CN113005481B - 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法 - Google Patents

一种电脱氧制备生物医用锌锆或镁锌锆合金的方法 Download PDF

Info

Publication number
CN113005481B
CN113005481B CN202110123499.5A CN202110123499A CN113005481B CN 113005481 B CN113005481 B CN 113005481B CN 202110123499 A CN202110123499 A CN 202110123499A CN 113005481 B CN113005481 B CN 113005481B
Authority
CN
China
Prior art keywords
electrolysis
zinc
zro
alloy
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110123499.5A
Other languages
English (en)
Other versions
CN113005481A (zh
Inventor
李胜军
陈增
熊文娟
李娜
彭亚茹
张普涛
刘梅月
孙家祺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202110123499.5A priority Critical patent/CN113005481B/zh
Publication of CN113005481A publication Critical patent/CN113005481A/zh
Application granted granted Critical
Publication of CN113005481B publication Critical patent/CN113005481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种电脱氧制备生物医用锌锆或镁锌锆合金的方法,其利用熔盐电脱氧方法,在低共晶组成CaCl2‑NaCl熔盐体系中,以固态ZnO‑ZrO2或MgO‑ZnO‑ZrO2混合氧化物作为阴极,以石墨棒为阳极,在惰性气氛、电解电压3.0‑3.3V、电解温度550‑800℃的条件下进行电解,通过控制ZnO‑ZrO2或MgO‑ZnO‑ZrO2混合氧化物的成分比例制备获得锌锆或镁锌锆合金。该方法解决了传统方法制备合金过程中合金成分容易出现偏析的问题,而且操作温度低,工艺简单,有效的降低了生产成本,ZnO及ZrO2的添加提高了导电率较低的MgO的电脱氧能力。

Description

一种电脱氧制备生物医用锌锆或镁锌锆合金的方法
技术领域
本发明属于冶金制备技术领域,尤其涉及一种采用固态ZnO/ZrO2或MgO/ZnO/ZrO2混合氧化物作为阴极、熔盐电脱氧制备生物医用锌锆Zn-Zr或镁锌锆Mg-Zn-Zr合金的方法。
背景技术
可降解生物医用锌合金具有较低的生物毒性和可控的降解速度,同时具有良好的生物相容性,价格低廉,有巨大的潜力成为新一代可降解金属。锌(Zn)由于具有中等的生物降解性和良好的生物相容性,作为可生物降解金属被广泛地研究。然而,纯锌的力学性能不能满足植入材料的实际要求。锆由于其生物相容性、骨相容性、低离子细胞毒性和良好的耐蚀性,是一种重要的生物医学材料。在Zn金属中加入Zr可以细化晶粒,提高合金的强度和降解性能。此外,镁也是锌合金的一种常见合金元素,能有效地提高锌合金的力学性能和生物相容性。熔盐电脱氧技术具有较简单、廉价、环保等优点,此外,纯Zn的力学性能不高,通过添加合金元素能够有效改善合金的力学性能。在Zn合金中添加Zr元素,可以有效减小晶粒尺寸,且Zr对细胞的毒性较小,同时耐腐蚀性比较好。同时,作为人体中重要的组成元素之一,Mg能够参与很多的人体生理过程,且在Zn合金中添加镁元素能有效提高合金的力学性能。Zn-Zr及Mg-Zn-Zr合金作为极有发展前景的生物可降解金属材料,受到研究者的广泛关注。
利用熔盐电脱氧制备合金的方法以价格低廉的金属氧化物作为原料,在高熔点金属冶金和熔点相差较大的合金冶炼方面具有一定的优势,制备的合金成分较均匀且容易控制,可有望解决许多难熔合金在传统制备方法中存在的偏析等问题。而且可以在低于金属熔点的温度下进行,生产工艺简单且能耗较低。
本发明选用CaCl2-NaCl熔盐体系,通过控制阴极前驱体材料中氧化物的成分比例、PVB含量、熔盐温度和电解时间、电解电压等,为制备锌锆合金或镁锌锆合金提供理论依据和实验数据。
发明内容
本发明目的在于克服现有技术缺陷,提供一种采用固态ZnO/ZrO2或MgO/ZnO/ZrO2混合氧化物作为阴极、熔盐电脱氧制备生物医用锌锆Zn-Zr或镁锌锆Mg-Zn-Zr合金的方法,该方法解决了传统方法制备合金过程中合金成分容易出现偏析的问题,而且操作温度底,工艺简单,有效的降低了生产成本,并提高了导电率较低的MgO的电脱氧能力。
为实现上述目的,本发明采用如下技术方案:
一种电脱氧制备生物医用锌锆或镁锌锆合金的方法,其利用熔盐电脱氧方法,在低共晶组成CaCl2-NaCl熔盐体系中,以固态ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物作为阴极,以石墨棒为阳极,在惰性气氛、电解电压3.0-3.3V、电解温度550-800℃的条件下进行电解,通过控制ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物的成分比例制备获得锌锆或镁锌锆合金。
上述电脱氧制备生物医用锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比4:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的ZrC。
上述电脱氧制备生物医用锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比3:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的CaZn13及ZrC。
上述电脱氧制备生物医用锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比2:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的CaZn13
上述电脱氧制备生物医用锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为Zr3Zn3OZr3O和少量的锌锆合金。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解1小时,电解产物为Mg-Zn-Zr合金、CaZn13、MgO和CaZrO3;电解3小时,电解产物为Mg-Zn-Zr合金、CaZn13和MgO。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解7小时,电解产物为Mg-Zn-Zr合金及少量的CaZn13、MgO和ZrC;电解11小时,电解产物为Mg-Zn-Zr合金及少量的CaZn13和ZrC。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:2:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为CaZrO3、MgO和Zn。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:3:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为Mg-Zn-Zr合金和少量的MgO及少量的CaZn13和ZrC。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为Mg-Zn-Zr合金和少量的CaZn13和ZrC。
上述电脱氧制备生物医用镁锌锆合金的方法,具体的:在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:5:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为Mg-Zn-Zr合金和少量的ZrC。
在实际电解过程中,制作阴极时,添加质量浓度1-10%的PVB乙醇溶液作为粘结剂,将ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物在8MPa的压强下压制成直径约1.3cm的阴极片,阴极片的质量为0.25克。通过控制电解温度、电解时间、电解电压以及ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物的成分比例来制备获得不同成分含量的锌锆或镁锌锆合金。
和现有技术相比,本发明的有益效果如下:
1)本发明选用CaCl2-NaCl熔盐体系,采用氧化镁、氧化锌和氧化锆作为固态阴极前驱体材料,通过控制压制工艺、阴极氧化物组成、熔盐温度、电解时间和电解电压,在低温550-800℃利用电脱氧法制备了锌锆或镁锌锆合金。此外,利用本发明还可以改善传统冶金方法制备锌锆及镁锌锆合金时温度高、能耗大、合金分布不均匀的弊端;
2)本发明的理论依据为:一方面根据热力学数据计算氧化镁、氧化锌、氧化锆、CaCl2和NaCl的分解电压;另一方面根据熔盐体系中ZnO、ZrO2、MgO/ZnO、MgO/ZrO2氧化物在鉬微腔阴极上的循环伏安曲线测试结果,通过调控ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物成分比例、电解时间及温度等参数,制备锌锆、或镁锌锆合金;
3)本发明方法不仅能够解决现有传统方法制备锌锆/镁锌锆合金过程中存在合金成分容易出现偏析的问题,而且操作温度底,工艺简单,有效的降低了生产成本。此外,通过改进电脱氧工艺,即通过调控电解工艺参数,提高了导电率较低的MgO的电化学脱氧能力。
附图说明
图1是在CaCl2-NaCl熔盐体系中,温度为600℃时,以光谱纯石墨棒为阳极,Pt丝为参比电极极,利用载有MgO粉末的鉬微腔阴极测量的循环伏安曲线。在阴极扫描过程中出现的还原电流R1,是由于Ca(II)还原成Ca引起的,在阳极扫描过程中出现的氧化峰O1为Ca的氧化峰,在钙离子发生电化学还原的电位范围之内,并没有其它氧化还原峰出现,说明MgO在此电位范围内并没有发生电化学还原,这应是由于MgO是绝缘体,靠与氧化物接触的金属传导电子,电化学反应界面较小,从而会影响氧化物阴极的电子传递能力,因此MgO在钙还原的电位范围之内不会发生电化学还原;
图2是在CaCl2-NaCl熔盐体系中,温度为600℃时,以光谱纯石墨棒为阳极,Pt丝为参比电极极,利用载有ZrO2(虚线)和MgO/ZrO2(实线)粉末的鉬微腔阴极测量的循环伏安曲线。在载有ZrO2粉末的微腔阴极的循环伏安曲线上,在阴极扫描过程中,除了出现钙的还原电流R1,还出现了还原峰R3和R4,说明锆的还原应是分两步完成的。与载有ZrO2粉末的微腔阴极相比,在载有MgO/ZrO2粉末的微腔阴极的循环伏安曲线上,在阴极扫描过程中还出现了另外一个还原峰R2,这应该是由于MgO的还原引起的。还原峰R2的出现,说明ZrO2的添加可以促进MgO的电化学还原。这是由于MgO阴极氧化物中ZrO2的添加及金属Zr的生成可以改善高温电解过程中阴极的导电性能,MgO阴极的电子传导能力和O2-的迁移速率会有所增加,从而提高了氧化镁的电化学脱氧能力;
图3是在CaCl2-NaCl熔盐体系中,温度为600℃时,以光谱纯石墨棒为阳极,Pt丝为参比电极极,利用载有ZnO粉末的鉬微腔阴极测量的循环伏安曲线。在阴极扫描过程中出现的还原电流R1,是由于ZnO还原成Zn引起的,在阳极扫描过程中出现的氧化峰O1为Zn的氧化峰;
图4是在CaCl2-NaCl熔盐体系中,温度为600℃时,以光谱纯石墨棒为阳极,Pt丝为参比电极极,利用载有MgO/ZnO粉末的鉬微腔阴极测量的循环伏安曲线。在阴极扫描过程中,除了出现ZnO的还原峰R1,还出现了MgO的还原峰R2,循环伏安结果表明ZnO的添加可以促进MgO的还原。这是由于MgO阴极氧化物中ZnO的添加及金属Zn的生成可以改善高温电解过程中阴极的导电性能,MgO阴极的电子传导能力和O2-的迁移速率会有所增加,从而提高了氧化镁的电化学脱氧能力。此外,在阴极扫描过程中还出现了还原峰R3,这是由于Ca在阴极上的析出所引起的。在阳极扫描过程中出现的O1、O2及O3分别相应于Zn、Mg、Ca的氧化峰;
图5为实施例1、2、3和4制备所得电解产物的XRD图谱;
图6为实施例3制备所得电解产物Zn-Zr二元合金样品的SEM图谱;
图7为实施例3制备所得电解产物Zn-Zr二元合金样品的EDS图谱;
图8为实施例5至8以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在不同电解时间(1、3、7、11h)后所得电解产物的XRD图谱;
图9为实施例9至12分别以摩尔比1:2:1、1:3:1、1:4:1、1:5:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的XRD图谱;
图10为实施例11以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的SEM图谱;
图11为实施例11以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的面扫描图谱(a)Zn、(b)Zr、(c)Mg及EDS图谱(d)。
具体实施方式
以下结合实施例对本发明的技术方案作进一步地详细介绍,但本发明的保护范围并不局限于此。
下述实施例中,制作阴极时采用本领域常规技术即可,如,可添加质量浓度1-10%的PVB乙醇溶液作为粘结剂(PVB添加量为阴极混合氧化物总质量的2-5%),将不同摩尔比的ZnO-ZrO2或MgO-ZnO-ZrO2混合氧化物在8MPa的压强下压制成直径约1.3cm的阴极片(阴极片的质量为0.25g),于900℃烧结4h获得。
实施例1
一种电脱氧制备生物医用锌锆二元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比4:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下最后获得电解产物为锌锆合金和少量的ZrC。
实施例2:
一种电脱氧制备生物医用锌锆二元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比3:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下最后获得电解产物为锌锆合金和少量的CaZn13及ZrC。
实施例3:
一种电脱氧制备生物医用锌锆二元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比2:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为锌锆合金和少量的CaZn13
实施例4:
一种电脱氧制备生物医用锌锆二元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为Zr3Zn3OZr3O和少量的锌锆合金。
图5给出了实施例1、2、3和4制备所得电解产物的XRD图谱。当ZnO与ZrO2的摩尔比大于等于2:1时,得到了电解产物较干净的锌锆合金相,产物中没有ZnO、ZrO2或中间氧化物相。当ZnO和ZrO2的摩尔比降低到1:1时,产物为Zr3Zn3OZr3O和少量的锌锆合金。氧化物相存在剩余应是由于氧化物阴极电导率随ZrO2含量的增加而降低所致。这表明,在氧化物前驱体材料中加入少量ZnO时,阴极前驱体氧化物的电化学脱氧能力较低。此外中间产物Zr3O的存在也进一步验证了循环伏安曲线的测试结果,Zr的还原应是分两步完成的,即CaZrO3/Zr3O和Zr3O/Zr两步电化学还原过程。
图6给出了实施例3制备所得电解产物Zn-Zr合金样品的SEM图谱。Zn-Zr合金在产品中分布均匀。
图7给出了实施例3制备所得电解产物Zn-Zr二元合金样品的EDS图谱。从EDS图谱可以看出,电解产物由Zn和Zr两种元素组成,且EDS成分分析表明Zn和Zr的摩尔比例为68.7:31.3,接近于前驱体氧化物中ZnO和ZrO2 的原始比例2:1。
实施例5:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解1小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金、CaZn13、MgO和CaZrO3
实施例6:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解3小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金、CaZn13和MgO。
实施例7:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解7小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金及少量的CaZn13、MgO和ZrC。
实施例8:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解11小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金及少量的CaZn13和ZrC。
实施例9:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:2:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为CaZrO3、MgO和Zn。
实施例10:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:3:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金和少量的MgO、CaZn13及ZrC。
实施例11:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金和少量的CaZn13及ZrC。
实施例12:
一种电脱氧制备生物医用镁锌锆三元合金的方法,具体如下:
其利用熔盐电脱氧方法,在低共晶组成的CaCl2-NaCl熔盐体系(将摩尔比为53.3:46.7的CaCl2和NaCl混合加热熔化获得)中,以摩尔比1:5:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,在此电解条件下获得的电解产物为Mg-Zn-Zr合金和少量的ZrC。
图8为实施例5至8以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在不同电解时间(1、3、7、11h)后所得电解产物的XRD图谱。图8中可以看出:当电解时间为1小时时,电解产物为Mg-Zn-Zr合金、CaZn13、MgO和CaZrO3。当电解时间为3小时,电解产物为Mg-Zn-Zr合金、CaZn13和MgO。电解时间为7小时时,电解产物为Mg-Zn-Zr合金及少量的CaZn13、MgO和ZrC。电解时间为11小时时,电解产物为Mg-Zn-Zr合金及少量的CaZn13和ZrC。
图9为实施例9至12分别以摩尔比1:2:1、1:3:1、1:4:1、1:5:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的XRD图谱。图中可以看出:当前驱体氧化物摩尔比例为1:2:1时,电解产物为CaZrO3、MgO和Zn。当前驱体氧化物摩尔比例为1:3:1时,电解产物为Mg-Zn-Zr合金和少量的MgO、CaZn13及ZrC。当前驱体氧化物摩尔比例为1:4:1时,电解产物为Mg-Zn-Zr合金和少量的CaZn13及ZrC。当前驱体氧化物摩尔比例为1:5:1时,电解产物为Mg-Zn-Zr合金和少量的ZrC。
图10为实施例11以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的SEM图谱;从SEM图谱可以看出,获得的电解产物的粒径在1µm~4µm之间。
图11为实施例11以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,在电解12h后所得电解产物的面扫描图谱及EDS图谱;从面扫描图谱可以看出,在电解产物中Mg、Zn和Zr三种元素在Mg-Zn-Zr合金产品成分中分布均匀。且EDS成分分析表明Mg、Zn、Zr的摩尔比例为18.9:56.4:13.0。

Claims (1)

1.一种电脱氧制备生物医用锌锆或镁锌锆合金的方法,其特征在于,
在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比4:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的ZrC;
或者,在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比3:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的CaZn13及ZrC;
或者,在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比2:1的ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下电解12小时,电解产物为锌锆合金和少量的CaZn13
或者,在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解11小时,电解产物为Mg-Zn-Zr合金及少量的CaZn13和ZrC;
或者,在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:4:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为Mg-Zn-Zr合金和少量的CaZn13和ZrC;
或者,在摩尔比为53.3:46.7的低共晶组成CaCl2-NaCl熔盐体系中,以摩尔比1:5:1的MgO-ZnO-ZrO2混合氧化物作为阴极,以光谱纯石墨棒为阳极,在氩气气氛、电解电压3.2V、电解温度600℃的条件下;电解12小时,电解产物为Mg-Zn-Zr合金和少量的ZrC。
CN202110123499.5A 2021-01-29 2021-01-29 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法 Active CN113005481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110123499.5A CN113005481B (zh) 2021-01-29 2021-01-29 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110123499.5A CN113005481B (zh) 2021-01-29 2021-01-29 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法

Publications (2)

Publication Number Publication Date
CN113005481A CN113005481A (zh) 2021-06-22
CN113005481B true CN113005481B (zh) 2022-07-29

Family

ID=76385138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110123499.5A Active CN113005481B (zh) 2021-01-29 2021-01-29 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法

Country Status (1)

Country Link
CN (1) CN113005481B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205299A1 (en) * 2022-04-21 2023-10-26 The Research Foundation For The State University Of New York Bioresorbable zinc-based wound closure devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU589289A1 (ru) * 1976-07-07 1978-01-25 Уральский Ордена Трудового Красного Знамени Политехнический Институт Имени С.М.Кирова Способ электролитического приготовлени цинк-циркониевых композиций
CN1837411B (zh) * 2006-02-17 2010-09-08 武汉大学 一种难熔活泼金属或合金的制备方法
CN101255576A (zh) * 2007-12-07 2008-09-03 西北有色金属研究院 一种提高熔盐电解提取金属锆效率的方法
CN101358359B (zh) * 2008-08-27 2010-07-21 哈尔滨工程大学 一种电解MgCl2和K2ZrF6、ZrO2直接制备Mg-Zr合金的方法
CN102071439A (zh) * 2011-01-11 2011-05-25 哈尔滨工程大学 一种熔盐电解直接制备Mg-Zn-Zr合金的方法
CN105463515B (zh) * 2015-12-25 2018-08-03 东北大学 一种熔盐电脱氧法制备V-4Cr-4Ti合金的方法
CN110846687A (zh) * 2019-11-22 2020-02-28 龙南龙钇重稀土科技股份有限公司 一种Mg-Zn-Zr中间合金及其制备方法

Also Published As

Publication number Publication date
CN113005481A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Hyslop et al. Electrochemical synthesis of a biomedically important Co–Cr alloy
Huang et al. Regulating electrolytic Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution
KR100915729B1 (ko) 커패시터 분말
CN104011264B (zh) 氧发生用阳极及其制造方法
CN113005481B (zh) 一种电脱氧制备生物医用锌锆或镁锌锆合金的方法
JPH0733596B2 (ja) 電解セルにおいて陽極触媒として用いられる陽極触媒物質及び電解セル用陽極
CN110216282A (zh) 铜基合金触点的制备方法
Li et al. Preparation of Mg-Zr alloys through direct electro-deoxidation of MgO-ZrO2 in CaCl2-NaCl molten salt
JP2004531644A (ja) ナノ結晶性粉末形状の不活性電極材料
CN106315691A (zh) 一种具有钴缺陷的纳米Co 3O 4及其制备方法及其在电催化分解水产氧的应用
CN102230194B (zh) 一种由钨酸钙制备纳米钨粉的方法
CN105463238A (zh) 一种铜铬电触头材料及其制备方法
Jiao et al. Electrochemical synthesis of Ti5Si3 in CaCl2 melt
CN102061489B (zh) 一种电脱氧法冶炼金属钛的改进工艺
CN1940143A (zh) 一种由复合化合物制备金属材料的方法
CN107841765B (zh) 一种锌电积用阳极材料及其制备方法
KR20210040609A (ko) 다공성 Ni-Fe-Al 촉매층이 형성된 알칼리 수전해용 양극 및 그 제조방법
WO2017043992A1 (ru) Свинцово-углеродный металлический композиционный материал для электродов свинцово-кислотных аккумуляторов и способ его синтеза
Liu et al. A novel preparation of Zr–Si intermetallics by electrochemical reduction of ZrSiO 4 in molten salts
Bixia et al. Cathode preparation of electrochemical reduction process of TiO2 to titanium
CN108690919A (zh) 一种纳米冶金法制备碳纳米管和/或石墨烯增强铅基复合阳极的方法
Song et al. Cathodic phase transformations during direct electrolytic reduction of Nb2O5 in a CaCl2-NaCl-CaO melt
Salarvand et al. Hydrogen evolution activity of NiMo-MoO2 produced by mechanical milling
JPH05170446A (ja) 導電性複合酸化物及びその製造方法
Yang et al. Preparation of titanium through the electrochemical reducing Ti4O7 in molten calcium chloride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant