CN113013456A - 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法 - Google Patents

一种具有半互穿网络结构的高温质子交换膜材料及其制备方法 Download PDF

Info

Publication number
CN113013456A
CN113013456A CN202110208546.6A CN202110208546A CN113013456A CN 113013456 A CN113013456 A CN 113013456A CN 202110208546 A CN202110208546 A CN 202110208546A CN 113013456 A CN113013456 A CN 113013456A
Authority
CN
China
Prior art keywords
proton exchange
exchange membrane
semi
polybenzimidazole
interpenetrating network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110208546.6A
Other languages
English (en)
Inventor
孟跃中
蒋俊俏
曲二丽
王拴紧
肖敏
韩东梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110208546.6A priority Critical patent/CN113013456A/zh
Publication of CN113013456A publication Critical patent/CN113013456A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种具有半互穿网络结构的高温质子交换膜材料及其制备方法。本发明中半互穿网络结构的高温质子交换膜材料,是将含羧基功能团的聚芳醚和氨基封端的小分子聚苯并咪唑与线型芳醚型聚苯并咪唑混合溶液通过流延法或浇铸法原位交联成膜得到,其中含有羧基功能团的聚芳醚通过含羧基双酚单体和4,4’‑二氟二苯甲酮缩聚得到,氨基封端的聚苯并咪唑由间苯二甲酸和3,3’‑二氨基联苯胺缩合合成。本发明制备的半互穿网络结构的高温质子交换膜材料具有质子传导能力强、化学稳定性好及电池性能优异等优点。

Description

一种具有半互穿网络结构的高温质子交换膜材料及其制备 方法
技术领域
本发明属于高分子材料和燃料电池技术领域,具体地说,涉及一种具有半互穿网络结构的高温质子交换膜材料及其制备方法。
背景技术
高温质子交换膜燃料电池是新一代的质子交换膜燃料电池,与传统的低温质子交换膜燃料电池相比,高温质子交换膜燃料电池的工作温度在100℃以上,具有简单的水热管理、CO耐受性高、对铂系催化剂依赖性小等优点。质子交换膜是质子交换膜燃料电池的关键组成部分,起着质子输运和燃料隔离的重要作用。在所有类型的高温质子交换膜中,磷酸掺杂型聚苯并咪唑膜由于其良好的化学和热稳定性以及在高温无水条件下具有优异的质子传导率,被认为是目前最有前途的高温质子交换膜的候选材料。为了使质子交换膜获得较高的质子传导率,有必要在膜中加入过量的磷酸。然而,由于磷酸分子的强塑化作用,高质子电导率通常以牺牲膜的机械强度为代价。因此如果聚合物基体性能不佳的话,掺杂磷酸后整个膜的抗撕裂性能很差,易碎,在电池组装方面存在很大的问题。除此之外,考虑到电池的寿命问题,膜的氧化稳定型仍需提高。
针对现有技术的不足,本发明通过在聚苯并咪唑体系中引入一种交联聚合物制备具有半互穿网络结构的质子交换膜材料,原位交联反应可以消除界面效应,加入交联聚合物可以降低膜的尺寸溶胀率,增加尺寸稳定性,此外聚芳醚具有优异的化学稳定性可以进一步提高膜的化学稳定性,得到综合性能优异的高温质子交换膜。
发明内容
本发明的目的在于克服现有技术的不足,提供一种具有半互穿网络结构的高温质子交换膜材料及其制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种具有半互穿网络结构的高温质子交换膜材料,由一种交联聚合物与一种线型非交联的聚合物构成,所述的交联聚合物具有如下的结构:
Figure BDA0002950344370000021
Figure BDA0002950344370000022
选自:
Figure BDA0002950344370000031
中的任意一种;
Figure BDA0002950344370000032
选自:
Figure BDA0002950344370000033
中的任意一种。
本发明的半互穿网络结构的高温质子交换膜材料能应用于高温质子交换膜燃料电池中,其工作温度为100-200℃。
上述具有半互穿网络结构的高温质子交换膜材料的制备方法,包括如下步骤:
(1)以含羧基官能团的聚芳醚和氨基封端的聚苯并咪唑以及线型芳醚型聚苯并咪唑在极性非质子溶剂中通过溶液流延法或浇铸法成膜,烘干溶剂,经过羧基与氨基的原位缩合反应形成咪唑环,从而发生交联,获得半互穿网络结构的聚合物膜;
(2)将步骤(1)所得聚合物膜浸没在磷酸溶液中,然后取出干燥获得权利要求1所述的高温质子交换膜材料。
作为优选的,在上述的制备方法中,所述含羧基官能团的聚芳醚的制备方法包括如下步骤:
(1)以含羧基双酚单体与含卤素原子的芳香单体为原料在催化剂的作用下,在极性非质子型溶剂中聚合。
所述含羧基官能团的单体具有如下结构:
Figure BDA0002950344370000041
所述含卤素原子的芳香单体有如下结构:
Figure BDA0002950344370000042
(2)将步骤(1)所得聚芳醚在含有盐酸的甲醇溶液种沉降,得到酸化后的含羧基聚芳醚化合物。
作为优选的,在上述的制备方法中,所述的氨基封端的聚苯并咪唑结构式如下所示:
Figure BDA0002950344370000043
作为优选的,在上述的制备方法中,所述的氨基封端的聚苯并咪唑的制备方法包括如下步骤:
(1)取单体3,3’-二氨基联苯胺和间苯二甲酸,单体在多聚磷酸中的质量浓度范围为3~10%,在五氧化二磷的作用下反应;
(2)然后进行沉降、中和、过滤、洗涤和冷冻干燥得到氨基封端的聚苯并咪唑,所述中和采用弱碱试剂为5%-10%的稀氨水。
作为优选的,在上述的制备方法中,所述的极性非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲基亚砜中的一种。
作为优选的,在上述的制备方法中,所述烘干溶剂的温度为梯度控制,60~80℃保持3~8小时,130~150℃保持2~6小时,170~250℃保持10~24小时使其充分交联。
与现有技术相比,本发明具有如下有益效果:
(1)本发明从分子设计的角度,合成综合性能优异的高温质子交换膜材料,合成工艺简单、制备成本低;
(2)本发明采用的聚芳醚具有高强度、高韧性、耐高温、化学稳定性优异等特点,能够增强质子交换膜的物理化学性能和机械性能;
附图说明
图1是实施例1~3制备的半互穿网络高温质子交换膜材料与商业化的聚苯并咪唑膜在芬顿试剂(3%H2O2,4ppm Fe2+,80℃)中的氧化稳定性对比图。
图2是实施例1~3制备的半互穿网络高温质子交换膜材料与商业化的聚苯并咪唑膜的在160℃不增湿条件下的H2/O2电池性能对比图。
具体实施方式
下面结合具体实施例对本发明作进一步详细描述,但本发明的实施方式不限于此。
实施例1:具有半互穿网络结构的高温质子交换膜材料的制备
(1)制备含羧基官能团的聚芳醚:所用溶剂为二甲基亚砜,含羧基的双酚单体和含卤素原子的芳香单体的投料摩尔比为1:1,单体在溶剂中的质量浓度范围为15~30%,升温至140℃让其回流3-4小时,然后放出甲苯升温至170℃反应20-24小时停止。后处理方式为将反应后的溶液倒入含有盐酸的无水甲醇中沉降,得到含羧基聚芳醚聚合物,用破壁机破碎,抽滤、洗涤、干燥后备用;
(2)制备氨基封端的聚苯并咪唑:所用溶剂为多聚磷酸,单体原料3,3’-二氨基联苯胺和间苯二甲酸的投料比为2:1,单体在溶剂中的质量浓度范围为3~10%。首先称取27g多聚磷酸和7g五氧化二磷,在氮气氛围下升温到120℃,并机械搅拌数小时得到无色透明液体。冷却至室温后,加入1.2856g 3,3-二氨基联苯胺,升温到150℃,并在2小时内分三批次加入0.4985g间苯二甲酸,继续升温到190℃反应20小时。反应结束后冷却至约80℃,将其倒入冷水中,加入一定量的稀氨水将酸溶液中和,然后进行抽滤,用去离子水将所得产物洗涤数次,冷冻干燥24~48小时后备用。
(3)制备半互穿网络高温质子交换膜:所用溶剂为N-甲基吡咯烷酮,将0.240g含羧基聚芳醚搅拌溶解,聚合物溶液的浓度为10wt%,加入溶解好的氨基封端的聚苯并咪唑(摩尔数为含羧基聚芳醚中羧基含量的0.5倍),然后与含有0.360g芳醚型聚苯并咪唑的溶液(溶液浓度为5~10wt%)混合,室温下搅拌下1-2小时,待聚合物充分混合后,超声脱气30分钟,然后使用玻璃棒将溶液刮涂在干净的玻璃板上铺膜,60℃下4-6小时烘干溶剂。待溶剂烘干后,升温至150℃保持2-3小时完成初步交联,再转移至真空烘箱190℃高温热处理12小时完成后续交联,将所得膜揭下后在去离子水煮数小时后烘干。
(4)制备掺杂磷酸的半互穿网络高温质子交换膜:将步骤(3)所得半互穿网络高温质子交换膜浸没于120℃的85wt%磷酸溶液中24小时后取出,擦干表面磷酸。
将本实施例制备得到的半互穿网络高温质子交换膜进行后续测试,经测试,其在Fenton试剂(3%H2O2,4ppm Fe2+,80℃)中浸泡120小时后的失重为16.6%,掺杂磷酸后的膜在160℃不增湿条件下H2/O2电池性能最大功率密度为503mW cm-1
实施例2:具有半互穿网络结构的高温质子交换膜材料的制备
(1)与实施例1相同制备含羧基官能团的聚芳醚。
(2)与实施例1相同制备氨基封端的聚苯并咪唑。
(3)制备半互穿网络高温质子交换膜:所用溶剂为N-甲基吡咯烷酮,将0.180g含羧基聚芳醚搅拌溶解,聚合物溶液的浓度为10wt%,加入溶解好的氨基封端的聚苯并咪唑(摩尔数为含羧基聚芳醚中羧基含量的0.5倍),然后与含有0.420g芳醚型聚苯并咪唑的溶液(溶液浓度为5~10wt%)混合,室温下搅拌下1-2小时,待聚合物充分混合后,超声脱气30分钟,然后使用玻璃棒将溶液刮涂在干净的玻璃板上铺膜,60℃下4-6小时烘干溶剂。待溶剂烘干后,升温至150℃保持2-3小时完成初步交联,再转移至真空烘箱190℃高温热处理12小时完成后续交联,将所得膜揭下后在去离子水煮数小时后烘干。
(4)与实施例1相同制备掺杂磷酸的半互穿网络高温质子交换膜。
将本实施例制备得到的半互穿网络高温质子交换膜进行后续测试,经测试,其在Fenton试剂(3%H2O2,4ppm Fe2+,80℃)中浸泡120小时后的失重为16.5%,掺杂磷酸后的膜在160℃不增湿条件下H2/O2电池性能最大功率密度为525mW cm-1
实施例3:具有半互穿网络结构的高温质子交换膜材料的制备
(1)与实施例1相同制备含羧基官能团的聚芳醚。
(2)与实施例1相同制备氨基封端的聚苯并咪唑。
(3)制备半互穿网络高温质子交换膜:所用溶剂为N-甲基吡咯烷酮,将0.120g含羧基聚芳醚搅拌溶解,聚合物溶液的浓度为10wt%,加入溶解好的氨基封端的聚苯并咪唑(摩尔数为含羧基聚芳醚的0.5倍),然后与含有0.480g芳醚型聚苯并咪唑的溶液(溶液浓度为5~10wt%)混合,室温下搅拌下1-2小时,待聚合物充分混合后,超声脱气30分钟,然后使用玻璃棒将溶液刮涂在干净的玻璃板上铺膜,60℃下4-6小时烘干溶剂。待溶剂烘干后,升温至150℃保持2-3小时完成初步交联,再转移至真空烘箱190℃高温热处理12小时完成后续交联,将所得膜揭下后在去离子水煮数小时后烘干。
(4)与实施例1相同制备掺杂磷酸的半互穿网络高温质子交换膜。
将本实施例制备得到的半互穿网络高温质子交换膜进行后续测试,经测试,其在Fenton试剂(3%H2O2,4ppm Fe2+,80℃)中浸泡120小时后的失重为16.0%,掺杂磷酸后的膜在160℃不增湿条件下H2/O2电池性能最大功率密度为608mW cm-1
以上实施例1~3所得的半互穿网络高温质子交换膜分别记为a-1,a-2,a-3。

Claims (7)

1.一种具有半互穿网络结构的高温质子交换膜材料,由一种交联聚合物与一种线型非交联的聚合物构成,其特征在于,所述的交联聚合物具有如下的结构:
Figure FDA0002950344360000011
Figure FDA0002950344360000012
选自:
Figure FDA0002950344360000013
中的任意一种;
Figure FDA0002950344360000014
选自:
Figure FDA0002950344360000021
中的任意一种。
2.权利要求1所述的具有半互穿网络结构的高温质子交换膜材料的制备方法,其特征在于包括如下步骤:
(1)以含羧基官能团的聚芳醚和氨基封端的聚苯并咪唑以及线型芳醚型聚苯并咪唑在极性非质子溶剂中通过溶液流延法或浇铸法成膜,烘干溶剂,经过羧基与氨基的原位缩合反应形成咪唑环,从而发生交联,获得半互穿网络结构的聚合物膜;
(2)将步骤(1)所得聚合物膜浸没在磷酸溶液中,然后取出干燥获得权利要求1所述的高温质子交换膜材料。
3.如权利要求2所述的制备方法,其特征在于,所述含羧基官能团的聚芳醚的制备方法包括如下步骤:
(1)以含羧基双酚单体与含卤素原子的芳香单体为原料在催化剂的作用下,在极性非质子型溶剂中聚合。
所述含羧基官能团的单体具有如下结构:
Figure FDA0002950344360000031
所述含卤素原子的芳香单体有如下结构:
Figure FDA0002950344360000032
(2)将步骤(1)所得聚芳醚在含有盐酸的甲醇溶液种沉降,得到酸化后的含羧基聚芳醚化合物。
4.如权利要求2所述的制备方法,其特征在于,所述的氨基封端的聚苯并咪唑结构式如下所示:
Figure FDA0002950344360000033
5.如权利要求2所述的制备方法,其特征在于,所述的氨基封端的聚苯并咪唑的制备方法包括如下步骤:
(1)取单体3,3’-二氨基联苯胺和间苯二甲酸,单体在多聚磷酸中的质量浓度范围为3~10%,在五氧化二磷的作用下反应;
(2)然后进行沉降、中和、过滤、洗涤和冷冻干燥得到氨基封端的聚苯并咪唑,所述中和采用弱碱试剂为5%-10%的稀氨水。
6.如权利要求2所述的制备方法,其特征在于,所述的极性非质子溶剂为N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮或二甲基亚砜中的一种。
7.如权利要求2所述的制备方法,其特征在于,所述烘干溶剂的温度为梯度控制,60~80℃保持3~8小时,130~150℃保持2~6小时,170~250℃保持10~24小时使其充分交联。
CN202110208546.6A 2021-02-24 2021-02-24 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法 Pending CN113013456A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110208546.6A CN113013456A (zh) 2021-02-24 2021-02-24 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110208546.6A CN113013456A (zh) 2021-02-24 2021-02-24 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113013456A true CN113013456A (zh) 2021-06-22

Family

ID=76385833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110208546.6A Pending CN113013456A (zh) 2021-02-24 2021-02-24 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113013456A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962274A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 一种耐高温复合质子交换膜及其制备方法
CN110224166A (zh) * 2019-06-12 2019-09-10 吉林大学 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962274A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 一种耐高温复合质子交换膜及其制备方法
CN110224166A (zh) * 2019-06-12 2019-09-10 吉林大学 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNQIAO JIANG等: "("3D Network Structural Poly (Aryl Ether Ketone)- Polybenzimidazole Polymer for High-Temperature Proton Exchange Membrane Fuel Cells"", 《ADVANCES IN POLYMER TECHNOLOGY》 *

Similar Documents

Publication Publication Date Title
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
Wang et al. Side-chain-type poly (arylene ether sulfone) s containing multiple quaternary ammonium groups as anion exchange membranes
Asensio et al. Recent Developments on Proton Conduc‐ting Poly (2, 5‐benzimidazole)(ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells
Qing et al. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles
CN111269550B (zh) 一种基于聚苯醚/聚乙烯醇的交联阴离子交换膜及制备方法
JP5222687B2 (ja) 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜
Li et al. Synthesis and Characterization of a New Fluorine‐Containing Polybenzimidazole (PBI) for Proton‐Conducting Membranes in Fuel Cells
Yao et al. Highly sulfonated co-polyimides containing hydrophobic cross-linked networks as proton exchange membranes
CN111276724B (zh) 基于聚苯醚/聚乙烯醇的半互穿网络阴离子交换膜及制备方法
JP2003217343A (ja) 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法
KR20090037306A (ko) 유무기 복합막 및 이의 제조방법
Ma et al. Synthesis and characterization of sulfonated poly (phthalazinone ether phosphine oxide) s by direct polycondensation for proton exchange membranes
CN102838764B (zh) 倍半硅氧烷杂化磺化聚酰亚胺质子交换膜的制备方法
KR100963409B1 (ko) 술폰화된 폴리(아릴렌 에테르) 교대 공중합체와 고분자사슬 말단에 가교구조를 함유한 술폰화된 폴리(아릴렌에테르) 교대 공중합체 및 이를 이용한 고분자 전해질막
CN108192119B (zh) 交联型磺化聚芳醚质子交换膜的制备方法
CN113150344A (zh) 一种聚合物主链为芳环结构的质子交换膜及其制备方法
CN103709379B (zh) 芳香磺化聚酮及其制备方法
Lim et al. Synthesis and characterization of sulfonated poly (arylene ether ketone sulfone) block copolymers containing multi-phenyl for PEMFC
CN100404588C (zh) 一种制备交联磺化聚酰亚胺膜的方法
Jeong et al. Synthesis and characterization of sulfonated poly (arylene ether ketone) copolymers containing crosslinking moiety
Akbarian‐Feizi et al. Synthesis of new sulfonated copolyimides in organic and ionic liquid media for fuel cell application
KR100954060B1 (ko) 술폰화된 폴리(아릴렌 에테르) 공중합체, 이의 제조방법 및이를 이용한 가교된 고분자 전해질막
Li et al. Novel sulfonated poly (ether ether ketone ketone) derived from bisphenol S
CN113013456A (zh) 一种具有半互穿网络结构的高温质子交换膜材料及其制备方法
KR101286265B1 (ko) 술폰화 폴리술폰케톤 공중합체, 이를 포함하는 고분자전해질, 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210622