CN112981535A - 一种金刚石基氮化镓复合衬底的制备方法 - Google Patents

一种金刚石基氮化镓复合衬底的制备方法 Download PDF

Info

Publication number
CN112981535A
CN112981535A CN202110421403.3A CN202110421403A CN112981535A CN 112981535 A CN112981535 A CN 112981535A CN 202110421403 A CN202110421403 A CN 202110421403A CN 112981535 A CN112981535 A CN 112981535A
Authority
CN
China
Prior art keywords
diamond
gan
substrate
vacuum
composite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110421403.3A
Other languages
English (en)
Other versions
CN112981535B (zh
Inventor
郑宇亭
李成明
刘思彤
张钦睿
魏俊俊
刘金龙
陈良贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Shunde Graduate School of USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110421403.3A priority Critical patent/CN112981535B/zh
Publication of CN112981535A publication Critical patent/CN112981535A/zh
Application granted granted Critical
Publication of CN112981535B publication Critical patent/CN112981535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种金刚石基氮化镓(GaN)复合衬底的制备方法,属于半导体材料制备领域。先将金刚石膜通过摩擦抛光使表面粗糙度低于0.5 nm。接着基于真空互联射频磁控溅射和分子束外延技术进行双腔室薄膜镀制。当真空度达到1×10‑5 Pa后通入Ar和N2并保持工作真空度为0.3‑0.5 Pa,金刚石衬底温度在400℃‑600℃,射频功率在400‑500 W条件下沉积高取向c‑AlN薄层10 nm‑200 nm。随后将衬底移至分子束外延腔室,沉积20 nm‑50 nm的GaAlN过渡层后,提高温度至700‑900℃沉积所需厚度的GaN单晶层。最后对所得衬底保温处理,得到高质量金刚石基GaN复合衬底。本发明方法适用于一种金刚石基氮化镓复合衬底。

Description

一种金刚石基氮化镓复合衬底的制备方法
技术领域
本发明属于半导体材料制备领域,涉及一种金刚石基氮化镓复合衬底的制备方法。
背景技术
GaN作为继Si和GaAs之后的第三代半导体材料,具有禁带宽度大、击穿电场强度高、饱和电子速度大、热导率高以及抗辐射能力强等特点。在白光LED、短波长激光器、紫外探测器以及高温大功率器件等领域均具有极高的应用价值和发展前景。由于GaN特殊的稳定性(熔点2791 K,融解压4.5 GPa),自然界缺乏天然的GaN体单晶材料,当前的主要工作都是在SiC、Si、金刚石等衬底上异质外延进行的。然而由于GaN与衬底间的晶格错配和热失配问题,会导致异质外延GaN薄膜中具有高的位错密度。位错会形成非辐射复合中心和光散射中心,大大降低光电子器件的发光效率。除此之外,异质外延也会给器件带来了一些其他的问题,例如解理困难、散热性差等。因此开发适合规模制造的GaN优质衬底材料工艺对发展GaN半导体器件产业至关重要。GaN功率器件的高频、高功率性能优势由于有源区结热问题而未能充分发挥,传统衬底及封装散热技术难以解决目前的热瓶颈难题。而且在尺寸不断小型化和功率不断增大的发展趋势下,GaN基微波功率器件的可靠性和稳定性受到严重挑战,其中最主要的原因是 GaN基功率器件随着功率密度的增加,芯片有源区的热积累效应迅速增加,导致其各项性能指标迅速恶化,使其大功率优势未能充分发挥。受传统封装散热技术的限制无法解决这一难题,必须从GaN器件近端结热区着手提升其热传输能力。
高质量金刚石的导热系数至少大于1500 W/(m·K),甚至达到2000 W/(m·K)。与传统的SiC基GaN功率器件相比,金刚石衬底 GaN 器件具有更高的散热能力,并且有望实现GaN 基功率器件的小型化和大功率化,从而促进在射频功率器件和微波功率器件相关领域的广泛应用。金刚石基GaN器件在散热等热物性方面的优越性能使其成为半导体光电子器件和高频、高压、高温功率电子器件设备的最优材料。然而,在金刚石衬底上直接外延生长GaN结构这种方法生长难度大。金刚石衬底与 GaN 外延层的结合技术并未成熟,还存在许多难题亟需解决,距离产业化尚有距离。主流的低温键合技术和 GaN外延层背面直接沉积金刚石制备金刚石衬底 GaN 晶片外存在着工艺复杂及金刚石生长所须的氢等离子体环境损伤GaN的问题。针对金刚石衬底与 GaN外延层结合技术的研究需要克服一些当前的技术瓶颈:1)低温键合技术进行技术提升以降低金刚石加工成本,实现键合层的低热阻和高质量键合强度标;2)针对GaN外延层背面沉积技术,通过GaN外延层的高效率转移,提高金刚石形核层热导率,实现GaN外延层沉积金刚石衬底的大面积为研究方向;3)其他技术手段主要存在单晶金刚石衬底尺寸小、纳米金刚石钝化层沉积工艺与器件加工的兼容性等问题,这都将极大限制这些技术手段的发展和应用。
发明内容
本发明目的是为了避免低温键合技术和GaN外延层背面直接沉积金刚石存在的工艺复杂性及金刚石生长所须的氢等离子体环境损伤GaN的问题。
本解决上述技术问题,本发明提供如下技术方案:
一种金刚石基氮化镓复合衬底的制备方法,通过对微波等离子体或直流电弧等离子体CVD制备的大尺寸高质量CVD多晶金刚石膜进行三维动态摩擦抛光,使金刚石表面粗糙度低于0.5 nm;接着基于真空互联双腔室射频磁控溅射和分子束外延技术分别镀制高取向的c-AlN薄层,GaAlN过渡层及所需厚度的GaN单晶层,得到大尺寸高质量金刚石基GaN复合衬底,具体包括以下步骤:
步骤1:大尺寸金刚石基底的表面平整化控制及清洗;
采用高速三维动态摩擦抛光技术,利用界面摩擦高热及金属催化有效克服多晶金刚石的晶向各异性带来的抛光硬度;并在抛光后对样品进行酸煮及超声波清洗,去除表面杂质及污染;
步骤2:金刚石基底表面c-AlN薄层的镀制;
将金刚石基底置于真空互联磁控溅射腔室中进行c-AlN的镀制,得到厚度为10nm-200 nm;
步骤3:GaAlN过渡层的镀制;
在真空互联条件下,将镀制有c-AlN的金刚石基底在相同的真空条件下移至真空互联分子束外延腔室中沉积20 nm-50 nm的GaAlN过渡层;
步骤4:GaN单晶层的镀制;
在真空互联分子束外延腔室中沉积所需厚度的GaN单晶层。沉积完成后以3-10℃/min的速度缓慢降低温度至室温后将复合衬底取出;
步骤5:复合衬底的保温退火热处理;
沉积完成后对所得复合衬底在高真空或保护气氛环境下以600-900℃保温处理2-10 h。
进一步地,步骤1所述的多晶金刚石为微波等离子体或直流电弧等离子体CVD制备的多晶金刚石膜,所采用的高速三维动态摩擦抛光的外加载荷0.3 MPa-0.4 MPa,催化金属盘相对线性滑动速度在30 m/s-40 m/s,样品自传速度每两分钟到五分钟转动90°,最终达到金刚石表面粗糙度低于0.5 nm。
进一步地,步骤2所述的生长步骤为在真空度达到1 × 10-5 Pa至1 × 10-7 Pa后通入原子比为10:3至12:3的Ar和N2并保持工作真空度为0.3-0.5 Pa,控制金刚石衬底温度在400℃-600℃,射频功率在400-500 W条件下沉积高取向的c-AlN至10 nm-30 nm。
进一步地,步骤3所述的GaAlN过渡层的镀制为在600-800℃及工作真空度为1 ×10-2 Pa至1 × 10-5 Pa条件下进行。
进一步地,步骤4所述的GaN过渡层的镀制为在700-900℃及工作真空度为1 ×10-2 Pa至1 × 10-5 Pa条件下进行。
进一步地,步骤5所述的保温退火热处理步骤所需的真空度达到1 × 10-5 Pa至1× 10-7 Pa,或者在Ar气氛保护条件下进行。升温速率需保持在5-20℃/min,在达到预设保温温度并保持,在完成热处理后以3-10℃/min缓慢冷却直至室温。
本发明方法特点是首先将大尺寸高质量CVD多晶金刚石膜通过三维动态摩擦抛光使表面粗糙度低于0.5 nm。接着基于真空互联射频磁控溅射和分子束外延技术进行双腔室薄膜镀制。当真空度达到1 × 10-5 Pa至1 × 10-7 Pa后通入原子比为10:3至12:3的Ar和N2并保持工作真空度为0.3-0.5 Pa,金刚石衬底温度在400℃-600℃,射频功率在400-500 W条件下沉积高取向c-AlN薄层至10 nm-200 nm。随后在真空互联条件下将衬底移至分子束外延腔室,在600-800℃及工作真空度为1 × 10-2 Pa至1 × 10-5 Pa条件下沉积20 nm-50nm的GaAlN过渡层后,提高温度至700-900℃沉积所需厚度的GaN单晶层后缓慢降温至室温。最后对所得衬底以600-900℃保温处理2-10 h,得到高质量金刚石基GaN复合衬底。
本发明实施过程的关键在于:
1)金刚石衬底的晶体质量对AlN的c轴取向生长有重要影响。金刚石的表面缺陷,如非晶相,会使AlN的生长方向偏离c轴,导致晶粒取向的无序,进而影响随后AlGaN和GaN薄膜的质量。高速摩擦抛光在高效地实现多晶金刚石和单晶金刚石超平滑的过程控制及优化对于金刚石品质控制和应用至关重要。界面高速摩擦高热及金属催化能够有效促进金刚石表面氧化石墨化实现金刚石表面平整控制。然而过高的载荷或滑动速度可能会带来不可避免的表面/亚表面晶体损伤。基于优化得到的适中的外加载荷能够避免表面的不均匀平整化和载荷冲击所致碎片以及表面解理裂纹的生成和扩展,且同时结合适中的抛光线速度能够得到光洁且平整度的金刚石表面形貌。此外每两分钟到五分钟样品转动90°能够避免单一方向的划痕,使多晶样品每个晶粒区域所呈现出的抛光各向异性能够被均匀地、有效地抛光,实现三维动态高效平整化控制,使多晶金刚石能够达到均方根粗糙度小于0.5 nm。
2)AlN的磁控溅射制备高取向高质量薄层对随后的GaAlN和GaN层的质量同样至关重要。金刚石的晶粒尺寸对AlN的取向生长影响不大。影响薄膜最终性能的是AlN形核与初始生长的界面,除了金刚石表面质量外,存在从随机取向AlN晶粒到c轴心取向AlN晶粒的过渡区。合理的基底温度、气源气氛比例、沉积真空度等因素同样决定这c-AlN的形成和过渡区的厚度。
3)真空互联磁控溅射和分子束外延的联通样品传递与真空连续镀层对高质量薄层生长及避免界面污染至关重要。在相同的背景真空条件下不仅能够保证界面的绝对纯净,也能够有效降低可能出现的位错扩展与衍生密度,更有利于界面原子排布的平衡分布,提高各薄层的晶体质量。
4)GaAlN和GaN的镀制采用分子束外延分别在600-800℃和700-900℃的温度下实现高质量GaN的生长,从而可以在制备过程中对生成GaAlN及GaN膜的厚度进行精确控制。而且外延生长温度在相对适中的条件下可以降低界面上因不同热膨胀系数而引入的晶格缺陷。而过低的温度却不利于薄层的结晶和生长。
5)需将沉积完成后得到金刚石基GaN复合衬底置于600-900℃条件下(GaAlN和GaN生长温度范围内)进行真空或保护气体热处理以促进各薄膜及界面原子均匀排布,消除薄膜间的应力。
本发明和现有技术相比所具有如下有益效果:
本发明基于高质量大尺寸多晶自支撑金刚石膜及单晶金刚石片,提出一种金刚石基氮化镓(GaN)复合衬底的制备方法,本发明基于微波等离子体或直流电弧等离子体CVD技术制备的大尺寸高质量CVD多晶金刚石。采用优化三维动态摩擦抛光实现多晶金刚石表面的高效、高质的平整化控制,高温界面催化氧化与动态摩擦去除能够有效地得到表面粗糙度低于0.5 nm的多晶金刚石膜。由于GaN和AlN有着非常接近的晶格常数和热膨胀系数,随后基于优化后的高真空磁控溅射制备实现c-AlN高取向薄层,能够在有效屏蔽多晶金刚石表面可能存在的局域缺陷的同时实现界面失配效应的过渡减弱,逐渐形成c-AlN高质量单一取向生长面。并通过真空互联高真空环境下镀制高质量GaAlN晶体薄层为实现GaN单晶薄层提供了保证。本发明能够有效避免低温键合技术和GaN背面直接沉积金刚石存在的工艺复杂性及金刚石生长所须的氢等离子体环境损伤GaN的问题。GaN和金刚石的晶格常数和热膨胀系数差异巨大,同时晶界的存在给直接生长制备高质量GaN带来巨大困难。此外尽管单晶金刚石质量相对更高,但是尺寸和成本的限制进一步阻碍了金刚石基GaN的制备与应用。因此,该方法能够直接基于大尺寸多晶金刚石生长高质量GaN单晶,打破尺寸限制、避免高导热GaN复合衬底的逆向制备,大幅度降低金刚石基GaN高功率电子器件的制备复杂性和过程的不可控性。为实现更大尺寸、更高质量的GaN高功率、高集成电子器件及电路提供材料制备参考。
附图说明
图1为本发明的一种金刚石基氮化镓复合衬底结构。
具体实施方式
实施例一
通过微波等离子CVD技术制备高质量多晶金刚石自支撑膜。随之采用高速三维动态摩擦抛光技术,在外加载荷为0.3 MPa及适中的抛光线速度35 m/s能够得到光洁且平整度的金刚石表面形貌。其多晶金刚石能够达到粗糙度为0.46 nm。并在抛光后对样品进行酸煮及超声波清洗,去除表面杂质及污染。接着将金刚石基底置于真空互联磁控溅射腔室中进行c-AlN的镀制,在真空度达到1 × 10-7 Pa后通入原子比为10:3的Ar和N2并保持工作真空度为0.3 Pa,控制金刚石衬底温度在500℃,射频功率在400 W条件下沉积高取向的c-AlN至20 nm。在真空互联条件下,将镀制有c-AlN的金刚石基底在相同的真空条件下移至真空互联分子束外延腔室中在700 ℃条件下沉积20 nm的GaAlN过渡层。接着在真空互联分子束外延腔室中在800℃条件下沉积所需厚度的GaN单晶层。沉积完成后以5℃/min的速度降低温度至室温后取出。最后将所得复合衬底在高真空下设置升温速率需保持在10℃/min至800℃保温处理4 h,接着以3℃/min缓慢冷却直至室温。
实施例二
通过直流电弧等离子体CVD技术制备高质量多晶金刚石自支撑膜。随之采用高速三维动态摩擦抛光技术,在外加载荷为0.35 MPa及适中的抛光线速度30 m/s能够得到光洁且平整度的金刚石表面形貌。其多晶金刚石能够达到粗糙度为0.42 nm。并在抛光后对样品进行酸煮及超声波清洗,去除表面杂质及污染。接着将金刚石基底置于真空互联磁控溅射腔室中进行c-AlN薄层的镀制,在真空度达到1 × 10-6 Pa后通入原子比为12:3的Ar和N2并保持工作真空度为0.4 Pa,控制金刚石衬底温度在600℃,射频功率在500 W条件下沉积高取向的c-AlN薄层至30 nm。在真空互联条件下,将镀制有c-AlN的金刚石基底在相同的真空条件下移至真空互联分子束外延腔室中在700 ℃条件下沉积20 nm的GaAlN过渡层。接着在真空互联分子束外延腔室中在900℃条件下沉积所需厚度的GaN单晶层。沉积完成后以3℃/min的速度降低温度至室温后取出。最后将所得复合衬底在高真空下设置升温速率需保持在15℃/min至700℃保温处理2 h,接着以5℃/min缓慢冷却直至室温。
实施例三
通过直流电弧等离子体CVD技术制备高质量多晶金刚石自支撑膜。随之采用高速三维动态摩擦抛光技术,在外加载荷为0.3 MPa及适中的抛光线速度30 m/s能够得到光洁且平整度的金刚石表面形貌。其多晶金刚石能够达到粗糙度为0.50 nm。并在抛光后对样品进行酸煮及超声波清洗,去除表面杂质及污染。接着将金刚石基底置于真空互联磁控溅射腔室中进行c-AlN薄层的镀制,在真空度达到1 × 10-6 Pa后通入原子比为11:3的Ar和N2并保持工作真空度为0.3 Pa,控制金刚石衬底温度在550℃,射频功率在500 W条件下沉积高取向的c-AlN薄层至100 nm。在真空互联条件下,将镀制有c-AlN的金刚石基底在相同的真空条件下移至真空互联分子束外延腔室中在800 ℃条件下沉积20 nm的GaAlN过渡层。接着在真空互联分子束外延腔室中在900℃条件下沉积所需厚度的GaN单晶层。沉积完成后以3℃/min的速度降低温度至室温后取出。最后将所得复合衬底在高真空下设置升温速率需保持在15℃/min至850℃保温处理3 h,接着以5℃/min缓慢冷却直至室温。

Claims (6)

1.一种金刚石基氮化镓复合衬底的制备方法,其特征在于,通过对微波等离子体或直流电弧等离子体CVD制备的大尺寸高质量CVD多晶金刚石膜进行三维动态摩擦抛光,使金刚石表面粗糙度低于0.5 nm;接着基于真空互联双腔室射频磁控溅射和分子束外延技术分别镀制高取向的c-AlN薄层,GaAlN过渡层及所需厚度的GaN单晶层,得到大尺寸高质量金刚石基GaN复合衬底,具体包括以下步骤:
步骤1:大尺寸金刚石基底的表面平整化控制及清洗;
采用高速三维动态摩擦抛光技术,利用界面摩擦高热及金属催化有效克服多晶金刚石的晶向各异性带来的抛光硬度;并在抛光后对样品进行酸煮及超声波清洗,去除表面杂质及污染;
步骤2:金刚石基底表面c-AlN薄层的镀制;
将金刚石基底置于真空互联磁控溅射腔室中进行c-AlN的镀制,得到厚度为10 nm-200nm;
步骤3:GaAlN过渡层的镀制;
在真空互联条件下,将镀制有c-AlN的金刚石基底在相同的真空条件下移至真空互联分子束外延腔室中沉积20 nm-50 nm的GaAlN过渡层;
步骤4:GaN单晶层的镀制;
在真空互联分子束外延腔室中沉积所需厚度的GaN单晶层,
沉积完成后以3-10℃/min的速度缓慢降低温度至室温后将复合衬底取出;
步骤5:复合衬底的保温退火热处理;
沉积完成后对所得复合衬底在高真空或保护气氛环境下以600-900℃保温处理2-10h。
2.如权利要求1所述的金刚石基氮化镓复合衬底的制备方法,其特征在于,步骤1所述的大尺寸金刚石基底的表面平整化控制及清洗的方法中金刚石基底为微波等离子体或直流电弧等离子体CVD制备的多晶金刚石膜;所采用的高速三维动态摩擦抛光条件为外加载荷0.3 MPa-0.4 MPa,催化金属盘相对线性滑动速度在30 m/s-40 m/s,样品自传速度每两分钟到五分钟转动90°,最终达到金刚石表面粗糙度低于0.5 nm。
3.如权利要求1所述的金刚石基氮化镓复合衬底的制备方法,其特征在于,步骤2所述金刚石基底表面c-AlN的镀制需在真空度达到1 × 10-5 Pa至1 × 10-7 Pa后通入原子比为10:3至12:3的Ar和N2并保持工作真空度为0.3-0.5 Pa,控制金刚石衬底温度在400℃-600℃,射频功率在400-500 W条件下沉积高取向的c-AlN至10 nm-200 nm。
4.如权利要求1所述的金刚石基氮化镓复合衬底的制备方法,其特征在于,步骤3所述的GaAlN过渡层的镀制条件为600-800℃及工作真空度为1 × 10-2 Pa至1 × 10-5 Pa。
5.如权利要求1所述的金刚石基氮化镓复合衬底的制备方法,其特征在于,步骤4所述的GaN过渡层的镀制条件为700-900℃及工作真空度为1 × 10-2 Pa至1 × 10-5 Pa。
6.如权利要求1所述的金刚石基氮化镓复合衬底的制备方法,其特征在于,步骤5所述的保温退火热处理条件为真空度达到1 × 10-5 Pa至1 × 10-7 Pa,或者在Ar气氛保护条件下进行;升温速率需保持在5-20℃/min,在达到预设保温温度并保持,在完成热处理后以3-10℃/min缓慢冷却直至室温。
CN202110421403.3A 2021-04-20 2021-04-20 一种金刚石基氮化镓复合衬底的制备方法 Active CN112981535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110421403.3A CN112981535B (zh) 2021-04-20 2021-04-20 一种金刚石基氮化镓复合衬底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110421403.3A CN112981535B (zh) 2021-04-20 2021-04-20 一种金刚石基氮化镓复合衬底的制备方法

Publications (2)

Publication Number Publication Date
CN112981535A true CN112981535A (zh) 2021-06-18
CN112981535B CN112981535B (zh) 2021-08-24

Family

ID=76341168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110421403.3A Active CN112981535B (zh) 2021-04-20 2021-04-20 一种金刚石基氮化镓复合衬底的制备方法

Country Status (1)

Country Link
CN (1) CN112981535B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571410A (zh) * 2021-07-19 2021-10-29 太原理工大学 一种低界面热阻金刚石基氮化镓晶片材料的制备方法
CN115012040A (zh) * 2022-08-09 2022-09-06 北京大学 一种利用单晶二维材料制备大尺寸氮化物体单晶的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851733A (zh) * 2012-09-04 2013-01-02 程凯 氮化镓基材料及器件的制备系统和制备方法
US20130126903A1 (en) * 2009-06-16 2013-05-23 Chien-Min Sung DIAMOND GaN DEVICES AND ASSOCIATED METHODS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126903A1 (en) * 2009-06-16 2013-05-23 Chien-Min Sung DIAMOND GaN DEVICES AND ASSOCIATED METHODS
CN102851733A (zh) * 2012-09-04 2013-01-02 程凯 氮化镓基材料及器件的制备系统和制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张营营等: "金刚石自支撑膜衬底制备AlN薄膜的性能", 《材料热处理学报》 *
郑宇亭: "金刚石表面状态控制及应用基础研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571410A (zh) * 2021-07-19 2021-10-29 太原理工大学 一种低界面热阻金刚石基氮化镓晶片材料的制备方法
CN113571410B (zh) * 2021-07-19 2024-02-02 太原理工大学 一种低界面热阻金刚石基氮化镓晶片材料的制备方法
CN115012040A (zh) * 2022-08-09 2022-09-06 北京大学 一种利用单晶二维材料制备大尺寸氮化物体单晶的方法

Also Published As

Publication number Publication date
CN112981535B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN112981535B (zh) 一种金刚石基氮化镓复合衬底的制备方法
CN104087909B (zh) 一种立方碳化硅薄膜的制备方法
CN109585269A (zh) 一种利用二维晶体过渡层制备半导体单晶衬底的方法
JPH0856015A (ja) 半導体薄膜の形成方法
CN108428618B (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN111188090A (zh) 一种高质量氮化铝薄膜的同质外延生长方法
CN110211869A (zh) 利用二维氮化硼插入层弛豫氮化物外延结构中应力的方法
JP2022552024A (ja) ScAlMgO4基板に基づく窒化ガリウム単結晶及びその製造方法
CN115101639A (zh) InGaN基光电子器件的复合衬底及其制备方法和应用
CN117133638A (zh) 六方氮化硼上生长氮化铝薄膜及其制备方法和应用
CN111593408B (zh) 一种超大尺寸自支撑氮化镓单晶及其制备方法
CN113130296B (zh) 一种六方氮化硼上生长氮化镓的方法
CN111681953B (zh) 一种提升氮化镓异质外延的界面质量的生长方法
KR101119019B1 (ko) 질화갈륨 반도체 및 이의 제조 방법
KR100288473B1 (ko) 단결정탄화규소 및 그 제조방법
JP2006062931A (ja) サファイア基板とその熱処理方法、及び結晶成長方法
CN115101633A (zh) InGaN基光电子器件及其制备方法
WO2022201986A1 (ja) AlN単結晶基板
Powell Industrial perspectives of SiC bulk growth
CN108878265B (zh) 一种在Si(100)衬底上生长单晶氮化镓薄膜的方法
CN114438595B (zh) 一种利于提高散热性的氮化镓外延生长方法
CN115360272B (zh) 一种AlN薄膜的制备方法
CN118028974B (zh) 大尺寸单晶六方氮化硼的外延生长方法及其应用
CN114203529B (zh) 氮化铝外延结构,其制备方法以及半导体器件
CN114267757B (zh) 一种双抛薄衬底氮化物外延层的制备方法及其外延层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210804

Address after: 100083 No. 30, Haidian District, Beijing, Xueyuan Road

Applicant after: University OF SCIENCE AND TECHNOLOGY BEIJING

Applicant after: Shunde Graduate School of Beijing University of science and technology

Address before: 100083 No. 30, Haidian District, Beijing, Xueyuan Road

Applicant before: University OF SCIENCE AND TECHNOLOGY BEIJING

GR01 Patent grant
GR01 Patent grant