CN112955269B - 制造具有氧化层的开孔金属体的方法和由该方法制造的金属体 - Google Patents

制造具有氧化层的开孔金属体的方法和由该方法制造的金属体 Download PDF

Info

Publication number
CN112955269B
CN112955269B CN201980057008.2A CN201980057008A CN112955269B CN 112955269 B CN112955269 B CN 112955269B CN 201980057008 A CN201980057008 A CN 201980057008A CN 112955269 B CN112955269 B CN 112955269B
Authority
CN
China
Prior art keywords
layer
open
aluminum
metal body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980057008.2A
Other languages
English (en)
Other versions
CN112955269A (zh
Inventor
G·沃尔特
T·布特内尔
汉斯-迪特里希·博姆
B·基巴克
T·韦斯加伯尔
阿恩·博登
勒内·波斯
蒂尔曼·安德烈亚斯
R·科尔芬巴赫
L·托库尔
亚历山德拉·格斯特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Alantum Europe GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Alantum Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Alantum Europe GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN112955269A publication Critical patent/CN112955269A/zh
Application granted granted Critical
Publication of CN112955269B publication Critical patent/CN112955269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/088Foaming process with solid metal other than by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/01Composition gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/40Intermetallics other than rare earth-Co or -Ni or -Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/253Aluminum oxide (Al2O3)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Catalysts (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种开孔金属体,其包括由Ni、Co、Fe、Cu、Ag或这些化学元素中的一种化学元素的合金组成的芯层(A),其中,在所述合金中含有的所述一种化学元素的含量大于25at%,并且在所述芯层(A)的表面上形成由金属间相或Al的混合晶体形成的渐变层(B),并且在所述渐变层(B)上形成由氧化铝形成的层(C)。

Description

制造具有氧化层的开孔金属体的方法和由该方法制造的金属体
技术领域
本发明涉及一种用于制造开孔金属体的方法,优选为具有氧化层的开孔金属泡沫体,特别是基于开孔金属半成品的结构化载体材料,并且还涉及由该方法制造的金属体。
背景技术
开孔体(特别是利用金属泡沫形成的体)本身是已知的。由一种元素或合金组成的纯金属体(即,例如没有外部保护壳体的金属泡沫板)具有缺陷,例如延性金属的低机械强度、低的热稳定性、不足的耐腐蚀性以及元素从开孔体的材料到在上面形成的功能性涂层中的不期望的迁移。元素从金属材料到上面形成的活性功能性涂层的不期望的迁移能够改变它们的晶体结构、化学组成以及优选的元素氧化程度,并因此不利地影响了它们作为热导体、电导体或化学反应催化剂的功能。特别是在具有催化活性的功能性涂层的情况下,这可能导致催化活性成分的所谓中毒,从而可能导致有利于不期望的副反应的选择性劣化以及老化加速和催化剂的催化活性丧失。
因此,US 2007/0160518 A1公开了一种用于排气装置的金属泡沫。
US 2014/0221700 A1涉及一种在表面上改性的表面。
US 2012/0302811 A1公开了一种具有氧化铝层的催化剂。
DE 38 83 722 T2说明了一种用于制造铁素体不锈钢的方法。
US 8012598 B2涉及一种金属泡沫体。
US 2013/0061987 A1提出了一种用于制造金属装置的方法。
US 2014/0106962 A1公开了一种金属载体催化剂结构。
发明内容
本发明的目的是提供一种由金属或金属合金制成的开孔材料以及一种方法,该开孔材料具有化学成分确定的且结构化的纯金属的或混合金属的氧化铝表面层,该氧化铝表面层具有较高比例的氧化铝,该方法包括在保持开孔结构的同时利用铝或由铝和至少一个其它金属M制成的形成颗粒的单相和/或多相合金来涂覆金属或金属合金泡沫,通过烧结被涂覆的半成品或熔化涂层在涂层内并且在涂层与形成芯的层(芯层,特别是泡沫表面)之间形成材料结合连接和金属间相,并通过最终的氧化步骤形成化学成分确定的结构化保护层。
根据本发明生产的开孔金属体形成有由Ni、Co、Fe、Cu、Ag或这些化学元素中的一种化学元素的合金组成的芯层A,其中,该一种化学元素在合金中的含量大于25at%,优选地大于50at%。渐变层位于芯层的表面上,并且由金属间相或Al的混合晶体形成。
在该渐变层上还存在有由氧化铝形成的氧化层。该氧化层由纯α-Al2O3相形成。
渐变层和/或氧化层C应覆盖芯层表面的至少90%,优选为完全覆盖芯层表面。优选地,渐变层B应具有在1μm至50μm的范围内的层厚度,并且氧化层C应具有在0.05μm至1μm的范围内的层厚度。
在生产期间,形成芯层的半成品的表面应涂覆有纯铝粉末或铝含量至少为40at%的铝合金粉末。
在本发明中,将由金属材料制成的开孔体用作用于生产的半成品。在此,它们可以是泡沫、栅格、丝网、网织物、绒毛、毛毡或稀洋纱,它们可以代表由金属或金属合金制成的纤维结构。有利地使用由金属或金属合金制成的表面密度在100g/m2至10000g/m2的范围内,更有利地在300g/m2至3000g/m2的范围内的开孔泡沫。用于多孔原材料的合适的金属或合金由Ni、Cu、Co、Fe、Ag群组中的至少一种元素形成。这种开孔半成品可以例如通过利用这些金属中的一者电镀开孔聚合物材料而获得。可以通过作为热处理的一部分的热解来去除聚合物的有机成分。为了生产作为半成品的扩展金属栅格,可以在金属板上设置相对彼此偏移的、线形的冲压切口并将其拉伸。金属毡是由金属丝制成的,这些金属丝通过锯齿刀切成不同厚度的纤维。金属网和丝网可以通过有序地相互接合合适厚度的金属丝来获得。此外,可以通过诸如3D打印、选择性激光熔化、粘合剂喷射或电子束熔化等增材制造技术将合适的开孔金属结构制成半成品。
该开孔金属半成品涂覆有金属颗粒,该金属颗粒能够以粉末、粉末混合物、悬浮液或分散液的形式存在。金属粉末应为纯铝粉末或铝含量至少为40at%的铝合金粉末。半成品的涂覆可以通过浸涂、喷涂,压力辅助、静电和/或磁性进行,其中,保留半成品的开孔结构。使用尺寸在0.5μm至150μm范围内的,优选在5μm至100μm范围内的颗粒用于涂覆。金属颗粒或合金颗粒包含铝或包含铝及其它金属,这些金属通过热处理可以与铝形成单相合金和/或多相合金。用于涂覆使用的颗粒的铝含量为40at%至100at%,并且还可以包含至少一种其它元素,其以0at%至60at%的含量与铝形成单相合金和/或多相合金。在此,它们可以有利地为元素Ni、Cu、Co、Mo、Fe、Ag、Mg、Si、Ti、W中的至少一者。在根据本发明的有利实施例中,为了使用颗粒涂覆开孔的半成品,可以将粘合剂施加到半成品的表面,以便改善颗粒在表面上的粘附性。在涂覆半成品之前或在此期间,可以在液相中溶解、分散、悬浮或以粉末形式施加粘合剂。通过机械能的作用,特别是通过振动的作用,可以改善颗粒在包含粘合剂的液相内的分布以及它们在半成品表面上的粘附性。
为了获得更高的、期望的涂层厚度,粉末、粉末混合物和/或悬浮液/分散液的形式的颗粒涂覆可以重复多次。这还涉及分别要执行的振动以及在必要时涂覆粘合剂。然而,在涂覆时应注意保留开孔结构,但至少在形成氧化层C的热处理之后,金属体是开孔的。
在热处理过程中,可以通过热解、蒸发和/或解吸去除涂覆的半成品的有机成分。有机成分可以是有机粘合剂、有机溶剂、聚合物的有机成分或从环境中吸附的有机化合物。可以在惰性环境和/或减压下,在400℃至600℃的温度范围内进行热处理。
在随后的第一热处理期间,在惰性环境和/或减压下,可以在保持时间为0.1s至30min,有利地为1s至10min的情况下,优选地以1K/min至20K/min的加热速率将涂覆的半成品加热到400℃至1000℃的温度范围内,优选在450℃至700℃的温度范围内。在此,所涂覆的金属粉末的铝颗粒或含铝颗粒与开孔半成品的结构表面通过烧结颈部和桥部彼此材料结合地连接,并且由在开孔金属半成品表面上或该表面的颗粒中含有的元素形成富铝金属间相或混合晶体。当使用纯铝粉末时,将短时加热并形成液相,因此液相中的铝仅在开孔半成品的表面和网状物的空腔的内表面上(在使用金属泡沫的情况下)与形成开孔半成品的金属或合金反应,并形成了富铝金属间相和混合晶体。当使用烧结活性颗粒进行烧结时并且当熔化时,仅在涂覆的开孔金属材料的表面上形成梯度合金,并保留了下层的延性金属芯层。梯度包括不同的相,这些相是根据所用元素的相态图和可用的扩散时间而形成的。包括所得合金相梯度的渐变层的层厚度可以为0.5μm至100μm,特别有利地为5μm至50μm。仅包括底层半成品或单相混合晶体合金的成分的下层芯层的厚度可以为1μm至1000μm。外合金相和内芯层的层厚度以及彼此之间的比例可能受到以下因素的影响:开孔原材料的网状物厚度的相应选择、铝颗粒或含铝颗粒的装载以及烧结过程期间的温度条件。
在第二热处理期间的最后氧化步骤中,铝或由铝与至少一种其它金属M构成的单相和/或多相合金在烧结的或加热超过铝的熔点的涂覆的开孔半成品的表面上形成化学成分确定的结构化氧化物,该氧化物由纯氧化铝组成,或至少包括>50%的高比例的氧化铝,并且根据处理的持续时间和温度而含有各种多晶型的氧化铝。在此,氧化物形成封闭或近似封闭的氧化层。近似封闭的氧化层C应覆盖至少90%的表面。在由空气、氧气和/或与惰性气体的混合气形成的氧化环境下,并在常压或减压下,氧化第二热处理应在450℃至1250℃的温度范围内进行,有利地在650℃至1250℃的温度范围内进行。如果在450℃至500℃的较低温度范围内进行氧化热处理,则非晶氧化铝层的厚度增加。在630℃至870℃的温度范围内,在半成品的表面上形成近似封闭或封闭的结晶γ-Al2O3层。在从氧化温度>920℃开始,形成由多晶型γ-Al2O3、θ-Al2O3和α-Al2O3组成的混合氧化层C。通过增加处理的持续时间和温度,可以减少γ-Al2O3相的比例,有利于θ-Al2O3和α-Al2O3相。从1020℃的氧化温度开始,在氧化层中仅可检测(XRD)到θ-Al2O3和α-Al2O3。根据本发明,通过在≥1200℃下进行氧化而获得粉末衍射的纯α-Al2O3氧化层,其具有氧化铝的所有多晶型物的最高密度(ρα=3990kg/m3)。
根据这种方法生产的开孔体可以用作功能性涂层的结构化载体材料。可以通过浸涂、喷涂、湿法浸渍、干法浸渍或毛细管浸渍、沉淀、共沉淀、电化学沉积、气相沉积和/或有机金属配合物的固定来进行涂覆,其中,使用功能性涂层涂覆结构化载体材料还可以包括干燥步骤、还原步骤和/或材料的最终煅烧。在低于所选氧化温度的温度下进行煅烧是特别有利的,以便避免不期望的氧化进行。作为功能性涂层的活性成分可以例如使用贵金属(例如,Pt、Pd、Rh、Ru、Au、Os、Ir、Ag)和其它过渡金属(例如,Cr、Mn、Fe、Co、Ni、Mo、Re、V、Cu、W)及其氧化物或有机金属配合物。
此外,在选定的条件下的氧化热处理中,由铝和至少一种金属M=Ni、Co、Fe、Cu和/或Ag构成的单相和/或多相合金以及纯铝层形成了各种氧化铝多晶型物的化学成分确定的结构化氧化层。氧化处理的氧分压、持续时间和温度确定最终氧化层的成分和性能。在空气作为氧化剂的情况下并且在300℃至500℃的温度范围内,可以观察到天然非结晶的氧化铝层的厚度的增大,该氧化铝层的厚度可达到9nm并具有ρam=3050kg/m3的密度。如果在至少630℃至870℃下进行氧化处理,则形成至少近似封闭的结晶的γ-Al2O3的表面层,其具有ργ=3660kg/m3的密度。在920℃的氧化温度时,形成由多晶型γ-Al2O3、θ-Al2O3和α-Al2O3组成的混合氧化层C。随着氧化的持续时间和温度的增加,γ-Al2O3相的比例下降,这有利于θ-Al2O3和α-Al2O3相。在氧化温度为1020℃时,在氧化层C中仅能检测(XRD)到θ-Al2O3和α-Al2O3相。粉末衍射的纯α-Al2O3氧化层的厚度>500nm且密度ρα=3990kg/m3,该氧化层可以通过在>1200℃的氧化获得。作为涂层的氧化铝通过用作氧气和反应物质的扩散阻挡层,从而提高了催化活性材料和催化剂载体的耐热性、抗氧化性和耐腐蚀性以及使用寿命。此外,在开孔的镍载体上形成作为扩散阻挡层的封闭的氧化铝层可以妨碍或甚至完全防止由于镍阳离子扩散到催化活性层中而使得用于催化的功能性涂层中毒。在这种情况下,有利的是形成高密度的氧化铝相,特别有利的是形成具有所有多晶型物中最高密度的α-Al2O3。此外,富铝的表面氧化物的形成能够提高开孔载体材料的机械稳定性和抗压强度,该开孔载体材料由延性金属或合金组成,并可以在反应器中在布置在其上的模制体的重量的压力下塑性变形。例如,通过用铝涂覆并在材料表面形成钴和铝的混合氧化物,可以将开孔钴泡沫的根据DIN 50134/ISO 13314的抗压强度增加三倍以上,达到5MPa。使用开孔的起始基板可以提供具有有利的流动性、高比表面积以及因此高催化活性的结构化载体材料。
用纯铝的或富铝的氧化层涂覆开孔材料的一大挑战在于选择具有足够表面密度的合适的基板、具有最佳粒度分布的粉末以及在生产开孔金属泡沫时合适的温度处理。应选择温度条件使得反应仅在表面上进行,因为直至芯层的基材的完全反应都会由于金属间相的形成而引起脆化。另外,金属间相的形成(特别是在NiAl的情况下)是强烈放热的,因此应将在最高温度下的保持时间缩短,以使得多孔结构不会由于形成过多液相而被破坏。因此,主要目的是通过温度条件来控制反应,使得在表面上形成具有富铝相的梯度且朝向芯层(即,半成品基材)减小铝含量,并因此芯层保持延性。这尤其是通过使用包含例如Mg和/或Si的烧结活性铝合金来确保的,其中,热处理温度应保持在铝熔点660℃的以下。为此,示例性的合金是来自Ecka Granules的EA 321。在此有利地,表面上的高铝含量促进了封闭的α-氧化铝层的形成,并且由于到表面的不同扩散路径,能够抑制由基材形成的氧化物。
下面将示例性地说明本发明。
附图说明
图1示出了根据本发明的开孔金属体的示例的截面图。
具体实施方式
在此,既可由固体材料也可由内部中空的网状物(Stegen)形成的芯层A形成有渐变层B,该芯层由金属Ni、Co、Fe、Cu、Ag或其合金中的一者形成。在渐变层B上形成有氧化层C。该结构可以形成载体材料A-C,其中,可以在氧化层C上形成功能性涂层D。
可以形成至少几乎封闭的氧化层C,其用作涂覆在其上的活性功能性涂层D与下面的渐变层B以及金属芯层A之间的可控的扩散阻挡层和/或热电绝缘体,该氧化层确保了结构化载体材料在化学和热应力下的抗氧化性和耐腐蚀性,提高了开孔的结构化载体材料的机械稳定性,并能够实现活性功能性涂层的永久牢固的附着性。
包括Ni、Co、Fe、Cu和Ag的一些金属与铝一起形成金属间相(intermetallischePhasen),通过氧化处理,金属间相可以转化为纯氧化铝或具有高比例的氧化铝的混合金属氧化物,这些纯氧化铝或混合金属氧化物作为延性金属的涂层能够降低它们的弹性变形能力,提高机械稳定性,改善功能性涂层D的附着性,并且作为扩散阻挡层能够可控制地阻碍或防止元素从金属芯层和渐变层不期望地迁移到形成在上面的功能性涂层中,并且显著地改善金属芯层A、结构化的载体材料和功能性涂层D的使用寿命。特别是在电化学应用领域(例如,电池和电极的制造领域)中,金属芯层A和渐变层B的高的电导率和热导率的耐久性是有利的。在这种情况下,氧化层C可以用作金属芯层A的表面、渐变层B与功能性涂层D之间的绝缘体。此外,氧化层C使金属芯层A和渐变层B相对于腐蚀性介质钝化,并因此防止由于腐蚀以及元素从金属芯层A和渐变层B不期望地扩散到形成在上面的功能化涂层D并释放到周围介质中而引起的电导率和热导率的下降。
化学工业中使用的某些催化剂由于各种效应(例如物理和化学磨损、集尘和浸析)而随着增加的使用时间失去活性,即,洗掉反应介质中的活性金属,该活性金属随后随产品一起离开并不能用于催化。除了通过作为扩散阻挡层的氧化层C完全防止元素从金属芯层A和渐变层B不期望地迁移以外,它们的金属原子和离子的扩散性还可能受到氧化层C的厚度、组成、晶体结构和密度的影响。这可以通过以下过程实现:经由渐变层B中的渐变相的组成来控制氧化层C的化学组成,经由氧化过程的持续时间、温度和氧分压来控制氧化层C的厚度以及经由氧化过程的温度来控制相组成。金属芯层A可以由代表功能性涂层D的活性成分的金属形成。在这种情况下,由于元素从芯层A和渐变层B穿过氧化层C期望且受控地迁移到功能性涂层D,可以补偿由于物理和化学磨损效应而损失的活性成分,并可以实现在更长的催化剂使用时间下的高催化活性。
示例性实施例
示例性实施例1-非根据本发明的实施例
将开孔的镍泡沫用作半成品,其孔的单元尺寸为580μm,表面密度为1000g/m2,且孔隙率约为94%,孔之间的网状物的壁厚为20μm,试样尺寸为80mm×80mm,厚度为1.9mm;通过将Ni电解沉积在PU泡沫上并烧尽有机成分而产生该半成品。
使用平均粒径小于63μm且质量为20g的纯Al金属粉末来涂覆半成品表面。
制备体积为15ml的1%的聚乙烯吡咯烷酮的水溶液,作为Al金属粉末的粘合剂。
使用该粘合剂溶液在两侧喷涂形成半成品的泡沫镍。然后,将泡沫固定在振动装置中,并将Al金属粉末撒在两侧。通过振动使得该粉末均匀地分布在泡沫的多孔网络中。该过程重复四次。
在氮气环境中,在第一热处理中进行Al金属粉末的脱脂和烧结。为此,将管式炉加热到660℃。将涂覆的半成品从200℃的暖区移至660℃的热区并持续2秒钟,并然后返回到更冷的200℃的暖区。
在热处理期间,铝粉末大部分熔化并与镍泡沫网的近表面区域反应。在此,产生了富铝和贫铝的混合晶体、具有共晶成分的相以及在富铝表面和芯表面区域(其由半成品材料的纯镍形成)之间具有浓度梯度的材料系统Ni-Al的金属间相的梯度。富铝相NiAl3保留在表面上,且部分地具有由纯铝(铝的质量百分比为100%)或共晶(铝的质量百分比约94%)组成的其它铝区域。铝含量从表面朝向芯层A内部,特别是朝向金属泡沫的网状物的方向减小。具有所得合金相梯度的渐变层B的层厚度为15μm。形成芯层A且厚度为10μm的纯Ni层保留在网状物的内部。
在下一步中,使用富铝表面通过氧化在网状物表面上产生纯氧化铝覆盖层C,该覆盖层由于其钝化特性而提高了热稳定性和化学稳定性,减少了镍离子向表面的扩散并且还改善了形成芯层A的金属半成品的机械负载能力。选择氧化的氧分压、持续时间和温度,使得防止了铝原子朝向芯层A的迁移以及直至芯层A的表面,特别是到金属泡沫的网状物的表面的不期望的完全氧化,以便避免材料脆化。在预热炉中,以空气作为氧化剂,在635℃的温度下进行65min的氧化。在氧化期间,非晶氧化铝层C的厚度首先增加到临界厚度5nm。在达到氧化铝层C的临界厚度之后,由非晶氧化铝相形成具有更高密度且最初仅部分地覆盖表面的立方γ-Al2O3晶体。在65分钟的氧化处理之后,在形成芯层A的网状物表面上形成了封闭的γ-Al2O3层C。然后,从炉中取出结构化的载体材料A-C,并在室温下冷却。最终,获得0.5μm厚的氧化铝层C,其主要包含γ-Al2O3并具有3660kg/m3的密度。
示例性实施例2
将开孔的钴泡沫用作半成品,其孔的单位尺寸为800μm,表面密度为1500g/m2,且孔隙率约为89%,布置在孔之间的网状物的壁厚为30μm,试样尺寸为80mm×80mm,厚度为2.5mm。通过将Co电解沉积在PU泡沫上,并随后烧尽有机成分来生产半成品。在此,网状物形成芯层A。
使用平均粒径<63μm且质量为30g的Al金属粉末用于涂覆。
为了形成半成品的表面涂层,制备体积为20ml的1%的聚乙烯吡咯烷酮的水溶液作为粘合剂。
使用粘合剂溶液在两侧喷涂半成品的钴泡沫。然后,将在表面涂覆有粘合剂溶液的半成品固定在振动装置中,并将Al金属粉末撒在两侧。通过振动使得Al金属粉末均匀地分布在半成品的多孔网络中。该过程重复五次。
在氮气环境中进行Al金属粉末的脱脂和烧结。为此,将管式炉加热到665℃。将涂覆的半成品从200℃的暖区移至665℃的热区并持续5秒钟,然后返回到更冷的200℃的暖区。
在第一热处理期间,Al金属粉末大部分熔化并与形成芯层A的半成品的钴泡沫网状物的近表面的区域反应。在此,在从富铝表面开始到半成品材料的纯钴芯层A的表面上形成渐变层B,该渐变层由富铝和贫铝的混合晶体、具有共晶成分的相以及对应于浓度梯度的Co-Al材料系统的金属间相组成。富铝相Co2Al9保留在表面上,且部分地具有由纯铝(铝的质量百分比为100%)或共晶(铝的质量百分比~99%)组成的其它铝区域。铝含量从表面向网状物的内部方向减小。具有所得合金相梯度的渐变层B的表面区域的层厚度为20μm。纯钴芯层A保留在网状物的内部,且其孔之间的网状物的平均层厚度为20μm。
在随后的氧化步骤中,富铝表面用于第二次热处理,以便通过氧化在网状物表面上形成纯氧化铝层C,由于该纯氧化铝层的钝化特性而提高了热稳定性和化学稳定性,减少了钴离子向表面的扩散,提高了金属基材的机械负载能力。选择氧化的氧分压、持续时间和温度,使得防止了铝原子朝向钴芯层A的迁移以及直至芯层A的表面的不期望的完全氧化,以便避免材料脆化。在预热炉中,以空气作为氧化剂,在1050℃下进行15min的氧化。在氧化期间,非晶氧化铝层C的厚度增加到5nm的临界厚度。在达到临界厚度之后,由非晶氧化铝相形成立方γ-Al2O3微晶,其具有更高的密度并覆盖网状物表面的一部分。随着氧化处理持续时间的增加,在网状物的表面上形成封闭的γ-Al2O3层。在15分钟后,由于从γ-Al2O3向δ-Al2O3向θ-Al2O3并最后向α-Al2O3的转变,由封闭的γ-Al2O3层形成了封闭的覆盖层,该覆盖层包含作为副相的θ-Al2O3和作为主相的α-Al2O3。然后,将泡沫从炉中取出并冷却至室温。最终,获得厚度为0.5μm-1μm的氧化铝层C,其中,除了少部分的θ-Al2O3,主要包含α-Al2O3,该氧化铝层具有高达3990kg/m3的较高密度,并在5MPa时其抗压强度大于纯钴泡沫(1.5MPa)的抗压强度的三倍。
示例性实施例3
将开孔的银泡沫用作半成品,其孔的单元尺寸为450μm,表面密度为2000g/m2,且孔隙率约为88%,形成芯层A并且布置在孔之间的网状物的壁厚为50μm,试样尺寸为75mm×65mm,厚度为1.7mm。通过将Ag电解沉积在PU泡沫上,然后烧尽有机成分来制造半成品。
将由27%(重量)的Al和73%(重量)的Ag组成的预制合金的AgAl金属粉末用于涂覆,该粉末的平均粒径<75μm且质量为60g。
为了形成半成品的表面涂层,制备体积为30ml的1%的聚乙烯吡咯烷酮的水溶液作为粘合剂。
使用粘合剂溶液在两侧喷涂半成品的泡沫银。然后,将在表面涂覆有粘合剂溶液的半成品固定在振动装置中,并将预制合金的AgAl金属粉末撒在两侧。通过振动使得预制合金的AgAl金属粉末均匀地分布在半成品的多孔网络中。该过程重复八次。
在氮气环境中进行涂覆有粘合剂溶液和预制合金的AgAl金属粉末的半成品的脱脂和烧结。为此,将管式炉加热到590℃。将涂覆的半成品从200℃的温区移至590℃的热区并持续10s,然后返回到更冷的200℃的温区。
在第一热处理期间,预制合金的AgAl金属粉末大部分熔化并与形成芯层A的半成品的银泡沫网状物的近表面区域反应。在此,在从富铝表面开始到半成品材料的纯银芯层A的表面上形成渐变层B,该渐变层由富铝和贫铝的混合晶体以及对应于浓度梯度的Ag-Al材料系统的金属间相组成。富铝相Ag2Al保留在表面上。由于预制合金,因此几乎没有观察到纯铝(质量百分比为100%)的区域。铝含量从表面向网状物内部的方向降低。具有所得的合金相梯度的渐变层B的表面区域的层厚度为25μm。纯银芯层A保留在网状物的内部,其在孔之间的网状物的平均层厚度为25μm。
在随后的氧化步骤中,富铝表面用于第二次热处理,以便通过氧化在网状物表面上形成纯氧化铝覆盖层,由于该纯氧化铝覆盖层的钝化性能提高了热稳定性和化学稳定性,减少了银离子向表面的扩散并提高了金属基材的机械负载能力。选择氧化的氧分压、持续时间和温度,使得防止了铝原子朝向银芯层A的迁移以及直至芯层A表面(即,直至网状物表面)的不期望的完全氧化,以便避免材料脆化。在预热炉中,以空气作为氧化剂,在900℃下进行10分钟的氧化。在氧化期间,非晶氧化铝层的厚度增加到临界厚度5nm。在达到临界厚度之后,由非结晶氧化铝相形成立方γ-Al2O3微晶,其具有更高的密度并覆盖网状物表面的一部分。随着氧化处理持续时间的增加,在网状物的表面上形成封闭的γ-Al2O3层。在10分钟后,由于从γ-Al2O3向δ-Al2O3向θ-Al2O3并最后向α-Al2O3的转变,由封闭的γ-Al2O3层形成了封闭的覆盖层,该覆盖层包含θ-Al2O3和α-Al2O3。然后,将泡沫从炉中取出并冷却至室温。最终,获得包含θ-Al2O3和α-Al2O3的厚度为0.5μm-2μm的氧化铝层C,该氧化铝层具有高达3990kg/m3的较高密度,并在4MPa时其抗压强度大于四倍的纯银泡沫(1MPa)的抗压强度。

Claims (9)

1. 一种用于生产开孔金属体的方法,在所述开孔金属体中,形成芯层的开孔半成品由Ni、Co、Fe、Cu、Ag或包含这些化学元素中的一种化学元素的合金组成,其中,所述合金中含有的所述一种化学元素的含量大于25 at%,
使用纯铝粉末或铝含量至少为40at%的铝合金粉末在所述开孔半成品的表面上进行涂覆,并且
在第一热处理中,在所述开孔半成品的所述表面上形成渐变层,所述渐变层由金属间相和/或Al的混合晶体形成,并且
在随后的保持至少1200°C的温度的第二热处理中,在Al的氧化条件下,在所述渐变层上形成由纯α-Al2O3相组成的氧化铝层。
2.根据权利要求1所述的方法,其特征在于,使用其中除了铝之外还含有选自Ni、Cu、Co、Mo、Fe、Ag、Mg、Si、Ti和W中的至少一种元素的铝合金粉末。
3. 根据权利要求1或2所述的方法,其特征在于,为了涂覆所述开孔半成品的所述表面,将纯铝粉末或铝合金粉末撒在所述开孔半成品的已涂覆有悬浮液或分散液形式的粘合剂的所述表面上,其中,所撒上的粉末利用粘合剂、以静电的方式或通过磁力作用固定在所述表面上。
4. 一种利用根据权利要求1至3中任一项所述的方法生产的开孔金属体,其特征在于,所述开孔金属体包括由Ni、Co、Fe、Cu、Ag或包含这些化学元素中的一种化学元素的合金组成的芯层,其中,所述合金中含有的所述一种化学元素的含量大于25at%,并且
在所述芯层的表面上形成有由金属间相或Al的混合晶体形成的渐变层,并且
在所述渐变层上形成有由氧化铝形成的氧化铝层,所述氧化铝由纯α-Al2O3组成。
5.根据权利要求4所述的开孔金属体,其特征在于,所述芯层由金属泡沫、栅格、丝网或织物形成。
6.根据权利要求4所述的开孔金属体,其特征在于,所述芯层由金属毡、稀松布或利用增材制造方法生产的开孔体形成。
7.根据权利要求4至6中任一项所述的开孔金属体,其特征在于,所述渐变层和/或所述氧化铝层覆盖所述芯层的所述表面至少90%。
8.根据权利要求4至6中任一项所述的开孔金属体,其特征在于,所述渐变层具有在1µm至50µm范围内的层厚度,且/或所述氧化铝层具有在0.05µm至1µm范围内的层厚度。
9.根据权利要求4至6中任一项所述的开孔金属体,其特征在于,在所述氧化铝层上形成有功能性涂层。
CN201980057008.2A 2018-07-20 2019-06-18 制造具有氧化层的开孔金属体的方法和由该方法制造的金属体 Active CN112955269B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102018212110.9A DE102018212110A1 (de) 2018-07-20 2018-07-20 Offenporiger Metallkörper mit einer Oxidschicht und Verfahren zu dessen Herstellung
DE102018212110.9 2018-07-20
PCT/EP2019/065975 WO2020015944A1 (de) 2018-07-20 2019-06-18 Verfahren zur herstellung eines offenporigen metallkörpers mit einer oxidschicht und ein mit dem verfahren hergestellter metallkörper

Publications (2)

Publication Number Publication Date
CN112955269A CN112955269A (zh) 2021-06-11
CN112955269B true CN112955269B (zh) 2023-05-02

Family

ID=67139689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980057008.2A Active CN112955269B (zh) 2018-07-20 2019-06-18 制造具有氧化层的开孔金属体的方法和由该方法制造的金属体

Country Status (9)

Country Link
US (1) US11548067B2 (zh)
EP (2) EP4029630A1 (zh)
KR (1) KR20210064185A (zh)
CN (1) CN112955269B (zh)
CA (1) CA3106485C (zh)
DE (1) DE102018212110A1 (zh)
DK (1) DK3823780T3 (zh)
ES (1) ES2915024T3 (zh)
WO (1) WO2020015944A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115431601B (zh) * 2022-09-19 2023-08-04 燕山大学 一种多孔结构充型夹层复合板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3883722T2 (de) * 1987-11-30 1994-02-24 Nippon Yakin Kogyo Co Ltd Verfahren zur Herstellung von ferritischem rostfreiem Stahl mit aus Whiskeroxid bestehender Oberflächenschicht.
DE69112514T3 (de) * 1990-06-29 1999-10-21 Sumitomo Chemical Co Wärmebeständige Übergangsalumina und Verfahren zu deren Herstellung.
US6488907B1 (en) * 1999-07-30 2002-12-03 Conoco Inc. Catalytic partial oxidation processes and catalysts with diffusion barrier coating
JP4805523B2 (ja) * 2000-06-08 2011-11-02 マノアール インダストリーズ 高温用ステンレス鋼のためのコーティングシステム
DE10316929B3 (de) * 2003-04-07 2004-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines offenporigen Formkörpers ein solcher Formkörper sowie dessen Verwendung
DE102004002946A1 (de) * 2004-01-21 2005-08-11 Forschungszentrum Jülich GmbH Schutzschicht für eine aluminiumhaltige Legierung für den Einsatz bei hohen Temperaturen, sowie Verfahren zur Herstellung einer solchen Schutzschicht
DE102004014076B3 (de) * 2004-03-19 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Metallschaumkörper mit offenporiger Struktur sowie Verfahren zu seiner Herstellung
JP4051569B2 (ja) * 2004-03-22 2008-02-27 修 山田 金属間化合物系多孔質材料の製造方法
US8378163B2 (en) * 2004-03-23 2013-02-19 Velocys Corp. Catalysts having catalytic material applied directly to thermally-grown alumina and catalytic methods using same, improved methods of oxidative dehydrogenation
US7521033B2 (en) * 2005-12-22 2009-04-21 Basf Catalysts Llc Exhaust inlet metallic foam trap coupled to a downstream monolithic precious metal catalyst
FR2957280B1 (fr) * 2010-03-12 2012-07-13 Centre Nat Rech Scient Procede de fabrication d'un complexe metallique
US8778164B2 (en) * 2010-12-16 2014-07-15 Honeywell International Inc. Methods for producing a high temperature oxidation resistant coating on superalloy substrates and the coated superalloy substrates thereby produced
US9771661B2 (en) * 2012-02-06 2017-09-26 Honeywell International Inc. Methods for producing a high temperature oxidation resistant MCrAlX coating on superalloy substrates
US9446386B2 (en) * 2012-10-11 2016-09-20 Alloy Surfaces Company, Inc. Metal-supported catalyst structures and processes for manufacturing the same
EP3216522A1 (en) * 2013-02-06 2017-09-13 Alantum Europe GmbH Surface modified metallic foam body, process for its production and use thereof
EP2883632B1 (en) * 2013-12-10 2017-07-05 Alantum Europe GmbH Metallic foam body with controlled grain size on its surface, process for its production and use thereof
CN107683176A (zh) * 2015-10-06 2018-02-09 新日铁住金高新材料股份有限公司 催化剂负载用基材及催化剂载体
CN107177813B (zh) * 2016-03-09 2019-03-29 中国科学院金属研究所 一种在M-Al金属间化合物上直接热生长α-Al2O3的方法及应用

Also Published As

Publication number Publication date
WO2020015944A1 (de) 2020-01-23
CA3106485A1 (en) 2020-01-23
CN112955269A (zh) 2021-06-11
DK3823780T3 (da) 2022-05-23
CA3106485C (en) 2023-10-31
DE102018212110A1 (de) 2020-01-23
US11548067B2 (en) 2023-01-10
EP3823780B1 (de) 2022-04-20
US20210308762A1 (en) 2021-10-07
EP3823780A1 (de) 2021-05-26
KR20210064185A (ko) 2021-06-02
EP4029630A1 (de) 2022-07-20
ES2915024T3 (es) 2022-06-20

Similar Documents

Publication Publication Date Title
US9346240B2 (en) Open-porous metal foam body and a method for fabricating the same
US8012598B2 (en) Metal foam body having an open-porous structure as well as a method for the production thereof
JP4639230B2 (ja) 開孔金属発泡体の製造方法
KR20220068221A (ko) 금속 발포체 지지 촉매 및 이의 제조 방법
CN112955269B (zh) 制造具有氧化层的开孔金属体的方法和由该方法制造的金属体
JP2001522408A (ja) 骨格柱状被膜
US20240116041A1 (en) Catalyst material and method of manufacturing the same
KR20200127966A (ko) 금속으로 이루어지는 개방 기공 성형체의 제조 방법 및 상기 방법을 사용하여 제조된 성형체
EP2925439B1 (en) Core-shell catalyst and method of making a palladium-based core particle
KR102612696B1 (ko) 개질된 표면을 갖고 금속으로 형성된 개방 기공 성형체의 제조방법 및 이 방법을 사용하여 제조된 성형체
KR20070018013A (ko) 개방-다공성 구조를 가지는 금속 발포체 및 이의 제조 방법
RU2772522C2 (ru) Способ получения формованного тела с открытыми порами, которое имеет модифицированную поверхность и изготовлено из металла, и формованное тело, полученное указанным способом
JPS5919733B2 (ja) 水−水素交換反応用触媒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant