CN113000047B - 芬顿试剂Fe3O4/C及其制备方法和应用 - Google Patents

芬顿试剂Fe3O4/C及其制备方法和应用 Download PDF

Info

Publication number
CN113000047B
CN113000047B CN202110317717.9A CN202110317717A CN113000047B CN 113000047 B CN113000047 B CN 113000047B CN 202110317717 A CN202110317717 A CN 202110317717A CN 113000047 B CN113000047 B CN 113000047B
Authority
CN
China
Prior art keywords
fenton
solution
reagent
preparation
moo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110317717.9A
Other languages
English (en)
Other versions
CN113000047A (zh
Inventor
许维国
胡加波
韩沐竹
刘琳
韩正波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202110317717.9A priority Critical patent/CN113000047B/zh
Publication of CN113000047A publication Critical patent/CN113000047A/zh
Application granted granted Critical
Publication of CN113000047B publication Critical patent/CN113000047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开芬顿试剂Fe3O4/C及其制备方法和应用。使用简单的水热法合成铁基金属有机骨架,随后进行热处理,得到Fe3O4/C,并首次将其作为芬顿试剂应用于电芬顿体系。氮气吸附实验表明该材料中存在大量介孔,通过计算得到此材料的BET比表面积为73.3310m2/g。磁性测试实验结果证明该材料具有较大的磁性,从而易于在电芬顿实验后进行回收。电芬顿实验结果表明即使在中性条件下,以Fe3O4/C为催化剂的体系对罗丹明B的去除率仍可达到55.5%,远高于传统芬顿试剂。

