CN113058512A - 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用 - Google Patents

一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用 Download PDF

Info

Publication number
CN113058512A
CN113058512A CN202010003177.2A CN202010003177A CN113058512A CN 113058512 A CN113058512 A CN 113058512A CN 202010003177 A CN202010003177 A CN 202010003177A CN 113058512 A CN113058512 A CN 113058512A
Authority
CN
China
Prior art keywords
phase
change microcapsule
change
phase change
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010003177.2A
Other languages
English (en)
Inventor
王倩
赵彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202010003177.2A priority Critical patent/CN113058512A/zh
Publication of CN113058512A publication Critical patent/CN113058512A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种有机/无机复合壁材相变微胶囊及其制备方法与应用。该相变微胶囊包括芯材和包覆在芯材表面的囊壳,芯材为相变材料,囊壳为有机/无机复合物;其中,有机/无机复合物包括硅烷偶联剂和交联剂反应生成的有机物和无机物。该相变微胶囊通过乳液体系制备得到。本发明的微胶囊粒径尺寸能控制在微米以至亚微米尺寸,包覆率高,加热熔融无渗漏,并且制备步骤简便,设备简单易操作,成本低,可以大规模工业化生产,主要应用于电子元器件、服装、建筑、节能、以及其他工业领域的热量管理等领域。

Description

一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与 应用
技术领域
本发明属于相变储能材料领域,尤其涉及一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用。
背景技术
近些年,全球能源日益短缺,而且目前使用的主要能源不可再生,制约了经济的可持续发展。储热技术利用物质内部能量转化,通过人为干预的方式对热能进行收集、储存、运输和释放,进而实现对热能供求关系合理调控,其中,相变储热具有储热密度高、成本低、储放热过程近似于恒温和储热放热可控的特点,是最具规模化应用前景的一种储热技术。相变材料是指温度基本不变的情况下在发生相转变的同时吸收或放出大量能量的物质。利用相变材料储能(蓄冷、蓄热)可以解决能源的需求与供给之间在时间与空间上的分配不匹配,同时也能提高能源使用效率。传统的固液相变材料受热熔融流动,会对其他部件造成破坏。因此在实际应用过程中,采用“微胶囊化”法封装相变材料可以有效解决上述问题,并且还有增大传热面积、控制其体积变化的优点。近些年,越来越多种的相变微胶囊被制备出来,并在建筑、节能、纺织、军事等领域表现出了良好的应用前景,拓展了相变材料的应用领域。
相变微胶囊由相变材料囊芯和囊壳两部分组成。相变材料的囊芯起到吸收和释放热量的作用,微胶囊壳层材料用于包裹囊芯相变材料在熔融冷却多次循环过程中无泄漏。微胶囊壳层材料的种类和性质对微胶囊相变材料的性能具有更重要影响。根据相变微胶囊的囊壳分类通常可分为有机类和无机类两种。有机类壁材具有稳定性好、封装性好、韧性好等优点,但此类壁材力学性能较差,热导率低,强度低,亲水性差,尤其是阻燃性差,不适合在有阻燃要求的环境下使用。无机类壁材的阻燃性能优于有机类壁材,同时具有传热性好,耐腐蚀,强坚固性等的突出优点,可提高耐久性,有良好支撑性,并有效防止相变材料在使用过程中出现相分离以及过冷现象。但此类材料制备工艺复杂,成囊性差,封装性能差,微胶囊易破裂。复合壁材相变微胶囊是利用无机类壁材和有机类壁材逐层对相变材料进行包覆,可以结合前两者的优点,同时避免无机材料的韧性差、易破裂,有机材料易燃、残存单体等问题。
为了解决有机材料壁材易燃、单体残留问题以及无机壁材韧性差等问题,可采用无机材料和有机材料形成相变材料微胶囊复合壁材的方法,现有技术中报道的方法是无机物反应前驱体、苯乙烯类或丙烯酸酯类有机树脂单体、交联剂和引发剂溶解于熔融的相变材料,将其加入乳化剂和极性溶剂中,而后分散得到乳化液,通过聚合反应得到无机/有机复合结构。此类方法存在如下问题:(1)由于在相变材料中引入大量的单体、无机物反应前驱体,无机物反应前驱体和单体难以保证完全迁移至壳层表面;(2)分散相的相变材料中包含组分过多,批量生产过程中分散相不易实现均匀性,从而导致壳层材料均匀性差。(3)乳液液滴中加入大量前驱体和单体,占据了大量体积,导致形成胶囊壳层易变形塌陷形成碗状,在微胶囊壳层形变严重的位置容易破裂。
发明内容
本发明提供一种相变微胶囊,所述相变微胶囊包括芯材和包覆在芯材表面的囊壳,所述芯材为相变材料,所述囊壳为有机/无机复合物;
其中,所述有机/无机复合物包括硅烷偶联剂和交联剂反应生成的有机物和无机物。优选地,所述无机物包括二氧化硅。优选地,所述反应为乳液聚合反应。优选地,所述有机/无机复合物包括硅烷偶联剂和交联剂在乳化剂和引发剂存在的体系中生成的有机物和无机物。
根据本发明的实施方案,所述相变材料可以选自醇类化合物、酸类化合物、烷基酯类化合物和烷烃类化合物中的至少一种。其中,所述醇类化合物选自C8~50烷基醇中的至少一种,例如C10~30烷基醇中的至少一种。其中,所述酸类化合物选自C8~50烷基酸中的至少一种,例如C10~30烷基酸中的至少一种,示例性为月桂酸。其中,所述烷基酯类化合物选自所述醇类化合物和所述酸类化合物反应得到的烷基酯,例如所述烷基类化合物选自C3~50烷基酸与C3~50烷基醇反应得到的烷基酯,又如选自C3~30烷基酸与C3~30烷基醇反应得到的烷基酯,示例性为硬脂酸丁酯。其中,所述烷烃类化合物选自C8~100的脂肪烃,例如C10~50的脂肪烃、C12~30的脂肪烃,示例性为正十四烷、十八烷、正二十烷和石蜡中的至少一种。其中,所述石蜡的熔点为0℃~100℃,例如20~80℃。
根据本发明的实施方案,所述硅烷偶联剂可以选自至少含有一个双键的硅烷偶联剂,例如选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、γ-(甲基丙酰氧)丙基三乙氧基硅烷、3-(丙烯酰氧基)丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-(N-烯丙基氨基)丙基三甲氧基硅烷、苯乙烯-二甲基硅氧烷、苯乙烯乙基三甲基硅氧烷、异丁烯三乙氧基硅烷、3-异丁烯丙基三乙氧基硅烷、3-(异丁烯酰氧)丙基三(三甲基硅氧烷)硅烷等中的至少一种;示例性地,所述硅烷偶联剂类单体可以选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、异丁烯三乙氧基硅烷、3-(异丁烯酰氧)丙基三(三甲基硅氧烷)硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷中的至少一种。
根据本发明的实施方案,所述的交联剂选自含有不饱和键的交联剂,例如,所述交联剂选自苯乙烯类衍生物和含有双键的酯。其中,所述苯乙烯类衍生物选自二乙烯基苯、苯乙烯乙基三甲基硅氧烷、1,3-二异丙烯基苯等中的至少一种;所述含有双键的酯可以选自二甲基丙烯酸乙二醇酯、二甲基丙烯酸丙二醇酯、二甲基二丙烯酸乙二醇酯、二甲基丙烯酸丁二醇酯和二甲基丙烯酸己二醇酯等中的至少一种。示例性地,所述交联剂选自二乙烯基苯、二甲基丙烯酸乙二醇酯、二甲基二丙烯酸乙二醇酯、二甲基丙烯酸丙二醇酯或二甲基丙烯酸己二醇酯。
根据本发明的实施方案,所述相变微胶囊的粒径在0.1-500μm之间,例如粒径在0.1-200μm之间,又如1-100μm之间、2-50μm之间、5-40μm之间、10-30μm之间。
根据本发明的实施方案,所述囊壳的厚度为50nm-10μm之间,例如100nm-5μm,示例性为90nm、120nm、130nm、260nm、370nm、500nm、560nm、580nm、630nm、890nm、1μm、1.5μm、2μm、5μm。
根据本发明的实施方案,所述芯材占所述相变微胶囊质量的75-95%,例如77-93%、80-90%,示例性为77%、82%、85%、87%、88%、90%、91%、93%。
根据本发明的实施方案,所述囊壳占所述相变微胶囊质量的5-25%,例如7-23%、10-20%,示例性为7%、9%、10%、12%、13%、15%、18%、23%。
根据本发明的实施方案,所述相变微胶囊的相变温度为15-75℃,例如17-55℃、20-50℃,示例性为18℃、19℃、20℃、25℃、28℃、30℃、35℃、37℃、38℃、40℃、44℃、50℃、55℃。
根据本发明的实施方案,所述相变微胶囊的相变潜热为115-250J/g,例如120-240J/g、150-210J/g,示例性为122J/g、134J/g、152J/g、168J/g、184J/g、185J/g、189J/g、204J/g、213J/g、217.8J/g、223J/g。
根据本发明的实施方案,所述相变微胶囊的加热熔融渗漏率低于0.2%,例如低于0.1%,示例性为0.1%、0。
根据本发明的实施方案,所述相变微胶囊的焓值保有率为75-95%,例如77-93%、80-90%,示例性为77%、82%、85%、87%、88%、90%、91%、93%。
进一步地,本发明提供所述相变微胶囊的制备方法,所述方法包括如下步骤:
1)将硅烷偶联剂、交联剂溶解于熔融的相变材料中,制得分散相;
2)将乳化剂溶解于极性溶剂,制得连续相;
3)根据引发剂的溶解性,将其加入所述分散相或所述连续相中,又或者两者的混合物中;
4)步骤3)完成后,将所述分散相与所述连续相混合乳化,将得到的乳液加热至所述相变材料的熔点以上进行聚合反应,反应完成后分离反应产物,得到所述相变微胶囊。
根据本发明的实施方案,步骤1)中,所述相变材料、硅烷偶联剂和交联剂均具有如上文所述的含义。
根据本发明的实施方案,步骤1)中,所述的硅烷偶联剂的质量占所述相变材料质量的1-100%,例如为2-100%,又如5-50%,示例性为1%、5%、6%、7%、7.2%、8%、9%、10%、12%、15%、100%。
根据本发明的实施方案,步骤1)中,所述交联剂的质量占所述相变材料质量的0.1-100%,例如0.2-50%,又如0.3-10%,示例性为0.36%、0.6%、1.0%、1.2%、1.5%、3%、4.5%、100%。
根据本发明的实施方案,步骤2)中,所述乳化剂选自十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、聚乙烯基苯磺酸、聚乙烯基苯磺酸钠、辛基酚聚氧乙烯醚、辛基苯酚聚氧乙烯醚、聚乙二醇辛基苯基醚、聚山梨酯(例如吐温20、吐温60、吐温80中的至少一种)、失水山梨醇脂肪酸酯(例如司班60、司班65、司班80中的至少一种)、乙烯-马来酸酐共聚物的钠盐水解物、苯乙烯-马来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异丁烯-马来酸酐共聚物的钠盐水解物,丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、甲基丙烯酰胺、异丁烯、丙烯酸酯、甲基丙烯酸酯或丙烯腈共聚而得的共聚物和珀酸二辛酯磺酸钠中的至少一种;例如,所述乳化剂选自聚山梨酯、十二烷基苯磺酸钠、苯乙烯-马来酸酐共聚物、十二烷基硫酸钠、聚乙二醇辛基苯基醚X-100中的至少一种。
根据本发明的实施方案,步骤2)中,所述乳化剂在所述连续相中的质量分数为0.1-10%,例如0.5-5%,示例性为0.3%、0.66%、1%、2%、2.2%、2.5%、3%、4%、4.4%、10%。
根据本发明的实施方案,步骤2)中,所述极性溶剂可以选自水、甲醇和二甲基甲酰胺等中的至少一种,例如选自水、甲醇或二甲基甲酰胺。
根据本发明的实施方案,步骤3)中,所述引发剂选自自由基聚合引发剂,例如选自偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁脒盐酸盐,偶氮二异丁咪唑啉盐酸盐、过硫酸钾、过硫酸铵、过硫酸钾、亚硫酸氢钠、过氧化苯甲酰等中的至少一种;示例性地,所述引发剂为偶氮二异丁腈、偶氮二异庚腈、过氧化苯甲酰或过硫酸铵。
根据本发明的实施方案,步骤3)中,所述引发剂的质量占所述硅烷偶联剂和交联剂总质量的0.1-20%,例如0.5-15%,示例性为0.56%、0.91%、1%、1.11%、1.16%、2.38%、5%、6.06%、6.25%、10%、14.28%。
根据本发明的实施方案,步骤3)中,当使用油溶性的引发剂时,则优选将其加入分散相中。当使用水溶性的引发剂时,则优选将其加入连续相或连续相与分散相的混合物中。
根据本发明的实施方案,步骤4)中,所述分散相与所述连续相的质量比为1:(0.5-50),例如为1:(1-8),示例性为1:0.83、1:0.93、1:0.94、1:1、1:175、1:1.69、1:8、1:1.89、1:2.72、1:2.76、1:3.20、1:3.70。
根据本发明的实施方案,步骤4)中,所述混合的方式可以选用本领域已知混合方式,例如采用高速剪切乳化方式混合,比如转速2000-100000rpm下乳化1-300min,优选为转速5000-20000rpm下乳化5-30min。
根据本发明的实施方案,步骤4)中,所述聚合反应的温度10-90℃,例如30-80℃,示例性为40℃、50℃、60℃、70℃、80℃、90℃。进一步地,所述聚合反应的时间为0.5-96小时,例如1-48小时,示例性为4小时、8小时、10小时、12小时、15小时、18小时。
根据本发明的实施方案,步骤4)中,所述分离反应产物后还可以对得到的产物进行后处理,例如所述后处理包括对产物进行洗涤和干燥。其中,所述分离反应产物、洗涤和干燥可以采用本领域已知方式,例如分离方式可以为离心分离、抽滤分离或喷雾干燥;例如洗涤方式可以为去离子水洗涤,例如干燥方式可以为真空干燥、冷冻干燥、或回转干燥。比如,所述分离采用离心方法进行,所述离心速度为500~20000转/分,离心时间为1~60分钟,优选1000~5000转/分,时间1~10分钟;或所述分离采用抽滤方法进行,并且所述抽滤使用的滤纸孔径为1μm~500μm;或采用喷雾干燥的方法直接得到微胶囊粉末。
本发明提供由上述方法制备得到的相变微胶囊。
本发明还提供所述相变微胶囊在建筑、节能、纺织、军事等领域中的应用。
本发明的有益效果:
本发明提供的有机/无机复合壁材包覆的相变微胶囊的制备方法,通过更为简单的方法,一步实现有机/无机复合壳层的制备,具体过程为:乳液中的硅烷偶联剂单体和交联剂经过引发剂引发发生聚合反应,带有双键的硅烷偶联剂单体与交联剂聚合后在芯材表面形成有机壳层,硅烷偶联剂单体中的硅甲氧基或硅乙氧基发生溶胶凝胶反应缩合,在芯材表面形成包括二氧化硅的无机壳层,实现用一步法得到有机/无机复合壳层的微胶囊。本发明方法在分散相中添加低比例的单体,即可实现微胶囊的制备,且低比例的单体更易于实现单体的均匀分散。制备工艺简单,设备简单易操作,成本低,容易实现工业化生产。得到的相变微胶囊主要应用于电子元器件、服装、建筑、节能、以及其他工业领域的热量管理等领域。
本发明提供的相变微胶囊具有良好的形貌,粒径尺寸能控制在微米甚至亚微米尺寸,壳层稳定、包覆率高、无塌陷、无严重形变,加热熔融后的渗漏率极低,可经受上百次升降温循环而不破损、并且渗漏率基本不变。
附图说明
图1为本发明实施例1制备得到的有机/无机复合壁材包覆的相变微胶囊的扫描电镜图(标尺:10μm)。
图2为本发明实施例1制备得到的有机/无机复合壁材包覆的相变微胶囊的DSC图。
图3为本发明实施例1制备得到的有机/无机复合壁材包覆的相变微胶囊壳的扫描电镜图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
下述实施例中所用到的仪器信息:
扫描电子显微镜:日立公司S-4800;
差示扫描量热仪:DSC822e;
高速剪切乳化机:FLUKO.FA30。
微胶囊焓值保有率、芯材和壁材质量比计算方法:
微胶囊焓值保有率=芯材占相变微胶囊的质量百分比=微胶囊相变焓值/相变材料焓值×100%;
壁材占相变微胶囊的质量百分比=(1-微胶囊相变焓值/相变材料焓值)×100%。
相变微胶囊的加热熔融渗漏率的测试方法如下:
称重10g相变微胶囊放置于滤纸上,加热至相变材料熔点20℃以上30分钟后,再降低到室温,循环上述两步多次甚至上百次,称重滤纸增重。加热熔融渗漏率=(滤纸增重/10)×100%。
实施例1
取7g乙烯基三甲氧基硅烷、1g二甲基丙烯酸己二醇酯和0.5g过氧化苯甲酰,100g熔融的切片石蜡(相变温度为50℃),充分混合后作为分散相。取100ml吐温80加到200g水中作为连续相。将分散相加入到连续相中,利用高速剪切进行乳化,乳化时间为20min,剪切速度为7000rpm,随后将所得到的乳液转移至三口瓶中,在70℃下反应10小时后。通过抽滤使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的基于乳液体系的复合壁材包覆的相变微胶囊的扫描电镜照片如图1所示。从图1中可以看出,本实施例制备得到的基于乳液体系的复合壁材包覆的相变微胶囊粒径平均尺寸在6微米,且囊壳对相变材料有着较好的包覆效果。
图2为本实施例1提供的基于乳液体系的复合壁材包覆的相变微胶囊的DSC图。通过对图2的峰面积进行积分计算,本实施例制备得到的有机/无机复合壁材包覆的相变微胶囊的相变潜热为175J/g。
图3为本实施例制备得到的有机/无机复合壁材包覆的相变微胶囊的囊壳的扫描电镜图,囊壳厚度为120nm。
本实施例制备得到有机/无机复合壁材包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为91%;壁材占相变微胶囊的质量百分比为9%;有机/无机复合壁材包覆的相变微胶囊的相变温度为55℃;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0,经过100次升降温循环后熔融渗出率为0.3%。
实施例2
取15g乙烯基三乙氧基硅烷、1.5g二甲基丙烯酸丙二醇酯和100g熔融的石蜡充分混合后作为分散相。取30ml吐温80加入到500g水中作为连续相,向连续相中添加1g过硫酸铵。将分散相加入到连续相中,利用高速剪切进行乳化,乳化时间为20min,剪切速度为6000rpm,在60℃下反应8小时后,对体系进行降温。通过抽滤使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的有机/无机复合壁材包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为85%;壁材占相变微胶囊的质量百分比为15%;有机/无机复合壁材包覆的相变微胶囊的相变温度为30℃;有机/无机复合壁材包覆的相变微胶囊的相变潜热为217.8J/g;有机/无机复合壁材包覆的相变微胶囊的平均粒径为15微米,囊壳厚度为260nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.4%。
实施例3
取3g乙烯基三(β-甲氧乙氧基)硅烷、2g二甲基丙烯酸乙二醇酯和0.05g过氧化苯甲酰和50g熔融的十八烷充分混合后作为分散相。取1gCTAB(十六烷基三甲基溴化胺)加入到50g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以10000rpm剪切乳化30min,将所得乳液转移至三口瓶中,在90℃下反应4小时后。通过过滤使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为93%;壁材占相变微胶囊的质量百分比为7%;有机/无机复合壁材包覆的相变微胶囊的相变温度为18℃;有机/无机复合壁材包覆的相变微胶囊的相变潜热为204J/g;有机/无机复合壁材包覆的相变微胶囊的平均粒径为10微米,囊壳厚度为90nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.3%。
实施例4
取4g异丁烯三乙氧基硅烷、0.3g二甲基二丙烯酸乙二醇酯、0.05g过氧化苯甲酰和50g熔融的正二十烷充分混合后作为分散相。取1g聚乙二醇辛基苯基醚X100(TritonX-100)加入到200g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以4000rpm剪切乳化20min,将所得乳液转移至三口瓶中,在70℃下反应10小时。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为87%;壁材占所述相变微胶囊的质量百分比为13%;复合材料包覆的相变微胶囊的相变温度为37℃;无机材料包覆的相变微胶囊的相变潜热为189J/g;复合材料包覆的相变微胶囊的平均粒径为50微米,囊壳厚度为580nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0,经过100次升降温循环后熔融渗出率为0.5%。
实施例5
取2g 3-(异丁烯酰氧)丙基三(三甲基硅氧烷)硅烷、0.1g二乙烯基苯、0.05g偶氮二异庚腈和28g熔融的正二十烷充分混合后作为分散相。取1g司班80加入到50g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以5000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在40℃下反应18小时。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为87%;壁材占相变微胶囊的质量百分比为13%;复合材料包覆的相变微胶囊的相变温度为37℃;复合材料包覆的相变微胶囊的相变潜热为184J/g;复合材料包覆的相变微胶囊的平均粒径为25微米,囊壳厚度为120nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.4%。
实施例6
取3gγ-(甲基丙酰氧)丙基三甲氧基硅烷、0.5g二甲基二丙烯酸乙二醇酯、0.05g过氧化苯甲酰和50g熔融的正二十烷充分混合后作为分散相。取1g吐温20加入到100g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以13000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在70℃下反应12小时后。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为88%;壁材占相变微胶囊的质量百分比为12%;复合材料包覆的相变微胶囊的相变温度为38℃;复合材料包覆的相变微胶囊的相变潜热为168J/g;复合材料包覆的相变微胶囊的平均粒径为5微米,囊壳厚度为130nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.3%。
实施例7
取5g乙烯基三(β-甲氧乙氧基)硅烷、0.5g二甲基丙烯酸乙二醇酯和0.05g偶氮二异丁腈和50g熔融的月桂酸充分混合后作为分散相。取1g十二烷基苯磺酸钠加入到150g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以3000rpm剪切乳化5min,将所得乳液转移至三口瓶中,在60℃下反应15小时后,对体系进行降温。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为85%;壁材占相变微胶囊的质量百分比为15%;复合材料包覆的相变微胶囊的相变温度为44℃;复合材料包覆的相变微胶囊的相变潜热为152J/g;复合材料包覆的相变微胶囊的平均粒径为55微米,囊壳厚度为5μm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.2%。
实施例8
取3gγ-(甲基丙酰氧)丙基三甲氧基硅烷、0.3g二甲基二丙烯酸乙二醇酯和0.03g过氧化苯甲酰和25g熔融的硬脂酸丁酯充分混合后作为分散相。取1g苯乙烯-马来酸酐共聚物的钠盐水解物加入到50g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以5000rpm剪切乳化5min,将所得乳液转移至三口瓶中,在70℃下反应10小时后,对体系进行降温。通过4000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为87%;壁材占相变微胶囊的质量百分比为13%;复合材料包覆的相变微胶囊的相变温度为19℃;复合材料包覆的相变微胶囊的相变潜热为122J/g;复合材料包覆的相变微胶囊的平均粒径为90微米,囊壳厚度为2μm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.2%,经过100次升降温循环后熔融渗出率为0.5%。
实施例9
取3g乙烯基三乙氧基硅烷、1.5g二甲基二丙烯酸乙二醇酯和0.05g过氧化苯甲酰和35g熔融的十八烷充分混合后作为分散相。取2g十二烷基硫酸钠加入到45g甲醇中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以10000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在50℃下反应16小时。通过过滤使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为82%;壁材占相变微胶囊的质量百分比为18%;复合材料包覆的相变微胶囊的相变温度为28℃;复合材料包覆的相变微胶囊的相变潜热为213J/g;复合材料包覆的相变微胶囊的平均粒径为3微米,囊壳厚度为370nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.2%,经过100次升降温循环后熔融渗出率为0.6%。
实施例10
取5g乙烯基三甲氧基硅烷、0.3g二乙烯基苯和0.03g过氧化苯甲酰和50g熔融的正二十烷充分混合后作为分散相。取1g十二烷基硫酸钠加入到45g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以2000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在70℃下反应12小时。通过抽滤使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为90%;壁材占相变微胶囊的质量百分比为10%;复合材料包覆的相变微胶囊的相变温度为37℃;复合材料包覆的相变微胶囊的相变潜热为223J/g;复合材料包覆的相变微胶囊的平均粒径为45微米,囊壳厚度为630nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.05%,经过100次升降温循环后熔融渗出率为0.3%。
实施例11
取4g乙烯基三(β-甲氧乙氧基)硅烷、0.3g二甲基二丙烯酸乙二醇酯和0.05g过氧化苯甲酰和50g熔融的正二十烷充分混合后作为分散相。取1.5g聚乙二醇辛基苯基醚X100(Triton X-100)加入到50g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以3000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在70℃下反应12小时。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为48%;壁材占相变微胶囊的质量百分比为52%;复合材料包覆的相变微胶囊的相变温度为38℃;无机材料包覆的相变微胶囊的相变潜热为115.3J/g;复合材料包覆的相变微胶囊的平均粒径为30微米,囊壳厚度为560nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.6%。
实施例12
取4g乙烯基三(β-甲氧乙氧基)硅烷、4g二甲基二丙烯酸乙二醇酯和0.35过氧化苯甲酰和4g熔融的正二十烷充分混合后作为分散相。取5g聚乙二醇辛基苯基醚X100(TritonX-100)加入到50g水中作为连续相。将分散相加入到连续相中,使用高速剪切乳化机以7000rpm剪切乳化10min,将所得乳液转移至三口瓶中,在70℃下反应12小时。通过12000rpm的离心使产物分离,利用去离子水洗涤后,通过真空干燥得到相变微胶囊干粉。
本实施例制备得到的复合材料包覆的相变微胶囊中,芯材占相变微胶囊的质量百分比为25%;壁材占相变微胶囊的质量百分比为75%;复合材料包覆的相变微胶囊的相变温度为35℃;无机材料包覆的相变微胶囊的相变潜热为155J/g;复合材料包覆的相变微胶囊的平均粒径为10微米,囊壳厚度为890nm;有机/无机复合壁材包覆的相变微胶囊的加热熔融渗漏率为0.1%,经过100次升降温循环后熔融渗出率为0.4%。
实施例1-12中制备得到的相变微胶囊的性能具体如表1所示。
表1.各实施例中制得的微胶囊的性能
Figure BDA0002354235390000151
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种相变微胶囊,其特征在于,所述相变微胶囊包括芯材和包覆在芯材表面的囊壳,所述芯材为相变材料,所述囊壳为有机/无机复合物;
其中,所述有机/无机复合物包括硅烷偶联剂和交联剂反应生成的有机物和无机物。
2.根据权利要求1所述的相变微胶囊,其特征在于,所述无机物包括二氧化硅。
3.根据权利要求1或2所述的相变微胶囊,其特征在于,所述相变材料选自醇类化合物、酸类化合物、烷基酯类化合物和烷烃类化合物中的至少一种;
优选地,所述醇类化合物选自C8~50烷基醇中的至少一种;
优选地,所述酸类化合物选自C8~50烷基酸中的至少一种;
优选地,所述烷基酯类化合物选自所述醇类化合物和所述酸类化合物反应得到的烷基酯;
优选地,所述烷烃类化合物选自C8~100的脂肪烃。
4.根据权利要求1-3任一项所述的相变微胶囊,其特征在于,所述硅烷偶联剂选自至少含有一个双键的硅烷偶联剂,优选选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷、γ-(甲基丙酰氧)丙基三乙氧基硅烷、3-(丙烯酰氧基)丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-(N-烯丙基氨基)丙基三甲氧基硅烷、苯乙烯-二甲基硅氧烷、苯乙烯乙基三甲基硅氧烷、异丁烯三乙氧基硅烷、3-异丁烯丙基三乙氧基硅烷、3-(异丁烯酰氧)丙基三(三甲基硅氧烷)硅烷中的至少一种;
优选地,所述的交联剂选自含有不饱和键的交联剂,优选所述交联剂选自苯乙烯类衍生物和含有双键的酯;优选地,所述苯乙烯类衍生物选自二乙烯基苯、苯乙烯乙基三甲基硅氧烷、1,3-二异丙烯基苯中的至少一种;优选地,所述含有双键的酯可以选自二甲基丙烯酸乙二醇酯、二甲基丙烯酸丙二醇酯、二甲基二丙烯酸乙二醇酯、二甲基丙烯酸丁二醇酯和二甲基丙烯酸己二醇酯中的至少一种。
5.根据权利要求1-4任一项所述的相变微胶囊,其特征在于,所述相变微胶囊的粒径在0.1-500μm之间;
优选地,所述囊壳的厚度为50nm-10μm之间;
优选地,所述芯材占所述相变微胶囊质量的75-95%;
优选地,所述囊壳占所述相变微胶囊质量的5-25%;
优选地,所述相变微胶囊的相变温度为15-75℃;
优选地,所述相变微胶囊的相变潜热为115-250J/g;
优选地,所述相变微胶囊的加热熔融渗漏率低于0.2%;
优选地,所述相变微胶囊的焓值保有率为75-95%。
6.权利要求1-5任一项所述相变微胶囊的制备方法,其特征在于,所述方法包括如下步骤:
1)将硅烷偶联剂、交联剂溶解于熔融的相变材料中,制得分散相;
2)将乳化剂溶解于极性溶剂,制得连续相;
3)根据引发剂的溶解性,将其加入所述分散相或所述连续相中,又或者两者的混合物中;
4)步骤3)完成后,将所述分散相与所述连续相混合乳化,将得到的乳液加热至所述相变材料的熔点以上进行聚合反应,反应完成后分离反应产物,得到所述相变微胶囊。
7.根据权利要求6所述的制备方法,其特征在于,步骤1)中,所述相变材料具有如权利要求3所述的含义,所述硅烷偶联剂和交联剂具有如权利要求4所述的含义;
优选地,步骤1)中,所述的硅烷偶联剂的质量占所述相变材料质量的1-100%;
优选地,步骤1)中,所述交联剂的质量占所述相变材料质量的0.1-100%;
优选地,步骤2)中,所述乳化剂选自十二烷基硫酸钠、十二烷基磺酸钠、十二烷基苯磺酸钠、聚乙烯基苯磺酸、聚乙烯基苯磺酸钠、辛基酚聚氧乙烯醚、辛基苯酚聚氧乙烯醚、聚乙二醇辛基苯基醚、聚山梨酯、失水山梨醇脂肪酸酯、乙烯-马来酸酐共聚物的钠盐水解物、苯乙烯-马来酸酐共聚物的钠盐水解物、乙烯甲基醚-顺丁烯二酸酐共聚物的钠盐水解物、异丁烯-马来酸酐共聚物的钠盐水解物,丙烯酸或甲基丙烯酸与苯乙烯、乙烯、乙烯醇、醋酸乙烯酯、甲基丙烯酰胺、异丁烯、丙烯酸酯、甲基丙烯酸酯或丙烯腈共聚而得的共聚物和珀酸二辛酯磺酸钠中的至少一种;
优选地,步骤2)中,所述乳化剂在所述连续相中的质量分数为0.1-10%;
优选地,步骤2)中,所述极性溶剂选自水、甲醇和二甲基甲酰胺中的至少一种。
8.根据权利要求6或7所述的制备方法,其特征在于,步骤3)中,所述引发剂选自自由基聚合引发剂,例如选自偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁脒盐酸盐、偶氮二异丁咪唑啉盐酸盐、过硫酸钾、过硫酸铵、过硫酸钾、亚硫酸氢钠、过氧化苯甲酰中的至少一种;
优选地,步骤3)中,所述引发剂的质量占所述硅烷偶联剂和交联剂总质量的0.1-20%;
优选地,步骤3)中,当使用油溶性的引发剂时,则将其加入分散相中;当使用水溶性的引发剂时,则将其加入连续相或连续相与分散相的混合物中。
优选地,步骤4)中,所述分散相与所述连续相的质量比为1:(0.5-50);
优选地,步骤4)中,所述聚合反应的温度10-90℃,所述聚合反应的时间为0.5-96小时;
优选地,步骤4)中,所述分离反应产物后还包括对产物的后处理。
9.权利要求6-8任一项所述方法制备得到的相变微胶囊。
10.权利要求1-5、9任一项所述相变微胶囊在建筑、节能、纺织或军事领域中的应用。
CN202010003177.2A 2020-01-02 2020-01-02 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用 Pending CN113058512A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010003177.2A CN113058512A (zh) 2020-01-02 2020-01-02 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010003177.2A CN113058512A (zh) 2020-01-02 2020-01-02 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113058512A true CN113058512A (zh) 2021-07-02

Family

ID=76558232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010003177.2A Pending CN113058512A (zh) 2020-01-02 2020-01-02 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113058512A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528094A (zh) * 2021-07-06 2021-10-22 塔里木大学 一种常温无渗漏的有机无机耦合相变材料
CN114160061A (zh) * 2021-12-15 2022-03-11 合肥芯能相变新材料科技有限公司 一种仿生结构抗菌微胶囊及其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139667A (ja) * 1999-11-12 2001-05-22 Shin Etsu Chem Co Ltd マイクロカプセル型リン系硬化促進剤、エポキシ樹脂組成物及び半導体装置
US20040259154A1 (en) * 2001-11-09 2004-12-23 Hideki Sakurai Preparation of metallic nanoparticle with shell-crosslinked micelle as mold
CN1680014A (zh) * 2005-01-26 2005-10-12 浙江大学 以有机小分子烃为模板的制备有机-无机杂化纳米微胶囊的方法
CN106916573A (zh) * 2017-03-06 2017-07-04 中国科学院化学研究所 金属及合金相变储能微胶囊及其制备方法
CN109499500A (zh) * 2018-11-29 2019-03-22 航天特种材料及工艺技术研究所 一种具有亚微米尺寸的复合壁材相变胶囊及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139667A (ja) * 1999-11-12 2001-05-22 Shin Etsu Chem Co Ltd マイクロカプセル型リン系硬化促進剤、エポキシ樹脂組成物及び半導体装置
US20040259154A1 (en) * 2001-11-09 2004-12-23 Hideki Sakurai Preparation of metallic nanoparticle with shell-crosslinked micelle as mold
CN1680014A (zh) * 2005-01-26 2005-10-12 浙江大学 以有机小分子烃为模板的制备有机-无机杂化纳米微胶囊的方法
CN106916573A (zh) * 2017-03-06 2017-07-04 中国科学院化学研究所 金属及合金相变储能微胶囊及其制备方法
CN109499500A (zh) * 2018-11-29 2019-03-22 航天特种材料及工艺技术研究所 一种具有亚微米尺寸的复合壁材相变胶囊及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113528094A (zh) * 2021-07-06 2021-10-22 塔里木大学 一种常温无渗漏的有机无机耦合相变材料
CN114160061A (zh) * 2021-12-15 2022-03-11 合肥芯能相变新材料科技有限公司 一种仿生结构抗菌微胶囊及其制备方法及应用

Similar Documents

Publication Publication Date Title
CN109499500B (zh) 一种具有亚微米尺寸的复合壁材相变胶囊及其制备方法和应用
CN107513375B (zh) 一种二氧化硅包覆的相变微胶囊及其制备方法和应用
CN109294526B (zh) 一种基于微乳液体系的杂化壁材包覆的相变亚微米胶囊的制备方法
CN111574966B (zh) 一种盘状相变微胶囊及其制备方法和应用
CN113058512A (zh) 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用
CN101306341B (zh) 一种界面聚合法制备的相变储能微胶囊及其方法
JP5366972B2 (ja) マイクロカプセルの製造方法
CN101717618A (zh) 一种相变材料微胶囊的制备方法
CN101555401B (zh) 有机相变储能材料的微胶囊及其制备方法
CN1321735C (zh) 乳液聚合法合成相变储能微胶囊
CN108251066B (zh) 一种聚丙烯腈包覆石蜡纳米相变微胶囊及其制备方法
CN106367031B (zh) 一种高热导率复合相变微胶囊及其制备方法
CN104610924B (zh) 一种低温相变蓄热微胶囊及其制备方法和应用
Chaiyasat et al. Preparation and characterization of poly (divinylbenzene) microcapsules containing octadecane
CN105355824A (zh) 动力电池隔膜、其制备方法及包括其的动力电池
JP2010512986A (ja) マイクロカプセル
CN110819308A (zh) 相变储能微胶囊及其制备方法和应用
CN103537238B (zh) 一种无残留乳化剂阻燃相变材料胶囊的制备方法
CN107384328A (zh) 一种无机材料包覆的相变微胶囊的制备方法及其制品和应用
CN102059083A (zh) 一种壁材镶嵌纳米氧化铝的相变微胶囊的制备方法
CN107365121A (zh) 一种无机材料包覆的相变微胶囊复合的相变腻子及其制备方法和应用
CN104418966A (zh) 相变微胶囊及其制备方法
CN104962242A (zh) 一种低过冷度相变材料微胶囊及其制备方法
CN111672436B (zh) 一种阻燃相变微胶囊及其制备方法和应用
CN103509528A (zh) 一种核壳结构纳米高温储热材料、其制备方法及用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination