CN113083327A - 一种铜基异质中空纳米管材料的制备方法 - Google Patents

一种铜基异质中空纳米管材料的制备方法 Download PDF

Info

Publication number
CN113083327A
CN113083327A CN202110365729.9A CN202110365729A CN113083327A CN 113083327 A CN113083327 A CN 113083327A CN 202110365729 A CN202110365729 A CN 202110365729A CN 113083327 A CN113083327 A CN 113083327A
Authority
CN
China
Prior art keywords
copper
nanowires
preparation
solution
based heterogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110365729.9A
Other languages
English (en)
Other versions
CN113083327B (zh
Inventor
李文江
赵志巍
闫秀珍
曲承玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Ruixin New Material Research Institute Co ltd
Original Assignee
Zhejiang-California International NanoSystems Institute Taizhou Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang-California International NanoSystems Institute Taizhou Branch filed Critical Zhejiang-California International NanoSystems Institute Taizhou Branch
Priority to CN202110365729.9A priority Critical patent/CN113083327B/zh
Publication of CN113083327A publication Critical patent/CN113083327A/zh
Application granted granted Critical
Publication of CN113083327B publication Critical patent/CN113083327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种以铜纳米线为模板制备铜基异质纳米管的制备方法。该方法主要包括以下步骤:将烷基胺、铜盐、葡萄糖和水混合,得到混合乳液,室温搅拌6‑12h,在100~200℃水热条件下反应12‑36h,得到长径比较大的铜纳米线;将铜纳米线分散到异丙醇中,加入适量硫化物碱性溶液,超声1‑15min,在100~200℃水热条件下反应1‑10h。用该方法生产的纳米管直径在20‑60nm,样品均匀,多元复合,具有十分广阔的前景,例如光催化降解有机物、电催化析氢和传感器等。

Description

一种铜基异质中空纳米管材料的制备方法
技术领域
本发明属于纳米材料领域,尤其是一种铜基异质中空纳米管材料的制备方法。
背景技术
无机纳米管结合了中空和一维的独特特性,表现出一系列优异的性能,例如其表面体积比增大和外径较窄,可缩短传输路径和高活性位点等。因此,它们在催化、能量转换和存储、化学和生物传感器以及分离系统中都有潜在的应用。
目前,合成中空纳米或者微米级结构的方法包括三大类:硬模板法、软模板法、自模板法。其中硬模板法合成方法简单,用途广泛,各种线形一维模板是通过硬模板法制备该种特殊结构材料的有效方法。可以用金属纳米线、金属氧化物纳米线、金属碳化物等多种无机纳米线作为硬模板参与材料的合成,最终转变成材料的一部分而形成复合结构。
经检索发现如下几篇公开的专利及文献:
CN 108178181 A的中国发明专利公开了一种在合成的铜纳米的基础上进一步硫化得到中空管状CuS纳米材料。该材料首先采用硝酸铜、乙二胺、水合肼为原料制备纳米线,Na2S·9H2O为硫源进行硫化处理,得到中空结构。
CN 108975414A的中国发明专利公开了一种在铜纳米线表面包覆一层碳,以形成的碳层为模板,以水或纯溶液作为反应介质吸附金属离子,通过煅烧去除模板得到以氧化铜为内核,金属氧化物为外壳的中空管状材料。
文献(Applied Surface Science 2019,47,966-971)报道了一种表面无碳层包覆铜纳米线为模板,通过硫化制备Cu/Cu2OxS1-x纳米管结构,粗糙和中空的纳米结构确保样品与电解质进一步接触,表现出优异的电催化析氢性能。
经分析,上述专利文献体现了近年来中空纳米或微米结构的发展状况,其相关科研项目受到了研究者的极大关注。然而无机纳米管的组分、制备过程、均匀程度均有待改善,现有技术上还有待改进和发展。
发明内容
本发明的目的在于克服现有技术不足,提供一种制备过程较优化、管状结构较均匀,一维管状材料更长,内径较小的铜基异质中空纳米管材料的制备方法。
本发明采用的技术方案是:
一种以铜纳米线为模板制备铜基异质纳米管的制备方法,包括步骤:
⑴将烷基胺、铜盐、葡萄糖加入到去离子水中,室温下搅拌6-12h后,在100-200℃水热条件下反应10-36h;反应结束后,待反应冷却后离心分离,用去离子水、异丙醇和正己烷交叉洗涤,得到铜纳米线产品,然后分散在异丙醇溶剂中;
⑵取适量的硫化物分散在去离子水中,超声均匀,得到硫化物溶液;
⑶将步骤⑴中分散在异丙醇溶剂的铜纳米线溶液与步骤⑵中分散在去离子水中的硫化钠溶液混合,超声均匀后,在100-200℃水热条件下反应1-10h,反应结束后样品用去离子水和无水乙醇依次离心洗涤,得到铜纳米线为内核,Cu2O/Cu2S异质结为外壳的中空纳米管材料。
而且,步骤⑴中所得的铜纳米线产品直径为20~60nm,长度在几十至几百微米。
而且,步骤⑴中,所述烷基胺:葡萄糖:铜盐=3.6~6mmol:0.6~1mmol:0.6~1mmol(摩尔比),所述超纯水体积为50~70ml。
而且,步骤⑴中,所述铜纳米线产品与异丙醇溶剂混合后的溶液浓度为0.5~20g/L。
而且,步骤⑵中,所述硫化物为硫化钠、硫脲、硫代乙酰胺或硫代硫酸钠,硫化物溶液为碱性溶液。
而且,步骤⑵中,所述硫化物溶液的浓度为0.01~0.3mol/L。
而且,步骤⑶中,所述铜纳米线溶液与硫化物溶液的体积比为1:1~30。
本发明的优点和积极效果为:
本发明提供的铜纳米线材料是通过简单的一步水热法制得,控制烷基胺和葡萄糖的量调节铜纳米线的生长方向;在混合溶液中,烷基胺既作为封端剂又作为络合剂,烷基胺与铜离子络合形成络合物,葡萄糖进行还原;同时烷基胺作为封端剂沿轴线的方向诱导Cu晶体的取向生长。
本发明中,由于铜纳米线中Cu2+和硫化物中的S2-扩散速度不同而产生的Kirkendall效应,从而形成管状结构;同时由于硫化钠溶液为强碱性溶液,对铜纳米线存在刻蚀作用,导致表面被刻蚀为粗糙结构。该中空纳米管具有复合组分协同作用的多功能效应。所制备的空心纳米结构中在能源领域及环境治理方面具有广阔的应用前景,例如:作为电催化材料用于析氢反应(HER)、光催化及降解污染物等。
附图说明
图1a为本发明实施例1制备中的铜纳米线的SEM图;
图1b为图1的局部放大图;
图2a为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的SEM图;
图2b为图2的局部放大图;
图3a为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的TEM图;
图3b为图3的局部放大图;
图4为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的能谱图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
实施例1
本实施例铜基异质中空纳米管材料的制备方法,包括以下步骤:
(1)称取1.078g十八烷基胺(ODA),0.1585g葡萄糖,0.1364g CuCl2·2H2O,60ml去离子水,置于150ml锥形瓶中,室温下800rpm磁力搅拌6h;将天蓝色的混合溶液转移至100ml反应釜中,置于鼓风干燥箱中于120℃下反应24h;样品冷却至室温后,用离心机离心洗涤,分别用去离子水、正己烷和异丙醇洗涤多次,得到铜纳米线;
(2)将铜纳米线分散至10mL异丙醇中,超声均匀,得到铜纳米线溶液;
(3)称取2.4gNa2S·9H2O,溶解于40mL去离子水中,超声分散,得到硫化钠溶液;
(4)将(2)(3)溶液混合,转移至100mL反应釜中,置于鼓风干燥箱中于120℃下反应2h,样品冷却至室温后,用离心机离心洗涤,分别用去离子水、乙醇洗涤多次,置于60℃真空干燥箱干燥6h。
测试结果:本实施例所制得的铜纳米线如图所示,从图中可以看出纳米线直径在40-50nm左右,尺寸比较均匀,其表面包覆有ODA;本实施例制得的Cu/Cu2O/Cu2S中空纳米管材料如图所示,直径40-50nm,其内核为铜纳米线,外壳为Cu2O/Cu2S异质结,而且分布均匀。
图1为本发明实施例1制备中的铜纳米线的SEM图;图2为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的SEM图;图3为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的TEM图;图4为本发明实施例1制备中的Cu/Cu2O/Cu2S中空纳米材料的能谱图,实施例2-4制备的铜基异质中空纳米管材料结构与实施例制备的基本相同。
由图1知,本发明制备的铜纳米线线径均匀、长度几十微米,长径比可达700~1000;由图2-4可以看出,由于使用类似工业反应釜的反应器,因而很容易扩大规模,应用于工业化规模的大量生产。
实施例2
本实施例铜基异质中空纳米管材料的制备方法,包括以下步骤:
(1)称取1.078g十八烷基胺(ODA),0.18g葡萄糖,0.15g CuCl2·2H2O,60ml去离子水,置于150ml锥形瓶中,室温下800rpm磁力搅拌12h;将天蓝色的混合溶液转移至100ml反应釜中,置于鼓风干燥箱中于120℃下反应20h;样品冷却至室温后,用离心机离心洗涤,分别用去离子水、乙醇和异丙醇洗涤多次,得到铜纳米线;
(2)将铜纳米线分散至10mL去离子水中,超声均匀,得到铜纳米线溶液;
(3)称取2.4gNa2S·9H2O,溶解于40mL去离子水中,超声分散,得到硫化钠溶液;
(4)将(2)(3)溶液混合,转移至100mL反应釜中,置于鼓风干燥箱中于120℃下反应4h,样品冷却至室温后,用离心机离心洗涤,分别用去离子水、乙醇洗涤多次,置于60℃真空干燥箱干燥6h。
实施例3
本实施例铜基异质中空纳米管材料的制备方法,包括以下步骤:
(1)称取1.078g十八烷基胺(ODA),0.1708g葡萄糖,0.1364g CuCl2·2H2O,60ml去离子水,置于150ml锥形瓶中,室温下800rpm磁力搅拌12h;将天蓝色的混合溶液转移至100ml反应釜中,置于鼓风干燥箱中于120℃下反应20h;样品冷却至室温后,用离心机离心洗涤,分别用去离子水、乙醇和异丙醇洗涤多次。
(2)将铜纳米线分散至20mL去离子水中,超声均匀,得到铜纳米线;
(3)称取1.2gNa2S·9H2O,溶解于30mL去离子水中,超声分散,得到硫化钠溶液;
(4)将(2)(3)溶液混合,转移至100mL反应釜中,置于鼓风干燥箱中于120℃下反应6h,样品冷却至室温后,用离心机离心洗涤,分别用去离子水、乙醇洗涤多次,置于60℃真空干燥箱干燥6h。
尽管为说明目的公开了本发明的实施例,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例所公开的内容。

Claims (7)

1.一种以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:包括如下步骤:
⑴将烷基胺、铜盐、葡萄糖加入到去离子水中,室温下搅拌6-12h后,在100-200℃水热条件下反应10-36h;反应结束后,待反应冷却后离心分离,离心分离的纳米线用去离子水、异丙醇和正己烷交叉洗涤,得到铜纳米线产品,分散在异丙醇溶剂中,得到铜纳米线溶液;
⑵将硫化物分散在在去离子水中,超声均匀,得到硫化物溶液;
⑶将步骤⑴中分散在异丙醇溶剂的铜纳米线溶液与步骤⑵中分散在在去离子水中的硫化钠溶液混合,超声均匀后,在100-200℃水热条件下反应1-10h,反应结束后样品用去离子水和无水乙醇依次离心洗涤,得到铜纳米线为内核,Cu2O/Cu2S异质结为外壳的中空纳米管材料。
2.根据权利要求1所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑴中所得的铜纳米线直径为20~60nm。
3.根据权利要求1所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑴中,所述烷基胺:葡萄糖:铜盐=3.6~6mmol:0.6~1mmol:0.6~1mmol,所述超纯水体积为50~70ml。
4.根据权利要求1所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑴中,所述铜纳米线溶液的浓度为0.5~20g/L。
5.根据权利要求1所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑵中,所述硫化物溶液为硫化钠、硫脲、硫代乙酰胺或硫代硫酸钠,所述硫化物溶液为碱性溶液。
6.根据权利要求2所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑵中,所述硫化物溶液的浓度为0.01~0.3mol/L。
7.根据权利要求6所述的以铜纳米线为模板制备铜基异质纳米管的制备方法,其特征在于:步骤⑶中,所述铜纳米线溶液与硫化物溶液的体积比为1:1~30。
CN202110365729.9A 2021-04-06 2021-04-06 一种铜基异质中空纳米管材料的制备方法 Active CN113083327B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110365729.9A CN113083327B (zh) 2021-04-06 2021-04-06 一种铜基异质中空纳米管材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110365729.9A CN113083327B (zh) 2021-04-06 2021-04-06 一种铜基异质中空纳米管材料的制备方法

Publications (2)

Publication Number Publication Date
CN113083327A true CN113083327A (zh) 2021-07-09
CN113083327B CN113083327B (zh) 2023-11-03

Family

ID=76673774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110365729.9A Active CN113083327B (zh) 2021-04-06 2021-04-06 一种铜基异质中空纳米管材料的制备方法

Country Status (1)

Country Link
CN (1) CN113083327B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192001A1 (en) * 2015-06-01 2016-12-08 Baoshan Iron & Steel Co., Ltd. Aqueous-based method of preparing metal chalcogenide nanomaterials
CN107052358A (zh) * 2016-12-14 2017-08-18 中国科学技术大学 一种铜纳米线的制备方法
CN108178181A (zh) * 2018-01-18 2018-06-19 济南大学 一种中空管状的CuS纳米材料及其制备方法
CN108470603A (zh) * 2018-04-23 2018-08-31 天津大学 一种铜纳米线透明电极的制备方法
CN109536991A (zh) * 2018-12-14 2019-03-29 天津大学 一种疏松多孔氧化亚铜材料的制备方法及氧化亚铜在电催化还原二氧化碳中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016192001A1 (en) * 2015-06-01 2016-12-08 Baoshan Iron & Steel Co., Ltd. Aqueous-based method of preparing metal chalcogenide nanomaterials
CN107052358A (zh) * 2016-12-14 2017-08-18 中国科学技术大学 一种铜纳米线的制备方法
CN108178181A (zh) * 2018-01-18 2018-06-19 济南大学 一种中空管状的CuS纳米材料及其制备方法
CN108470603A (zh) * 2018-04-23 2018-08-31 天津大学 一种铜纳米线透明电极的制备方法
CN109536991A (zh) * 2018-12-14 2019-03-29 天津大学 一种疏松多孔氧化亚铜材料的制备方法及氧化亚铜在电催化还原二氧化碳中的应用

Also Published As

Publication number Publication date
CN113083327B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon supported PdNi alloy nanoparticles on SiO 2 nanocages with enhanced catalytic performance
Wang et al. The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing
Sinha et al. Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity
Xiang et al. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction
Song et al. A green strategy to prepare metal oxide superstructure from metal-organic frameworks
CN108453265B (zh) 一种二氧化硅纳米管限域镍纳米颗粒及其制备方法
CN107649160A (zh) 一种石墨烯负载过渡族金属单分散原子催化剂及其制备方法和应用
CN101683978A (zh) 一种制备银纳米颗粒修饰的碳纳米管的方法
CN108658128B (zh) 一种具有分级结构的MoS2微纳米球的制备方法
CN106582601B (zh) 富含缺陷位的二氧化钛石墨烯复合纳米光催化剂和碳纳米管石墨烯复合碳材料的制备方法
CN101028653A (zh) 一种金属镍纳米线的化学制备方法
CN109987596A (zh) 一种空心氮掺杂碳纳米管的制备方法
CN104475078B (zh) 一种纳米稀土金属氧化物/碳纳米管复合催化剂的制备方法
CN108232213A (zh) 一种氮掺杂石墨烯-碳纳米管-四氧化三钴杂化材料及其制备方法
CN105129849A (zh) 花状二氧化钛纳米材料及其无模板制备方法
Zhang et al. One-pot method for multifunctional yolk structured nanocomposites with N-doped carbon shell using polydopamine as precursor
CN110156020A (zh) 一种碳化硅纳米管的制备方法
CN109926048B (zh) 一种单组分双活性位Cu2O-CuO纳米混相结构铜氧化物催化剂、制备方法与应用
CN114427104B (zh) 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用
CN109395719B (zh) 一种在多壁碳纳米管表面可控负载贵金属纳米材料的方法
CN113745542B (zh) 燃料电池用高铂负载量铂/碳催化剂及其制备方法
CN109745983A (zh) 一种石墨烯量子点稳定的铜纳米颗粒的制备方法及其应用
CN113083327A (zh) 一种铜基异质中空纳米管材料的制备方法
CN110339844A (zh) Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用
CN116037954B (zh) 一种金铱核壳纳米线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20231009

Address after: 221137 Pengcheng Avenue, qingshanquan Town, Jiawang District, Xuzhou City, Jiangsu Province

Applicant after: Xuzhou Ruixin New Material Research Institute Co.,Ltd.

Address before: 318001 No.618, west section of Shifu Avenue, Jiaojiang District, Taizhou City, Zhejiang Province

Applicant before: TAIZHOU BRANCH, ZHEJIANG CALIFORNIA INTERNATIONAL NANOSYSTEMS INSTITUTE

GR01 Patent grant
GR01 Patent grant