Description

芬顿试剂Fe3O4/C及其制备方法和应用
技术领域
本发明属于电芬顿体系电极材料制备技术领域,具体的说,涉及芬顿试剂Fe3O4/C及其制备方法和应用。
背景技术
水是维持地球上所有生命的首要需要,同时在维持生态系统方面起着关键作用。然而随着经济的飞速增长和现代工业的高速发展,水资源短缺的问题早已悄然而至。由于工业废水的大量排放,水资源短缺问题越发严重。
在各种工业化学品中,有机染料是其重要组成部分。随着印染行业的不断发展,染料废水对自然水体的污染越发严重。生活生产中涉及的染料大多数都是致癌的,这些染料若存在于哺乳动物体内,有很高的概率引起哺乳动物的癌症或肿瘤。此外,极其微量的染料(0.1mg/L)也会使水体显著变色,这会影响光线对水体的穿透,进而影响水中生物的光合作用,并且很多染料中存在的重金属、金属和芳香化合物会对一些水生动植物造成危害。同时,染料对水体中各种鱼类和微生物也具有诱变、致癌和致畸的作用。某些特定染料,如蒽醌染料,在废水中很长时间内都很难被降解。偶氮染料也会在废水中存在很长时间,并由于其具有有毒的胺基,该染料也具有毒性。这些难降解的染料长时间存在于自然界中,往往会随着生物链进入人体,从而对人体造成极大伤害。
由于具有卓越的去除污染物的能力、简便的原理以及可以原位产生H2O2等特点,电芬顿法被认为是最具吸引力的水处理技术之一,并已广泛地应用于废水处理、生物医学系统、大气过程和生物地球化学中。然而,目前电芬顿技术仍存在一些挑战,包括实际应用pH范围小、芬顿试剂不易回收等。因此,在利用电芬顿工艺强氧化效率的同时,研究者们也在努力开发新技术来应对这些挑战。非均相电芬顿技术是近年来电芬顿体系的新发展,非均相芬顿试剂可以克服传统电芬顿技术存在的问题。但目前非均相电芬顿体系普遍效率低,因此需要进一步开发具有高效催化性能的非均相芬顿试剂。
发明内容
本发明的目的是通过简单的制备方法得到一种高效的非均相芬顿试剂Fe3O4/C。
本发明的目的通过下述技术方案予以实现:芬顿试剂Fe3O4/C的制备方法,包括如下步骤:
1)在磁力搅拌下,将氯化铁水溶液加入到均苯三甲酸和氢氧化钠溶液的混合溶液中,形成悬浮液,室温下搅拌,离心收集固体物,洗涤,干燥,得Fe-BTC;
2)将Fe-BTC均匀铺在瓷舟中,置于管式炉中,在氩气氛围下进行热处理,得目标产物Fe3O4/C。
进一步的,上述的制备方法,步骤1),氢氧化钠溶液的浓度为15g/L。
进一步的,上述的制备方法,步骤1),氯化铁水溶液的浓度为50g/L。
进一步的,上述的制备方法,步骤1),氯化铁水溶液加入到均苯三甲酸和氢氧化钠溶液的混合溶液中,采用滴加的加入方式。
进一步的,上述的制备方法,步骤2),管式炉以4℃/min的升温速率进行升温。
进一步的,上述的制备方法,步骤2),所述热处理是,在600℃下煅烧2h。
本发明提供的型芬顿试剂Fe3O4/C在电芬顿法去除有机染料中的应用。
进一步的,方法如下:将MoO3-x/C/CoO纳米复合材料与PTFE粉末混合,研磨,加入少量乙醇,分散成浆状物,涂覆在碳毡表面,然后置于80℃烘箱中烘干,制得电芬顿阴极;以相同面积的铂片为阳极,以硫酸钠溶液为电解液,并用1M硫酸调节电解液pH至3.00,之后向电解液中加入Fe3O4/C作为芬顿试剂和有机染料,将电极连接到电源后进行实验,电流密度为12mA/cm2,时间为1h。
进一步的,所述MoO3-x/C/CoO纳米复合材料的制备方法包括如下步骤:
1)(NH4)6Mo7O24.4H2O溶于去离子水中,磁力搅拌30min后,加入硝酸,继续搅拌30min后,将所得物移入高压釜中行于180℃下加热24h水热反应,离心,洗涤,干燥,得MoO3纳米棒;
2)将Co(NO3)2.6H2O分散在去离子水中作为溶液A,将二甲基咪唑和PVP分散在去离子水中作为溶液B;将溶液A和溶液B分别在室温下磁搅拌30min,然后在溶液B中加入MoO3纳米棒,继续搅拌形成溶液C;将溶液A快速倒入溶液C中,室温搅拌30min后,离心,洗涤,干燥,得MoO3/ZIF-67;
3)将步骤2)所得MoO3/ZIF-67在氩气氛围下进行热处理,加热速率为4℃/min,得MoO3-x/C/CoO纳米复合材料。
本发明的有益效果是:
1、本发明制备的Fe3O4/C的表面由排列不规则的纳米颗粒组成,并且煅烧后有机骨架衍生碳包覆在Fe3O4表面,因此可以限制铁浸出,提高了非均相芬顿试剂的重复使用率。
2、本发明制备的Fe3O4/C中存在大量介孔,通过计算,其BET比表面积为73.3310m2/g,丰富的孔隙和较高的比表面积增加了反应的活性位点。
3、本发明制备的Fe3O4/C具有较强的磁性,为非均相芬顿试剂的回收提供便利,极大节约了回收成本和回收时间。
4、本发明提供的非均相芬顿试剂制备方法简单,价格低廉。
5、本发明提供的非均相芬顿试剂与传统芬顿试剂对比,该试剂在中性条件下有更好的催化性能。
附图说明
图1是Fe-BTC(a)和Fe3O4/C(b)的扫描电镜图。
图2是Fe-BTC和Fe3O4/C的X射线粉末衍射图。
图3是Fe3O4/C的氮气吸附脱附等温曲线(a)和孔径分布(b)图。
图4是Fe3O4/C的磁性测试结果。
图5是罗丹明B去除率曲线。
图6是Fe3O4/C循环使用能力测试结果。
具体实施方式
实施例1 Fe3O4/C纳米材料
(一)制备方法如下
1、Fe-BTC前驱体的合成
将1.3g均苯三甲酸溶解在由50g去离子水和0.75g氢氧化钠组成的氢氧化钠水溶液中,得到无色溶液1。
将2.5g六水氯化铁溶于50g去离子水中制备黄橙色溶液2。
在磁力搅拌下,将溶液2逐滴滴入溶液1中,形成棕色悬浮液。将得到的悬浮液在室温下搅拌两小时,离心回收固体产物。用去离子水和无水乙醇多次洗涤上述得到的固体产物,并将其置于室温下干燥,得到铁基金属有机骨架Fe-BTC。
2、Fe3O4/C的合成
将上述所得的Fe-BTC粉末均匀铺在瓷舟中,之后将装有Fe-BTC的瓷舟置于管式炉。向管式炉中通入氩气(Ar),待氩气流动稳定后设置加热参数,加热速率为4℃/min,最终在600℃下保持2小时。待冷却至室温后,得到最终产物Fe3O4/C。
(二)性质表征
图1为Fe-BTC和Fe3O4/C的扫描电镜图。图1中a可以看到Fe-BTC材料表面由排列不规则的纳米颗粒组成。图1中b为Fe-BTC煅烧后生成的Fe3O4/C扫描电镜图。从图中可以看出Fe3O4/C的形貌较Fe-BTC并未发生很大改变,同样由不规则的纳米颗粒组成。此外,煅烧后Fe-BTC的有机骨架碳化坍塌覆盖在Fe3O4表面,从而限制铁浸出,提高了芬顿试剂的重复使用率。
图2为Fe-BTC和Fe3O4/C的X射线粉末衍射图。通过与以往文献的XRD结果和标准卡片对比,说明本实验成功合成了Fe-BTC和Fe3O4/C材料,并且尖锐的衍射峰表明Fe3O4/C具有良好的结晶度。。
图3为Fe3O4/C的氮气吸附脱附等温曲线和孔径分布图。其中高压区域的滞后环是介孔材料的典型特征,表明Fe3O4/C材料中存在大量介孔。此外Fe3O4/C具有较大的比表面积,通过计算可知其BET比表面积为73.3310m2/g。丰富的孔隙及较高的比表面积增加了反应的活性位点,促进了H2O2与Fe(II)反应,从而增加了·OH的产量,提高了罗丹明B的去除率。图3中b为BJF法微分积分孔体积孔径对数分布图,与图3中a对应,同样说明复合材料中存在大量介孔。
图4为Fe3O4/C的磁性测试结果。能够看到即使相隔一定距离,Fe3O4/C材料仍可以被磁铁吸附,表明该材料具有较高的磁性。固体芬顿试剂往往需要回收后反复进行使用,Fe3O4/C具有较高的磁性,可以为电芬顿实验结束后芬顿试剂的回收提供便利,从而极大节约回收成本和回收时间。
实施例2芬顿试剂Fe3O4/C在电芬顿法去除有机染料中的应用
(一)MoO3-x/C/CoO纳米复合材料的制备,方法如下
1、MoO3纳米棒的合成
将4mmol(NH4)6Mo7O24·4H2O溶于80ml去离子水中,磁力搅拌30min,得到均匀溶液。随后向上述溶液中加入12ml硝酸,继续搅拌30min后,将所得反应物移入高压釜中,置于180℃烘箱中加热24小时。取出高压釜,待其冷却至室温后用离心机离心收集产品。然后分别用无水乙醇、去离子水洗涤三次,所得物置于60℃烘箱中烘干,得MoO3纳米棒。
2、MoO3/ZIF-67前驱体的合成
将0.6g Co(NO3)2·6H2O分散在40mL去离子水中作为溶液A。
将1.3g二甲基咪唑和0.2g聚乙烯吡咯烷酮(PVP)微粉分散在20mL去离子水中作为溶液B。
将溶液A和溶液B分别在室温下搅拌30min。搅拌结束后向溶液B中加入0.3g MoO3纳米棒,继续搅拌形成溶液C。最后将溶液A快速倒入溶液C中,在室温下搅拌30min后,通过离心分离得到产品,用无水乙醇洗涤三次。将洗涤后的产物置于60℃烘箱中烘干,得MoO3/ZIF-67前驱体。
3、MoO3-x/C/CoO的合成
将MoO3/ZIF-67前驱体均匀铺在瓷舟中,之后将装有MoO3/ZIF-67的瓷舟置于管式炉。向管式炉中通入氩气(Ar),待氩气流动稳定后设置加热参数,加热速率为4℃/min,最终在600℃下保持2小时。待冷却至室温后,得到最终产物MoO3-x/C/CoO纳米复合材料。
(二)去除有机染料
方法如下:
1、碳毡预处理
实验开始前先对商用碳毡进行预处理,去除商用碳毡表面的杂质及油脂。具体方法如下:将购买的碳毡裁剪为2.5cm×2cm大小,先浸泡在丙酮中超声清洗30min,然后放入去离子水中超声洗涤30min。清洗后的碳毡置于80℃烘箱中烘干24h备用。
2、电极制备
用电子天平称取一定质量的MoO3-x/C/CoO粉末,同时按质量比8.5:1称取聚四氟乙烯微粉(PTFE)。将MoO3-x/C/CoO粉末和聚四氟乙烯微粉混合,并用研钵研磨均匀,加入少量无水乙醇使之分散成浆状物,随后将混合的浆状物均匀涂覆在预处理后的碳毡表面,最后置于75℃烘箱中烘干4小时,得到MoO3-x/C/CoO@CF电极。
3、电芬顿实验
以MoO3-x/C/CoO@CF为阴极,相同面积的铂片为阳极,电极间距为1.5cm,200ml0.05mol/L的硫酸钠溶液为电解液,并用氢氧化钠溶液调节电解液pH至7.00。随后向电解液中加入0.02g Fe3O4/C作为芬顿试剂和0.01g有机染料罗丹明B。最后将电极连接到恒流外加电源上进行电芬顿实验,电流密度为12mA/cm2,实验过程中通过曝气机对电解液持续曝气,以维持电解液中的溶解氧浓度。每次实验时间为1小时。以芬顿试剂硫酸亚铁作为对比。
(三)性能检测
图5为罗丹明B去除率曲线。以Fe3O4/C为芬顿试剂,在中性条件下处理一小时后,罗丹明B的去除率可达到55.5%。作为对照,在相同实验条件下使用传统芬顿试剂硫酸亚铁,罗丹明B的去除率只有30.6%。实验结果表明即使在中性条件下Fe3O4/C也能有效地发挥催化作用,催化分解H2O2得到·OH,从而提高罗丹明B的去除率。
图6为芬顿试剂循环使用能力测试结果。用同一芬顿试剂连续进行三次上述实验,实验结果如图6所示。三次实验的罗丹明B去除率依次为55.5%、50.9%、49.5%。通过计算可知芬顿试剂使用三次后,其性能为初次使用的89.2%,表明该芬顿试剂有良好的循环使用能力。本次实验中芬顿试剂的回收方法如下:由于Fe3O4/C的强磁性,每次实验结束后用干净的搅拌子吸附芬顿试剂,完全吸附后用少量去离子水将吸附的芬顿试剂冲洗掉,以备下次使用。

Claims (7)

1.一种芬顿试剂Fe3O4/C在电芬顿法去除有机染料中的应用,其特征在于,方法如下:将MoO3-x/C/CoO纳米复合材料与PTFE粉末混合,研磨,加入少量乙醇,分散成浆状物,涂覆在碳毡表面,然后置于80℃烘箱中烘干,制得电芬顿阴极;以相同面积的铂片为阳极,以硫酸钠溶液为电解液,并用1M硫酸调节电解液pH至3.00,之后向电解液中加入芬顿试剂Fe3O4/C和有机染料,将电极连接到电源后进行电芬顿实验,电流密度为12 mA/cm2,时间为1h;
所述芬顿试剂Fe3O4/C的制备方法,包括如下步骤:
1)磁力搅拌下,将氯化铁水溶液加入到均苯三甲酸和氢氧化钠溶液的混合溶液中,形成悬浮液,室温下搅拌,离心收集固体物,洗涤,干燥,得Fe-BTC;
2)将Fe-BTC均匀铺在瓷舟中,置于管式炉中,在氩气氛围下进行热处理,得目标产物Fe3O4/C。
2.根据权利要求1所述的应用,其特征在于,所述MoO3-x/C/CoO纳米复合材料的制备方法包括如下步骤:
1)(NH4)6Mo7O24·4H2O溶于去离子水中,磁力搅拌30min后,加入硝酸,继续搅拌30min后,将所得物移入高压釜中,于180℃下加热24h进行水热反应,离心,洗涤,干燥,得MoO3纳米棒;
2)将Co(NO3)2·6H2O分散在去离子水中作为溶液A,将二甲基咪唑和PVP分散在去离子水中作为溶液B;将溶液A和溶液B分别在室温下磁搅拌30min,然后在溶液B中加入MoO3纳米棒,继续搅拌形成溶液C;将溶液A快速倒入溶液C中,室温搅拌30min后,离心,洗涤,干燥,得MoO3/ZIF-67;
3)将步骤2)所得MoO3/ZIF-67在氩气氛围下进行热处理,加热速率为4℃/min,得MoO3-x/C/CoO纳米复合材料。
3.根据权利要求1所述的应用,其特征在于,所述芬顿试剂Fe3O4/C的制备方法中,步骤1),氢氧化钠溶液的浓度为15g/L。
4.根据权利要求1所述的应用,其特征在于,所述芬顿试剂Fe3O4/C的制备方法中,步骤1),氯化铁水溶液的浓度为50g/L。
5.根据权利要求1所述的应用,其特征在于,所述芬顿试剂Fe3O4/C的制备方法中,步骤1),氯化铁水溶液加入到均苯三甲酸和氢氧化钠溶液的混合溶液中,采用滴加的加入方式。
6.根据权利要求1所述的应用,其特征在于,所述芬顿试剂Fe3O4/C的制备方法中,步骤2),管式炉以4℃/min的升温速率进行升温。
7.根据权利要求1所述的应用,其特征在于,所述芬顿试剂Fe3O4/C的制备方法中,步骤2),所述热处理是在600℃下煅烧2h。
CN202110317717.9A 2021-03-25 2021-03-25 芬顿试剂Fe3O4/C及其制备方法和应用 Active CN113000047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110317717.9A CN113000047B (zh) 2021-03-25 2021-03-25 芬顿试剂Fe3O4/C及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110317717.9A CN113000047B (zh) 2021-03-25 2021-03-25 芬顿试剂Fe3O4/C及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113000047A CN113000047A (zh) 2021-06-22
CN113000047B true CN113000047B (zh) 2023-05-26

Family

ID=76406850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110317717.9A Active CN113000047B (zh) 2021-03-25 2021-03-25 芬顿试剂Fe3O4/C及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113000047B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040096203A (ko) * 2003-05-07 2004-11-16 한국과학기술연구원 도전성 물질, 금속 산화물 또는 이들의 혼합물로 표면처리된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그제조방법
CN103908947A (zh) * 2014-04-03 2014-07-09 上海应用技术学院 一种油水分离用磁性多孔碳/氧化铁纳米复合材料的制备方法
CN108358285A (zh) * 2018-03-26 2018-08-03 黑龙江大学 一种Fe3O4/生物质碳阴极电降解水中头孢他啶的方法
CN111111661A (zh) * 2019-12-30 2020-05-08 南开大学 一种适用非均相电芬顿的金属有机骨架衍生铁碳催化剂及其制备方法
CN111495367A (zh) * 2020-06-01 2020-08-07 西安科技大学 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040096203A (ko) * 2003-05-07 2004-11-16 한국과학기술연구원 도전성 물질, 금속 산화물 또는 이들의 혼합물로 표면처리된 양극 활물질, 이를 이용한 양극과 리튬전지, 및 그제조방법
CN103908947A (zh) * 2014-04-03 2014-07-09 上海应用技术学院 一种油水分离用磁性多孔碳/氧化铁纳米复合材料的制备方法
CN108358285A (zh) * 2018-03-26 2018-08-03 黑龙江大学 一种Fe3O4/生物质碳阴极电降解水中头孢他啶的方法
CN111111661A (zh) * 2019-12-30 2020-05-08 南开大学 一种适用非均相电芬顿的金属有机骨架衍生铁碳催化剂及其制备方法
CN111495367A (zh) * 2020-06-01 2020-08-07 西安科技大学 一种磁性聚苯胺-多孔碳-Fe3O4光芬顿催化剂的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fe3O4 nanoparticle-encapsulated mesoporous carbon composite: An efficient heterogeneous Fenton catalyst for phenol degradation;Angamuthu Mani et al.;《Environ Sci Pollut Res》;第25卷;摘要和第20421页 *
具有介孔壳层的空心Fe3O4/碳MOFs衍生材料用于储锂(英文);伊秋颖等;Science Bulletin;第65卷(第03期);摘要和试验部分 *

Also Published As

Publication number Publication date
CN113000047A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN104722276B (zh) 一种瓜环/氧化石墨烯磁性复合材料及其制备方法
CN109292883A (zh) 一种石墨化生物炭及其降解水体中有机污染物的方法
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
CN106824112A (zh) 一种2‑巯基嘧啶改性磁性棉秆皮吸附剂的制备
CN103285891A (zh) 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
CN110605137B (zh) 一种CdS基复合光催化剂的制备方法及其在水裂解产氢方面的应用
CN108246334B (zh) 一种功能化三元复合光催化材料及其制备方法与用途
CN112169797A (zh) 一种应用于湿式氧化的Cu-Fe双金属络合型磁性壳聚糖炭气凝胶催化剂的制备方法
CN113477270B (zh) 一种铜铁双金属限域氮掺杂碳纳米管复合材料的制备方法
CN110833817A (zh) 一种稻壳生物炭负载纳米铁材料的干式合成方法
CN108671886A (zh) 一种基于废弃生物质的磁性活性炭吸附剂及其制备方法与应用
CN108339514B (zh) 一种ldh负载纳米零价铁复合材料的制备方法及应用于提取硒/碲
CN114053991A (zh) 一种三维花瓣状镧铁复合吸附材料及其制备方法和应用
CN106809921A (zh) 一种高岭土基三维粒子电极的制备方法
CN112007644A (zh) 基于盐模板法回收芬顿污泥制备二维Fe/Fe3O4光催化剂的方法
CN110950421A (zh) 一种高比表面积的MgO微米球及其制备方法和应用
CN113908802A (zh) 一种用于有机阴离子染料吸附的铜基复合物
CN113120977A (zh) 由含镍铁电镀废水制备铁酸镍纳米材料的方法及应用
CN113000047B (zh) 芬顿试剂Fe3O4/C及其制备方法和应用
CN105236480B (zh) 一种独特形貌的HCOOBiO纳米晶及其制备方法
CN111111741A (zh) 一种多孔氮化硼负载铁纳米材料及其制备方法与应用
CN111151251A (zh) 一种Fe-Ni-Co复合类芬顿催化剂及制备方法
CN115193465A (zh) 一种氮掺杂碳二维介孔催化剂及其制备方法与应用
CN114835171A (zh) 一种多孔纳米四氧化三钴的制备方法及其应用
CN108911048B (zh) 一种多尺度凸点电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant