CN113013085A - 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法 - Google Patents

一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法 Download PDF

Info

Publication number
CN113013085A
CN113013085A CN201911333631.4A CN201911333631A CN113013085A CN 113013085 A CN113013085 A CN 113013085A CN 201911333631 A CN201911333631 A CN 201911333631A CN 113013085 A CN113013085 A CN 113013085A
Authority
CN
China
Prior art keywords
silicon
layer
hole
twin crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911333631.4A
Other languages
English (en)
Inventor
朱婧
明安杰
赵永敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201911333631.4A priority Critical patent/CN113013085A/zh
Publication of CN113013085A publication Critical patent/CN113013085A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法。该方法包括以下步骤:(1)在硅基片上通过干法刻蚀或湿法刻蚀形成通孔;(2)采用热氧化工艺将硅基片表面氧化,在侧壁上形成绝缘层;(3)利用光刻技术在Si基片的外围区域覆盖光刻胶,从而使Si基片中间位置形成一个圆形图案,且保证所述通孔位于所述圆形图案区域内;(4)在通孔中制作阻挡层和种子层;(5)以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜;(6)去除外围光刻胶。采用本发明的方法能够提高硅通孔互连材料的电学性能、机械性能和高温稳定性能,该方法成本低廉、制备工艺简单,适合产业化生产。

Description

一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法
技术领域
本发明涉及一种用于三维集成电路领域的硅通孔填充方法,更具体地说,涉及一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法,属于硅通孔技术领域。
背景技术
硅通孔技术是一种利用垂直硅通孔完成芯片间互连的方法。随着微电子封装技术向高集成度、高性能的方向发展,硅通孔先进封装技术己经成为最有效的高级封装技术之一,其具有低功耗、低噪声、小尺寸等优势,可广泛应用于射频芯片、CMOS图像传感器、MEMS等领域。
铜由于其高导电率、对电子迁移的高阻抗及其低成本,被广泛应用于硅通孔中的互连材料。然而要将其从科学研究真正应用到生产中,必须要首先确保其可靠性。在实际应用中,由于受到热环境影响,可能会造成材料设计性能的失效。目前已有多种增强铜金属性能的通孔填充方法,包括掺杂碳纳米管、石墨烯等。专利文献CN105261590A公开的方法采用金属铜与碳纳米管的复合材料作为填充材料,有效提高了通孔的导电性能和稳定性,并力图解决传统填充方法中始终存在的缺陷问题,但其操作步骤繁琐,且对铜本身机械性能无明显提升。专利文献CN107658262A公开的方法利用石墨烯材料良好的热力学、机械和材料特性,以提升铜本身的机械和电学性能,但是石墨烯制备的条件较为苛刻,成本较高。
纳米孪晶材料是指含有晶粒内部含有孪晶并且其片层间距位于纳米量级(<100nm)的材料,这类材料内部的孪晶界面为共格孪晶界,它的界面能很低,约为晶界的十分之一。由于孪晶界的特殊性,其可以同时提升材料强度和塑性,且对导电性能影响较小,因此受到了广泛的关注。考虑到对硅通孔填充材料综合性能的要求,将纳米孪晶铜引入到硅通孔技术中具有较高的应用价值。
由于硅通孔技术广泛应用于射频芯片、MEMS等领域,其实际应用环境存在高温和由此引发的热应力。因此提供一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法具有重要的意义。
发明内容
基于现有制备工艺步骤繁琐、条件苛刻、成本较高以及难以确保应用中的可靠性,很难实现规模化实际应用,本发明的目的是提供一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法,提高硅通孔互连材料的电学性能、机械性能和高温稳定性能,该方法成本低廉、制备工艺简单,适合产业化生产。
为实现上述目的,本发明采取以下技术方案:
一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法,该方法包括以下步骤:
(1)在硅基片上通过干法刻蚀或湿法刻蚀形成通孔;
(2)采用热氧化工艺将硅基片表面氧化,在侧壁上形成绝缘层;
(3)利用光刻技术在Si基片的外围区域覆盖光刻胶,从而使Si基片中间位置形成一个圆形图案,且保证所述通孔位于所述圆形图案区域内;
(4)在通孔中制作阻挡层和种子层;
(5)以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜;
(6)去除外围光刻胶。
所述步骤(4)中,所述阻挡层为Ti层,由磁控溅射方法制备。
所述步骤(4)中,所述种子层为导电薄膜,采用Cu层和Ni层,其中,Cu层由磁控溅射方法制备,Ni层由电镀方式制备。制备Ni层的工艺参数为:Ni板作为阳极,磁控溅射的Cu层作为阴极,镀液为硫酸镍溶液,其中硫酸镍50g/L~100g/L、水800~1000mL,电流密度0.4~0.8mA·cm-2,镀制时间50s~60s。
所述步骤(5)中,在电镀铜前,使用质量百分比浓度为10%的稀硫酸对所述阴极进行表面活化。
所述步骤(5)中,为保证电镀时电力线分布均匀,待镀样片与阳极Cu板保持在正对位置。
所述步骤(5)中,电镀液的成分为:硫酸铜S0g/L~H0g/L、氯化钠20~50ppm、水1000~1500mL、加速剂1~10ppm、抑制剂20~40ppm、整平剂10~20ppm,其中加速剂与抑制剂的浓度比为1.5∶9~2∶9。其中,所述加速剂为聚二硫二丙烷磺酸钠;所述抑制剂为聚乙二醇;所述整平剂为聚亚烷基亚胺。
所述步骤(5)中,电镀液pH值为1.0;直流电镀的电流密度为20~40mA·cm-2
所述步骤(5)中,所述孪晶铜呈{111}定向织构,与基底平面平行,孪晶片层间距为40~90nm。
与现有技术相比,本发明的有益效果是:
1、本发明填充的铜材料为纳米孪晶结构,具有{111}定向织构,其具备良好机械性能和优异的高温稳定性,可提升其实际应用中的可靠性。
2、本发明的种子层引入薄的电镀Ni层,可提升填充材料纳米孪晶铜与通孔侧壁的结合力,粘附性好,提高通孔的服役可靠性。
3、本发明的生长纳米孪晶铜的硅通孔填充方法可适用于三维集成电路的硅通孔互连技术,提高填充材料实际应用的可靠性。并且,制备工艺简单,成本低,方法可控,可大批量生产。
附图说明
图1是刻蚀后的硅通孔的结构示意图。
图2是热氧化形成SiO2绝缘层后的硅通孔(TSV)的结构示意图。
图3是形成光刻图案后的硅通孔的结构示意图。
图4是沉积阻挡层、种子层和电镀填充纳米孪晶铜后的硅通孔的结构示意图。
图5是去除光刻胶后的硅通孔的结构示意图。
图6是XRD测试结果。
图7是本发明实施例1中制备的纳米孪晶铜200℃退火前的透射电镜照片。
图8是本发明实施例1中制备的纳米孪晶铜200℃退火后的透射电镜照片。
图9是本发明实施例2中制备的纳米孪晶铜350℃退火后的透射电镜照片。
具体实施方式
下面结合实施例和附图对本发明进行详细介绍。下面描述的仅为本发明的一部分实施例,而不是全部的实施例。基于以下实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,均应属于本发明保护的范围。
本发明的硅通孔填充方法的工艺过程为:在硅基片上通过干法刻蚀或湿法刻蚀形成通孔,通孔2贯通硅基片1,如图1所示;采用热氧化工艺将硅基片表面氧化,在侧壁上形成绝缘层3,如图2所示;利用光刻技术在Si基片的外围区域覆盖光刻胶4,从而使Si基片中间位置形成一个圆形图案,且保证通孔2位于所述圆形图案区域内,如图3所示;在通孔2中制作阻挡层5和种子层6,如图4所示;以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜7;去除外围光刻胶,如图5所示。
实施例1
填充具有高温稳定性的纳米孪晶铜的具体工艺步骤为:
(1)在硅基体上通过干法刻蚀形成直径为10μm,深度为100μm的通孔。
(2)采用热氧化工艺将硅基片表面氧化,在侧壁上形成SiO2绝缘层。
(3)利用光刻技术在Si基片的外围区域覆盖光刻胶,从而使Si基片中间位置形成一个圆形图案,且保证所述通孔位于所述圆形图案区域内。
(4)在通孔中制备阻挡层和种子层。其中,种子层由磁控溅射的Cu层和电镀的Ni层组成。Ni层的工艺参数为:Ni板作为阳极,磁控溅射的Cu层作为阴极,镀液为硫酸镍溶液,其中硫酸镍60g/L、水1000mL,电流密度0.5mA·cm-2,镀制时间60s。
(5)以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜。电镀过程中,电镀液成分为:硫酸铜80g/L、氯化钠20ppm、水1000mL、聚二硫二丙烷磺酸钠5ppm、聚乙二醇30ppm、聚亚烷基亚胺15ppm。电镀溶液pH值为1.0。采用直流电镀方式的电流密度为30mA·cm-2
(6)去除外围光刻胶。
如图6所示,本实施例所获得的纳米孪晶铜的其晶向为{111}定向织构,与基底平面平行。
对本实施例所获得的纳米孪晶铜进行200℃摄氏度退火处理,得到退火前后的透射电镜照片如图7和图8所示。可以看出在200℃退火后,晶粒尺寸和片层间距基本没有变化,内部结构清晰化,具有良好的组织热稳定性。
实施例2
本实施例填充具有高温稳定性的纳米孪晶铜的具体工艺步骤为:
(1)在硅基片上通过干法刻蚀形成直径为15μm,深度为100μm通孔。
(2)采用热氧化工艺将硅基片表面氧化,在侧壁上形成SiO2绝缘层。
(3)利用光刻技术在Si基片的外围区域覆盖光刻胶,从而使Si基片中间位置形成一个圆形图案,且保证所述通孔位于所述圆形图案区域内。
(4)在通孔中制备阻挡层和种子层。其中,种子层由磁控溅射的Cu层和电镀的Ni层组成。Ni层的工艺参数为:Ni板作为阳极,磁控溅射的Cu层作为阴极,镀液为硫酸镍溶液,其中硫酸镍80g/L、水800mL,电流密度0.6mA·cm-2,镀制时间60s。
(5)以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜。电镀过程中,电镀液成分为:硫酸铜100g/L、氯化钠30ppm、水1000mL、聚二硫二丙烷磺酸钠5ppm、聚乙二醇30ppm、聚亚烷基亚胺15ppm。电镀溶液pH值为1.0。采用直流电镀方式的电流密度为40mA·cm-2
(6)去除外围光刻胶。
对本实施例所获得的纳米孪晶铜进行350℃退火处理,得到退火后的透射电镜照片如图9所示。我们发现在350℃时平均片层间距和晶粒尺寸都有所增加,但仍比超细晶及纳米晶的热稳定性增大了很大。

Claims (10)

1.一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法,其特征在于,该方法包括以下步骤:
(1)在硅基片上通过干法刻蚀或湿法刻蚀形成通孔;
(2)采用热氧化工艺将硅基片表面氧化,在侧壁上形成绝缘层;
(3)利用光刻技术在Si基片的外围区域覆盖光刻胶,从而使Si基片中间位置形成一个圆形图案,且保证所述通孔位于所述圆形图案区域内;
(4)在通孔中制作阻挡层和种子层;
(5)以Cu板为阳极,以种子层为阴极,采用直流电镀的方式在通孔内生长纳米孪晶铜;所述孪晶铜呈{111}定向织构,与基底平面平行,孪晶片层间距为40~90nm;
(6)去除外围光刻胶。
2.根据权利要求1所述的硅通孔填充方法,其特征在于,所述步骤(4)中,所述阻挡层为Ti层,由磁控溅射方法制备。
3.根据权利要求1所述的硅通孔填充方法,其特征在于,所述步骤(4)中,所述种子层为导电薄膜,采用Cu层和Ni层,其中,Cu层由磁控溅射方法制备,Ni层由电镀方式制备。
4.根据权利要求3所述的硅通孔填充方法,其特征在于,制备Ni层的工艺参数为:Ni板作为阳极,磁控溅射的Cu层作为阴极,镀液为硫酸镍溶液,其中硫酸镍50g/L~100g/L,水800~1000mL,电流密度0.4~0.8mA·cm-2,镀制时间50s~60s。
5.根据权利要求1所述的硅通孔填充方法,其特征在于,所述步骤(5)中,在电镀铜前,使用质量百分比浓度为10%的稀硫酸对所述阴极进行表面活化。
6.根据权利要求1所述的硅通孔填充方法,其特征在于,所述步骤(5)中,待镀样片与阳极Cu板保持在正对位置。
7.根据权利要求1所述的硅通孔填充方法,其特征在于,所述步骤(5)中,电镀液的成分为:硫酸铜80g/L~110g/L、氯化钠20~50ppm、水1000~1500mL、加速剂1~10ppm、抑制剂20~40ppm、整平剂10~20ppm,其中加速剂与抑制剂的浓度比为1.5∶9~2∶9。
8.根据权利要求7所述的硅通孔填充方法,其特征在于,所述加速剂为聚二硫二丙烷磺酸钠;所述抑制剂为聚乙二醇;所述整平剂为聚亚烷基亚胺。
9.根据权利要求7所述的硅通孔填充方法,其特征在于,所述步骤(5)中,电镀液pH值为1.0;直流电镀的电流密度为20~40mA·cm-2
10.根据权利要求1所述的硅通孔填充方法,其特征在于,所述孪晶铜呈{111}定向织构,与基底平面平行,孪晶片层间距为40~90nm。
CN201911333631.4A 2019-12-20 2019-12-20 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法 Pending CN113013085A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911333631.4A CN113013085A (zh) 2019-12-20 2019-12-20 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911333631.4A CN113013085A (zh) 2019-12-20 2019-12-20 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法

Publications (1)

Publication Number Publication Date
CN113013085A true CN113013085A (zh) 2021-06-22

Family

ID=76382966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911333631.4A Pending CN113013085A (zh) 2019-12-20 2019-12-20 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法

Country Status (1)

Country Link
CN (1) CN113013085A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180523B1 (en) * 1998-10-13 2001-01-30 Industrial Technology Research Institute Copper metallization of USLI by electroless process
KR101204275B1 (ko) * 2012-06-15 2012-11-23 한양대학교 에리카산학협력단 열응력 완화형 관통전극 형성방법 및 열응력 완화형 관통전극
US20130122326A1 (en) * 2011-11-16 2013-05-16 National Chiao Tung University Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
US20140217590A1 (en) * 2013-02-05 2014-08-07 Lam Research Corporation Through silicon via metallization
CN104392939A (zh) * 2014-10-27 2015-03-04 中国科学院上海微系统与信息技术研究所 纳米孪晶铜再布线的制备方法
US20160258078A1 (en) * 2015-03-04 2016-09-08 Lam Research Corporation Pretreatment of nickel and cobalt liners for electrodeposition of copper into through silicon vias
CN106298634A (zh) * 2015-05-15 2017-01-04 中国科学院金属研究所 一种定向生长纳米孪晶铜的通孔填充方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180523B1 (en) * 1998-10-13 2001-01-30 Industrial Technology Research Institute Copper metallization of USLI by electroless process
US20130122326A1 (en) * 2011-11-16 2013-05-16 National Chiao Tung University Electrodeposited Nano-Twins Copper Layer and Method of Fabricating the Same
KR101204275B1 (ko) * 2012-06-15 2012-11-23 한양대학교 에리카산학협력단 열응력 완화형 관통전극 형성방법 및 열응력 완화형 관통전극
CN103730445A (zh) * 2012-10-16 2014-04-16 财团法人交大思源基金会 具有双晶铜线路层的电路板及其制作方法
US20140217590A1 (en) * 2013-02-05 2014-08-07 Lam Research Corporation Through silicon via metallization
CN104392939A (zh) * 2014-10-27 2015-03-04 中国科学院上海微系统与信息技术研究所 纳米孪晶铜再布线的制备方法
US20160258078A1 (en) * 2015-03-04 2016-09-08 Lam Research Corporation Pretreatment of nickel and cobalt liners for electrodeposition of copper into through silicon vias
CN106298634A (zh) * 2015-05-15 2017-01-04 中国科学院金属研究所 一种定向生长纳米孪晶铜的通孔填充方法及其应用

Similar Documents

Publication Publication Date Title
US10094033B2 (en) Electrodeposited nano-twins copper layer and method of fabricating the same
Xiao et al. A nanosheet array of Cu2Se intercalation compound with expanded interlayer space for sodium ion storage
TWI522499B (zh) A method of modifying the reduced graphene layer on the surface of the substrate
Bao et al. Synthesis and applications of two-dimensional hexagonal boron nitride in electronics manufacturing
TWI455663B (zh) 具有雙晶銅線路層之電路板及其製作方法
CN100481380C (zh) 半导体元件中内连线结构的制造方法
CN106977771B (zh) 氮化硼-银/纤维素复合材料及其制备方法
Lei et al. CNTs–Cu composite layer enhanced Sn–Cu alloy as high performance anode materials for lithium-ion batteries
CN108109955A (zh) 一种用于填充垂直硅通孔tsv的复合材料及其填充方法
Weng et al. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core–shell nanowires
TWI521104B (zh) 奈米雙晶鎳金屬層、其製備方法、及包含其之電性連接結構、基板及封裝結構
Lu et al. Recent development of graphene-based materials for cathode application in lithium batteries: a review and outlook
WO2017090161A1 (ja) 酸性銅めっき液、酸性銅めっき物および半導体デバイスの製造方法
CN113013085A (zh) 一种生长具有高温稳定性的纳米孪晶铜的硅通孔填充方法
JP5648897B2 (ja) 貫通孔を形成しためっき層付シリコン基板の製造方法
Miao et al. Fabrication of highly ordered porous nickel oxide anode materials and their electrochemical characteristics in lithium storage
KR20090110712A (ko) 알루미늄 호일을 이용한 관통형 전극 형성방법
CN111180387A (zh) 硅通孔互连结构及其制备方法
TWI741466B (zh) 利用水/醇溶性有機添加劑製備之奈米雙晶層及其製備方法
CN109244053B (zh) 一种提高tsv热机械可靠性的复合结构及其制造方法
WO2021022337A1 (en) A solid-state supercapacitor and a process for producing a solid-state supercapacitor
Zhan et al. Obstructed Growth of Interfacial Intermetallic Compounds on (011) and (111)-Oriented Nanotwinned Cu Substrates
JP3488193B2 (ja) 銅薄膜のメッキ方法
TW202144622A (zh) 利用水/醇溶性有機添加劑製備之奈米雙晶層及其製備方法
CN112018031B (zh) 一种基于铜纳米粒子填充SiC通孔的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination