CN112940497A - 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法 - Google Patents

一种电磁屏蔽pa6/ps复合泡沫材料的制备方法 Download PDF

Info

Publication number
CN112940497A
CN112940497A CN202110302489.8A CN202110302489A CN112940497A CN 112940497 A CN112940497 A CN 112940497A CN 202110302489 A CN202110302489 A CN 202110302489A CN 112940497 A CN112940497 A CN 112940497A
Authority
CN
China
Prior art keywords
electromagnetic shielding
foam material
functionalized carbon
composite foam
caprolactam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110302489.8A
Other languages
English (en)
Other versions
CN112940497B (zh
Inventor
吴波震
朱凯琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202110302489.8A priority Critical patent/CN112940497B/zh
Publication of CN112940497A publication Critical patent/CN112940497A/zh
Application granted granted Critical
Publication of CN112940497B publication Critical patent/CN112940497B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/009Use of pretreated compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/02Homopolymers or copolymers of hydrocarbons
    • C08J2425/04Homopolymers or copolymers of styrene
    • C08J2425/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种电磁屏蔽PA6/PS复合泡沫材料的制备方法:将功能化碳纳米管分散在熔融己内酰胺单体中,得到己内酰胺/功能化碳纳米管悬浮液;在120~140℃下,将石墨烯和聚苯乙烯加入所得己内酰胺/功能化碳纳米管悬浮液中,保温搅拌2~4h,之后于130~160℃下真空除水,加入引发剂氢氧化钠、活化剂甲苯二异氰酸酯,得到聚合反应体系,在150~200℃下聚合20~60min,得到复合材料;将所得复合材料进行超临界CO2发泡处理,得到所述电磁屏蔽PA6/PS复合泡沫材料;该方法制备的电磁屏蔽PA6/PS复合泡沫材料能够满足低反射、高吸收及高电磁屏蔽效能的要求。

Description

一种电磁屏蔽PA6/PS复合泡沫材料的制备方法
技术领域
本发明属于电磁屏蔽技术领域,具体涉及一种电磁屏蔽PA6/PS复合泡沫材料的制备方法。
背景技术
随着现代高新技术的发展及第五代移动通信网络(5G)时代的到来,我们的生活、工作会变得更快速、便捷,但电磁波带来的越加严重的电磁干扰(EMI)问题也将是我们尤其需要解决的。高导电的金属作为电磁屏蔽材料具有很大的优势,但是它价格昂贵、质量大、不耐腐蚀且对电磁波的反射率极大等固有缺点限制了它的实际应用。金属材料之外的碳材料导电性也很优异,且种类繁多,如石墨、碳纳米管、石墨烯等纳米碳材料,以及天然植物碳化得到的碳材料等均能应用于电磁屏蔽领域,但其强度很难达到实际应用要求,因此极大的限制了其在电磁屏蔽领域的应用。因此,设计一种新的方案制备出具有低反射、高吸收且质量轻的电磁屏蔽材料具有重要意义。
目前已有相关技术公开了制备PA6(聚酰胺-6)、PS(聚苯乙烯)电磁屏蔽材料的方法。专利申请号201611242257.3和201721000670.9分别报道了利用碳纤维、超细镍粉和PA6熔融共混制得PA6的电磁屏蔽材料以及制备了一种多层的PS片材作为电磁屏蔽材料,其中专利一将导电和吸波填料同时添加到一个体系中满足目前市场倾向于吸收主导电磁屏蔽材料的需求,但是碳纤维、超细镍粉添加量较大,且碳纤维和超细镍粉都需要预先处理才能使用,专利二利用多层结构对电磁波进行吸收反射再吸收的作用,多层结构包括PS片材层、由碳纤维构成的屏蔽层和绝缘层,但是层间结合力较差形成的空隙会影响其对电磁波的反射和吸收作用,最终影响其电磁屏蔽效能,而且两项专利的制备工艺均较为繁琐,而本发明原料购得不需要预处理,且一步法制得具有较高电磁屏蔽效能的材料。
PA6、PS强度高,相较于金属材料具有价廉、质轻、耐腐蚀和易成型加工等优点,而碳纳米管、石墨烯具有优异的导电性能和极大的比表面积,同时,本设计方案制备得到的具有“相反转”形貌的PA6/PS复合材料中分散相是PA6微球,而连续相PS则是利用超临界CO2发泡技术形成PS泡沫,微球和泡孔的存在均有利于材料对电磁波的吸收,从而增强材料的电磁屏蔽效能。因此本发明提出的方案得到的复合材料密度低且具有极高的电磁屏蔽效能,在电磁屏蔽领域具有广泛的应用价值。
发明内容
本发明目的在于提供一种电磁屏蔽PA6/PS复合泡沫材料的制备方法,该方法制备的电磁屏蔽PA6/PS复合泡沫材料能够满足低反射、高吸收及高电磁屏蔽效能的要求。
本发明技术方案中,提供了一种通过反应诱导相分离法制备PA6微球的方法;提供了一种高电磁屏蔽效能的PA6/功能化碳纳米管/PS/石墨烯复合泡沫材料的制备方法,可以通过改变配方来调控微球和泡孔的尺寸,并通过功能化碳纳米管、石墨烯的添加以及结合超临界CO2发泡技术来实现。
本发明的技术方案如下:
一种电磁屏蔽PA6/PS复合泡沫材料的制备方法,包括如下步骤:
(1)将功能化碳纳米管(FCNT)分散在熔融己内酰胺单体(CL)中,得到己内酰胺/功能化碳纳米管(CL/FCNT)悬浮液;
所述功能化碳纳米管包括但不限于羟基化碳纳米管(CNTs-OH)、羧基化碳纳米管(CNTs-COOH)等;
所得己内酰胺/功能化碳纳米管悬浮液中,功能化碳纳米管浓度为0.001~5wt%;
(2)在120~140℃下,将石墨烯和聚苯乙烯(PS)加入步骤(1)所得己内酰胺/功能化碳纳米管悬浮液中,保温搅拌2~4h,之后于130~160℃下真空除水,加入引发剂氢氧化钠(NaOH)、活化剂甲苯二异氰酸酯(TDI),得到聚合反应体系,在150~200℃下聚合20~60min,得到复合材料(记作:FCNT@PA6/PS/石墨烯复合材料);
所述聚合反应体系中,聚苯乙烯含量为10~30wt%,石墨烯含量为聚苯乙烯的0.001~5wt%,氢氧化钠含量为0.1~1wt%,甲苯二异氰酸酯含量为0.1~1wt%,余下为己内酰胺/功能化碳纳米管悬浮液;
(3)将步骤(2)所得复合材料进行超临界CO2发泡处理,得到所述电磁屏蔽PA6/PS复合泡沫材料(记作:FCNT@PA6/PS/石墨烯复合泡沫材料);
所述超临界CO2发泡处理的参数为:发泡温度100~150℃、发泡压力9~15MPa,保压时间30~300min。
本发明制得的电磁屏蔽PA6/PS复合泡沫材料以功能化碳纳米管/PA6(FCNT@PA6)微球为分散相,石墨烯/PS为连续相,其中微球的尺寸可控制在1000~50000nm,泡孔尺寸可控制在1000~10000nm。
本发明的有益效果在于:
本发明通过一种操作简单、耗时短的方法制备得到了双填料双结构的电磁屏蔽复合材料,其中,利用FCNT、石墨烯的选择性分散以及CL单体在PS存在下通过阴离子开环聚合得到具有相反转结构的FCNT@PA6微球,且FCNT、石墨烯的选择性分散使得材料内部的导电网络相较于随机分散更致密;而石墨烯/PS作为连续相,再通过绿色环保的超临界CO2发泡技术使PS相发泡形成一种功能化碳纳米管@PA6/PS/石墨烯复合泡沫材料,微球和泡孔的存在均能引起电磁波在材料内部的多重反射、折射和散射,从而提高材料的阻抗匹配和对电磁波的吸收,最终得到高吸收高屏蔽效能的电磁屏蔽材料。
本发明将微球和泡孔结构结合,并利用FCNT、石墨烯选择性分布在CL和PS中,一步实现填料的可控定位,以增强材料的电磁屏蔽效能;另外,泡孔结构的引入能引起电磁波在界面间的多重反射、折射以及散射,增强了材料对电磁波的吸收能力,本发明操作简便,导电填料需求量低,复合泡沫具有密度小、低反射以及屏蔽效能高等特点,为制备高性能绿色电磁屏蔽材料设计提供了新的方法。
附图说明
图1为本发明实施例1中制备的PA6/PS复合材料的SEM图。
图2为本发明实施例2中制备的PA6/PS复合泡沫材料的SEM图。
具体实施方式
下面通过具体实施例进一步描述本发明,但本发明的保护范围并不仅限于此。
以下实施例中用到的CNTs-OH购于阿拉丁,是内径5-10nm,外径10-30nm,长度10-30μm,CAS号为308068-56-6的工业级羟基化多壁碳纳米管;CNTs-COOH购于成都有机化学研究所,直径10-20nm,长度20-30μm,产品型号为TNMC3;PS购于奇美化工产品有限公司,熔体流动速率为200℃、5kg下8.0cm3/10min,密度为1.04g/cm3,牌号为PG-22。
实施例1
一种电磁屏蔽PA6/PS复合材料制备方法
将0.50g CNTs-OH加入85g熔融CL中,在85℃下水浴超声45min得到FNCT均匀分散的CL/FCNT悬浮液。在125℃下加入15gPS、0.50g石墨烯,机械搅拌3h得到CL/PS/CNTs-OH/石墨烯悬浮液。将该悬浮液置于150℃加热套中真空除水30min,加入0.4gNaOH,继续除水30min,加入0.6gTDI,迅速剧烈摇晃后倒入180℃模具中聚合30min,最终得到CNTs-OH@PA6/PS/石墨烯复合材料。
实施例2
一种电磁屏蔽PA6/PS复合泡沫材料制备方法
将0.50g CNTs-OH加入85g熔融CL中,在85℃下水浴超声45min得到FNCT均匀分散的CL/FCNT悬浮液。在125℃下加入15gPS、0.50g石墨烯,机械搅拌3h得到CL/PS/CNTs-OH/石墨烯悬浮液。将该悬浮液置于150℃加热套中真空除水30min,加入0.4gNaOH,继续除水30min,加入0.6gTDI,迅速剧烈摇晃后倒入180℃模具中聚合30min。将得到的CNTs-OH@PA6/PS/石墨烯复合材料在100℃、10.8MPa以及保压2h的条件下进行超临界CO2发泡处理,最终得到CNTs-OH@PA6/PS/石墨烯复合泡沫材料。
实施例3
一种电磁屏蔽PA6/PS复合泡沫材料制备方法
将1.00g CNTs-OH加入85g熔融CL中,在85℃下水浴超声45min得到FNCT均匀分散的CL/FCNT悬浮液。在125℃下加入15gPS、1.00g石墨烯,机械搅拌3h得到CL/PS/CNTs-OH/石墨烯悬浮液。将该悬浮液置于150℃加热套中真空除水30min,加入0.4gNaOH,继续除水30min,加入0.6gTDI,迅速剧烈摇晃后倒入180℃模具中聚合30min,最终得到CNTs-OH@PA6/PS/石墨烯复合材料。
实施例4
一种电磁屏蔽PA6/PS复合泡沫材料制备方法
将1.00g CNTs-OH加入85g熔融CL中,在85℃下水浴超声45min得到FNCT均匀分散的CL/FCNT悬浮液。在125℃下加入15gPS、1.00g石墨烯,机械搅拌3h得到CL/PS/CNTs-OH/石墨烯悬浮液。将该悬浮液置于150℃加热套中真空除水30min,加入0.4gNaOH,继续除水30min,加入0.6gTDI,迅速剧烈摇晃后倒入180℃模具中聚合30min。将得到的CNTs-OH@PA6/PS/石墨烯复合材料在100℃、10.8MPa以及保压2h的条件下进行超临界CO2发泡处理,最终得到CNTs-OH@PA6/PS/石墨烯复合泡沫材料。
实施例5
一种电磁屏蔽PA6/PS复合泡沫材料制备方法
将1.00g CNTs-COOH加入85g熔融CL中,在85℃下水浴超声45min得到FNCT均匀分散的CL/FCNT悬浮液。在125℃下加入15gPS、1.00g石墨烯,机械搅拌3h得到CL/PS/CNTs-COOH/石墨烯悬浮液。将该悬浮液置于150℃加热套中真空除水30min,加入0.4gNaOH,继续除水30min,加入0.6gTDI,迅速剧烈摇晃后倒入180℃模具中聚合30min。将得到的CNTs-COOH@PA6/PS/石墨烯复合材料在100℃、10.8MPa以及保压2h的条件下进行超临界CO2发泡处理,最终得到CNTs-COOH@PA6/PS/石墨烯复合泡沫材料。
测试例1
电磁屏蔽效能测试
按照波导法,使用矢量网络分析仪(安捷伦E5071C)测试实施例1-5在8.2-12.4GHz频率范围内的电磁屏蔽效能(EMI SE)。用于测试电磁屏蔽效能的样品尺寸为长22.9mm、宽10.2mm、厚度2mm的矩形试样。
表1电磁屏蔽测试结果(电磁屏蔽材料的商用标准为20dB)
Figure BDA0002986862830000031
Figure BDA0002986862830000041
一般电磁屏蔽效能以20dB(商用标准)为划分依据。从表1可以看出,本发明电磁屏蔽材料的磁屏蔽效果能够达到并优于商用。同时,采用本发明制备得到的PA6/PS复合泡沫材料的电磁屏蔽效能,远高于未发泡的PA6/PS复合材料。其原因在于:发泡样品给材料内部提高了更多的界面,能引起电磁波的多重反射和折射,从而提高复合泡沫材料的电磁屏蔽效能。

Claims (5)

1.一种电磁屏蔽PA6/PS复合泡沫材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将功能化碳纳米管分散在熔融己内酰胺单体中,得到己内酰胺/功能化碳纳米管悬浮液;
(2)在120~140℃下,将石墨烯和聚苯乙烯加入步骤(1)所得己内酰胺/功能化碳纳米管悬浮液中,保温搅拌2~4h,之后于130~160℃下真空除水,加入引发剂氢氧化钠、活化剂甲苯二异氰酸酯,得到聚合反应体系,在150~200℃下聚合20~60min,得到复合材料;
(3)将步骤(2)所得复合材料进行超临界CO2发泡处理,得到所述电磁屏蔽PA6/PS复合泡沫材料。
2.如权利要求1所述电磁屏蔽PA6/PS复合泡沫材料的制备方法,其特征在于,步骤(1)中所述功能化碳纳米管为羟基化碳纳米管或羧基化碳纳米管。
3.如权利要求1所述电磁屏蔽PA6/PS复合泡沫材料的制备方法,其特征在于,步骤(1)所得己内酰胺/功能化碳纳米管悬浮液中,功能化碳纳米管浓度为0.001~5wt%。
4.如权利要求1所述电磁屏蔽PA6/PS复合泡沫材料的制备方法,其特征在于,步骤(2)所述聚合反应体系中,聚苯乙烯含量为10~30wt%,石墨烯含量为聚苯乙烯的0.001~5wt%,氢氧化钠含量为0.1~1wt%,甲苯二异氰酸酯含量为0.1~1wt%,余下为己内酰胺/功能化碳纳米管悬浮液。
5.如权利要求1所述电磁屏蔽PA6/PS复合泡沫材料的制备方法,其特征在于,步骤(3)所述超临界CO2发泡处理的参数为:发泡温度100~150℃、发泡压力9~15MPa,保压时间30~300min。
CN202110302489.8A 2021-03-22 2021-03-22 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法 Active CN112940497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110302489.8A CN112940497B (zh) 2021-03-22 2021-03-22 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110302489.8A CN112940497B (zh) 2021-03-22 2021-03-22 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法

Publications (2)

Publication Number Publication Date
CN112940497A true CN112940497A (zh) 2021-06-11
CN112940497B CN112940497B (zh) 2022-06-21

Family

ID=76227559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110302489.8A Active CN112940497B (zh) 2021-03-22 2021-03-22 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法

Country Status (1)

Country Link
CN (1) CN112940497B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561037A (zh) * 2022-01-28 2022-05-31 浙江工业大学 一种轻质高屏蔽pa6/ps复合泡沫的制备方法
CN117106223A (zh) * 2023-06-30 2023-11-24 四川大学 通过隧穿损耗强化纳米复合发泡材料电磁波吸收性能的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556139A (zh) * 2004-01-08 2004-12-22 东华大学 一种制备聚苯乙烯/聚酰胺-6纳米共混物的方法
US20100080978A1 (en) * 2006-12-04 2010-04-01 Universite Catholique De Louvain Polymer composite material structures comprising carbon based conductive loads
CN101747620A (zh) * 2008-12-04 2010-06-23 上海杰事杰新材料股份有限公司 原位增容浇铸尼龙/碳纳米管纳米复合材料的制备方法
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN107936550A (zh) * 2017-11-29 2018-04-20 华东理工大学 一种聚苯乙烯/尼龙6复合材料及其制备方法
CN108997666A (zh) * 2018-07-19 2018-12-14 浙江工业大学 一种具有双峰孔结构的聚合物微孔发泡材料及其制备方法
CN110551279A (zh) * 2018-05-30 2019-12-10 上海杰事杰新材料(集团)股份有限公司 一种纳米碳材料/聚酰胺微球复合材料及其制备方法
CN111132533A (zh) * 2019-12-31 2020-05-08 浙江工业大学 一种MXene/银纳米线复合电磁屏蔽膜
CN111154096A (zh) * 2020-01-16 2020-05-15 浙江工业大学 一种亚微米级尼龙6/石墨烯功能微球的制备方法
CN111592684A (zh) * 2020-05-29 2020-08-28 陕西科技大学 隔离型热塑性弹性体复合微孔电磁屏蔽材料的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556139A (zh) * 2004-01-08 2004-12-22 东华大学 一种制备聚苯乙烯/聚酰胺-6纳米共混物的方法
US20100080978A1 (en) * 2006-12-04 2010-04-01 Universite Catholique De Louvain Polymer composite material structures comprising carbon based conductive loads
CN101747620A (zh) * 2008-12-04 2010-06-23 上海杰事杰新材料股份有限公司 原位增容浇铸尼龙/碳纳米管纳米复合材料的制备方法
CN105315963A (zh) * 2014-07-29 2016-02-10 北京市射线应用研究中心 电磁屏蔽材料与其纳米复合材料及它们的制备方法
CN107936550A (zh) * 2017-11-29 2018-04-20 华东理工大学 一种聚苯乙烯/尼龙6复合材料及其制备方法
CN110551279A (zh) * 2018-05-30 2019-12-10 上海杰事杰新材料(集团)股份有限公司 一种纳米碳材料/聚酰胺微球复合材料及其制备方法
CN108997666A (zh) * 2018-07-19 2018-12-14 浙江工业大学 一种具有双峰孔结构的聚合物微孔发泡材料及其制备方法
CN111132533A (zh) * 2019-12-31 2020-05-08 浙江工业大学 一种MXene/银纳米线复合电磁屏蔽膜
CN111154096A (zh) * 2020-01-16 2020-05-15 浙江工业大学 一种亚微米级尼龙6/石墨烯功能微球的制备方法
CN111592684A (zh) * 2020-05-29 2020-08-28 陕西科技大学 隔离型热塑性弹性体复合微孔电磁屏蔽材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI-UN JANG, ET AL.: "Facile and cost-effective strategy for fabrication of polyamide 6 wrapped multi-walled carbon nanotube via anionic melt polymerization of ε-caprolactam", 《CHEMICAL ENGINEERING JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561037A (zh) * 2022-01-28 2022-05-31 浙江工业大学 一种轻质高屏蔽pa6/ps复合泡沫的制备方法
CN117106223A (zh) * 2023-06-30 2023-11-24 四川大学 通过隧穿损耗强化纳米复合发泡材料电磁波吸收性能的方法

Also Published As

Publication number Publication date
CN112940497B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Wu et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects
Zhi et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption
Yang et al. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework
Zhao et al. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties
CN112940497B (zh) 一种电磁屏蔽pa6/ps复合泡沫材料的制备方法
Pan et al. Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method
CN107286491B (zh) 一种高导电性碳纳米管/石墨烯气凝胶/聚苯乙烯复合材料及其制备方法
Ni et al. Anisotropic electromagnetic wave absorption performance of Polyimide/multi-walled carbon nanotubes composite aerogels with aligned slit-like channels structure
CN102604388B (zh) 一种低压缩变形高导电橡胶复合材料及其制备方法
CN110408083B (zh) 一种以细菌纤维素为基体的高导热复合材料及其制备方法
CN102775705B (zh) 一种聚合物基复合材料及其制备方法
Li et al. Microcellular epoxy/reduced graphene oxide/multi-walled carbon nanotube nanocomposite foams for electromagnetic interference shielding
CN106633373B (zh) 用于sls的碳纳米管/聚丙烯复合粉末材料及制备方法
CN108822452B (zh) 一种聚四氟乙烯导电膜及其制备方法
Li et al. Aramid nanofiber-induced assembly of graphene nanosheets toward highly thermostable and freestanding films for electromagnetic interference shielding
CN107938432A (zh) 一种碳纳米纸复合材料的制备方法
CN110172260A (zh) 一种轻质电磁屏蔽密封材料及其制备方法和应用
Kang et al. A new low-density hydrogel-based matrix with hollow microsphere structure for weight reduction of microwave absorbing composites
CN112080137B (zh) 一种导热、电磁屏蔽、高强度尼龙6复合材料及其制备方法
CN111302324B (zh) 一种磁性微孔碳基吸波复合材料及其制备方法
CN114957995B (zh) 一种耐腐蚀吸波导热的硅橡胶复合垫片及其制备方法
CN114101685B (zh) 一种低频雷达波吸收剂及其制备方法
CN111087733B (zh) 一种液态金属基一维氧化铝二维氧化镍增强聚甲基丙烯酰亚胺泡沫材料及其制备方法
CN108864648B (zh) 一种力学特性好的高稳定性导电塑料的制备方法
CN118108975A (zh) 一种电磁屏蔽pbs/pa6绿色复合泡沫材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant