后,启动超声开关,开始反应;
(4)反应终止,等待烧瓶冷却至常温,卸下冷凝回流装置,取出反应所产生的固体剩余物及富含生物柴油等稳定组分的水相混合物,过滤除去固体剩余物,静置水相混合物,分层后用分液漏斗分离富含生物柴油的正己烷相,水洗3次, 70℃旋蒸回收正己烷得到粗生物柴油产品。
(5)水洗含有未反应甲醇的甘油相,水洗3次,60°旋蒸回收甲醇得到粗甘油。
取样品进GC分析,以月硅酸甲酯为内标物测定生物柴油中脂肪酸甲酯的含量;以甲醇的消耗量测定油脂的转化率。
实施例5
以江西栀子为原料在深度共熔溶剂/正己烷体系中萃取-酯交换耦合原位制备生物柴油,具体包括如下步骤:
(1)将江西栀子原料经高压灭菌,去离子水水洗,真空干燥,粉碎机粉碎得到江西栀子粉末原料;
(2)在250ML圆底烧瓶中,加入30g江西栀子粉末,醇油比10:1,180ml 深度共熔溶剂/正己烷混合溶液,其中DES2.7g。安装好冷凝装置后,放入超声反应器中;
(3)启动超声反应器加热装置,设定反应温度70℃。达到设定值后,启动超声开关,开始反应;
(4)反应终止,等待烧瓶冷却至常温,卸下冷凝回流装置,取出反应所产生的固体剩余物及富含生物柴油等稳定组分的水相混合物,过滤除去固体剩余物,静置水相混合物,分层后用分液漏斗分离富含生物柴油的正己烷相,水洗3次, 70℃旋蒸回收正己烷得到粗生物柴油产品。
(5)水洗含有未反应甲醇的甘油相,水洗3次,60°旋蒸回收甲醇得到粗甘油。
取样品进GC分析,以月硅酸甲酯为内标物测定生物柴油中脂肪酸甲酯的含量;以甲醇的消耗量测定油脂的转化率。
实施例1~5得到的柴油产品中脂肪酸甲酯的产量以及油脂的转化率分别如表1和表2所示。
表1产物中脂肪酸甲酯的产量
Figure BDA0003017315930000081
表2油脂的转化率
Figure BDA0003017315930000082
由表1及表2结果可知,随着温度和压力的升高,江西栀子中油脂的转化率和生物柴油的得率也逐步升高。当温度从20℃升温至60℃时,油脂转化率和生物柴油得率增长迅速。这是因为随着温度增长,DES对油脂的萃取能力和催化酯交换反应的能力快速增长。当温度从60℃增长至70℃时,两者的增长速率有了一定的下降。这是因为随着温度的持续增长,超过了反应物的甲醇和萃取剂正己烷的沸点,使反应速率和萃取效率降低。造成了生物柴油得率的下降。尽管 DES对油脂的萃取能力并不受到影响,但作为反应物的甲醇,剧烈气化导致其转化率也同步下降。
以上对本发明的实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,并不用以限制本发明。凡在本发明的申请范围内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于包括以下步骤:将干燥的江西栀子粉末与短链醇、深度共熔溶剂/正己烷溶液混合,在超声环境中反应,对反应产物进行固液分离,取液相,静置分层,分别得到正己烷相和甘油相,对所述正己烷相进行减压蒸馏回收正己烷,得到生物柴油。
2.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,还包括以下步骤:对所述甘油相进行减压蒸馏回收短链醇。
3.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述江西栀子粉末是由以下方法制备的:将江西栀子原料经灭菌、洗净、干燥、粉碎,得到所述江西栀子粉末。
4.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述深度共熔溶剂是由以下方法制备的:将四丁基氯化铵与草酸混合后加热搅拌,而后真空干燥。
5.根据权利要求4所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述深度共熔溶剂是由以下方法制备的:将四丁基氯化铵与草酸按摩尔比1:1混合,而后以45℃、100r/min的条件恒温加热搅拌,直至溶液呈无色透明,而后以60℃的温度真空干燥36h,最后密封干燥保存。
6.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述短链醇为甲醇或乙醇。
7.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所用短链醇的摩尔量是江西栀子粉末中所含油脂的摩尔量的5~25倍。
8.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述深度共熔溶剂/正己烷溶液与所述江西栀子粉末的用量比为2:1~10:1mL:g。
9.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述深度共熔溶剂的质量为所述江西栀子粉末质量的5~15%。
10.根据权利要求1所述的以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法,其特征在于,所述反应的温度为30~60℃,反应的时间为20~60min。
CN202110392549.XA 2021-04-13 2021-04-13 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法 Pending CN113088350A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110392549.XA CN113088350A (zh) 2021-04-13 2021-04-13 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110392549.XA CN113088350A (zh) 2021-04-13 2021-04-13 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法

Publications (1)

Publication Number Publication Date
CN113088350A true CN113088350A (zh) 2021-07-09

Family

ID=76676484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110392549.XA Pending CN113088350A (zh) 2021-04-13 2021-04-13 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法

Country Status (1)

Country Link
CN (1) CN113088350A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525561A (zh) * 2013-10-12 2014-01-22 盐城师范学院 一种低共熔体系中制备生物柴油的方法
CN112094700A (zh) * 2020-09-16 2020-12-18 上海理工大学 一种超声辅助深度共熔溶剂酶法制备生物柴油的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103525561A (zh) * 2013-10-12 2014-01-22 盐城师范学院 一种低共熔体系中制备生物柴油的方法
CN112094700A (zh) * 2020-09-16 2020-12-18 上海理工大学 一种超声辅助深度共熔溶剂酶法制备生物柴油的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李真真等: "酸性低共熔溶剂催化葵花籽油甲酯化反应研究", 《河南工业大学学报》 *
牟涛等: "《绿色化学》", 30 June 2018, 天津科学技术出版社 *

Similar Documents

Publication Publication Date Title
Li et al. Solid superacid catalyzed fatty acid methyl esters production from acid oil
EP2390014B1 (en) Method for recovering and producing ethanol and oil
CN100569914C (zh) 一种利用高酸值油脂生产生物柴油的方法
CN100510008C (zh) 微波辅助路易斯碱催化制备生物柴油的方法
CN101906355A (zh) 一种利用餐厨垃圾回收油制取生物柴油的方法
Liu et al. Acidic deep eutectic solvents with long carbon chains as catalysts and reaction media for biodiesel production
CN101249449A (zh) 新型固体碱催化剂及其在生物柴油合成中的应用
CN102876465A (zh) 利用餐厨废弃油脂制备生物柴油的方法
CN101249431A (zh) 一种新型固体碱催化剂及其在生物柴油合成中的应用
CN108949249B (zh) 以酱油渣为原料在超临界二氧化碳体系中萃取-酯交换一锅法制备生物柴油的工艺
CN102824928B (zh) 一种用于制备生物柴油的固体酸催化剂及其制备方法与应用
CN101205473B (zh) 煅烧硅酸钠催化制备生物柴油
CN1810931A (zh) 微波法制备生物柴油的方法
CN101497805A (zh) 超临界法酸化固体催化制备生物柴油的方法
CN100523131C (zh) 用废油制备生物柴油的酯化反应工艺
CN104450668A (zh) 一种用于餐厨废油转化生物柴油的生物炭固定化酶及其制备方法
CN101104810A (zh) 一种生物柴油的制备方法
CN113088350A (zh) 以江西栀子为原料在深度共熔溶剂/正己烷体系中通过超声辅助原位制备生物柴油的方法
CN101148599B (zh) 一种利用高酸值废弃动植物油脂制备生物柴油的方法
CN100523130C (zh) 一种硅酸盐催化制备生物柴油的方法
CN102492558A (zh) 一种在离子液体中制备生物柴油的方法
CN101249454A (zh) 固体碱催化剂及其在制备生物柴油中的应用
CN101805381A (zh) 一种由生物柴油和蔗糖直接合成蔗糖脂肪酸酯的方法
CN101249450A (zh) 一种固体碱催化剂及其在生物柴油合成中的应用
CN101982541A (zh) 一种联合生产生物柴油和乳酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210709

RJ01 Rejection of invention patent application after publication