CN112899522B - 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺 - Google Patents

超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺 Download PDF

Info

Publication number
CN112899522B
CN112899522B CN202110054566.2A CN202110054566A CN112899522B CN 112899522 B CN112899522 B CN 112899522B CN 202110054566 A CN202110054566 A CN 202110054566A CN 112899522 B CN112899522 B CN 112899522B
Authority
CN
China
Prior art keywords
titanium alloy
beta titanium
temperature
alloy
work hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110054566.2A
Other languages
English (en)
Other versions
CN112899522A (zh
Inventor
赵彬
辛超
陈曦
吴金平
潘晓龙
杨帆
赵恒章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Rare Metal Materials Research Institute Co Ltd
Original Assignee
Xian Rare Metal Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Rare Metal Materials Research Institute Co Ltd filed Critical Xian Rare Metal Materials Research Institute Co Ltd
Priority to CN202110054566.2A priority Critical patent/CN112899522B/zh
Publication of CN112899522A publication Critical patent/CN112899522A/zh
Application granted granted Critical
Publication of CN112899522B publication Critical patent/CN112899522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明公开了一种超低弹性模量超高加工硬化率Ti‑Al‑Mo‑Cr系β钛合金,由以下质量百分含量的成分组成:Al 4.5%~5.5%,Mo 6.0%~7.0%,Cr 2.5%~3.5%,余量为Ti及不可避免的杂质元素;本发明还公开了该Ti‑Al‑Mo‑Cr系β钛合金在(Tβ‑50℃)~(Tβ+50℃)的温度下进行固溶处理的热处理工艺。本发明通过对钛合金成分及含量设计,使其在室温下变形时易诱发马氏体相变,降低了合金的弹性模量,并具有超高的加工硬化率;本发明通过控制Ti‑Al‑Mo‑Cr系β钛合金的固溶处理温度,使其在较大温度范围内均处于易于不稳定状态,保证其超低模量和超高加工硬化率性能。

Description

超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热 处理工艺
技术领域
本发明属于钛合金加工技术领域,具体涉及一种超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺。
背景技术
钛合金因其高的比强度、良好的塑性、生物相容性以及耐腐蚀性能等而被广泛应用在各个领域。每种钛合金根据其组织性能特征都有相应的应用领域。α钛合金通常强度较低,但具有良好的耐热性和耐蚀性而被用做化工管道和压力容器等。美国研制的TC4(Ti-6Al-4V)合金属于典型的中强度α+β钛合金,其具有良好的综合性能和加工性能而被广泛应用于航空航天领域。还有典型的高强度亚稳β钛合金TB6(Ti-1023),因其良好的强韧性匹配而用于飞机起落架等。通常高强钛合金的强化机制都是通过在时效阶段使β基体中析出弥散分布的α相,因此,通过调整时效温度和时效时间来控制α相的形貌、尺寸和数量,从而达到不同的强化效果。强化机制相对单一,强化效果也比较有限。
这种强化机制也导致了绝大多数钛合金都有一个显著的缺陷就是加工硬化率很低,即钛合金一旦屈服后无需增加外力就会发生连续的塑性变形,直至断裂失效。这会大大降低钛合金的安全系数。因此为了安全考虑,钛合金在应用设计时只能使其处于弹性阶段。此外,高强钛合金的屈服点都相对较高,在室温下的变形抗力较大,不利于加工成型。因此钛合金通常在高温下进行加工,这也明显增加了钛合金的加工成本。上述两点都极大地限制了钛合金的应用推广。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供了一种超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金。该钛合金通过对其成分及含量进行设计,使得Ti-Al-Mo-Cr系β钛合金的Md=2.386,Bo=2.368,而且Mo当量在11~12,从而该Ti-Al-Mo-Cr系β钛合金在室温下变形时容易诱发马氏体相变,极大地降低了合金的弹性模量,并具有超高的加工硬化率。
为解决上述技术问题,本发明采用的技术方案是:超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金,其特征在于,由以下质量百分含量的成分组成:Al 4.5%~5.5%,Mo 6.0%~7.0%,Cr 2.5%~3.5%,余量为Ti及不可避免的杂质元素;所述Ti-Al-Mo-Cr系β钛合金的弹性模量不大于65GPa,加工硬化率不小于9GPa。
本发明基于第一性原理计算的d电子理论,同时考虑每个合金元素对钛合金的固溶强化效果,采用临界Mo当量法对Ti-Al-Mo-Cr系β钛合金的成分及对应含量进行设计,通过调整合金化元素及其含量,使得Ti-Al-Mo-Cr系β钛合金的Bo(键级)值和Md(d电子能级)值刚好落在特定的区域(Md=2.386,Bo=2.768),而且Mo当量为11~12,使得该Ti-Al-Mo-Cr系β钛合金的马氏体相变温度处于室温附近,从而该Ti-Al-Mo-Cr系β钛合金在室温下变形时处于不稳定状态,仅需较低的相变驱动力即可在变形初期大量形核,容易诱发马氏体相变,而非传统的位错滑移和孪晶变形,极大地降低了合金的弹性模量;同时,马氏体相变形成大量的马氏体相界面又阻碍了位错的运动,从而使该合金具有超高的加工硬化率。
上述的超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金,其特征在于,由以下质量百分含量的成分组成:Al 4.8%~4.82%,Mo6.26%~6.28%,Cr 2.83%~2.85%,余量为Ti及不可避免的杂质元素。
另外,本发明还提供了一种上述的超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金的热处理工艺,其特征在于,将Ti-Al-Mo-Cr系β钛合金在(Tβ-50℃)~(Tβ+50℃)的温度下进行固溶处理后淬火至室温,其中,Tβ为Ti-Al-Mo-Cr系β钛合金的β相变点温度。
本发明组成的Ti-Al-Mo-Cr系β钛合金在β相变点以上热处理淬火后是β单相组织,在β单相组织中的固溶原子满足Bo值和Md值,容易诱发马氏体形变;而当热处理温度跨过相变点逐渐降低时,会析出α相,固溶原子也会在α/β两相中发生再分配,通常α稳定元素如Al会优先溶入α相中,留少量在β相中来实现热力学平衡,而β稳定元素如Mo、Cr则大部分保留在β相中,只有少量溶入α相中。因此,本发明通过控制Ti-Al-Mo-Cr系β钛合金的固溶处理温度,以调节α/β两相的体积比,改变各稳定元素在α/β两相的分配,从而改变马氏体相的稳定性,使得Ti-Al-Mo-Cr系β钛合金在较大温度范围内均处于易于马氏体相变的不稳定状态,保证了Ti-Al-Mo-Cr系β钛合金的超低模量和超高加工硬化率性能。
上述的热处理工艺,其特征在于,所述固溶处理的保温时间为(d+30)min,其中d为Ti-Al-Mo-Cr系β钛合金制备的型材的截面长度的一半,单位为mm。该保温时间有效保证了Ti-Al-Mo-Cr系β钛合金从表面到芯部均能充分进行固溶处理,提高了Ti-Al-Mo-Cr系β钛合金的组织均匀性。
上述的热处理工艺,其特征在于,所述Ti-Al-Mo-Cr系β钛合金的制备过程为:根据目标产物的设计成分将Al-Mo中间合金或者Mo-Cr中间合金与电解Cr、海绵钛、铝豆混合均匀,并压制成电极,然后进行真空自耗熔炼得到铸锭,将铸锭切除冒口后进行高温均匀化处理,再依次在(Tβ+50℃)~(Tβ+100℃)的温度下进行三火锻造,且各火锻造的变形量均大于50%,得到锻坯,继续将锻坯在800℃~830℃下进行轧制,得到Ti-Al-Mo-Cr系β钛合金。该优选的三火锻造温度有效保证了锻坯的组织均匀性,有效控制了锻坯组织中晶粒尺寸,同时避免了锻坯的开裂。
上述的热处理工艺,其特征在于,所述高温均匀化处理的温度为1100℃~1150℃,保温时间为12h~24h。该优选的高温均匀化处理的温度和时间有效增加了各原子扩散速度,保证了钛合金材料中各成分和组织的均匀性。
本发明与现有技术相比具有以下优点:
1、本发明基于第一性原理计算的d电子理论,采用临界Mo当量法对Ti-Al-Mo-Cr系β钛合金的成分及含量进行设计,使得Ti-Al-Mo-Cr系β钛合金Md=2.386,Bo=2.368,而且Mo当量在11~12,从而该Ti-Al-Mo-Cr系β钛合金在室温下变形时容易诱发马氏体相变,极大地降低了合金的弹性模量;同时,马氏体相变形成大量的马氏体相界面又阻碍了位错的运动,从而使该合金具有超高的加工硬化率。
2、本发明Ti-Al-Mo-Cr系β钛合金在室温下变形时诱发的马氏体相变形成了大量的马氏体相界面,阻碍了位错的运动,显著提高了合金的强度,同时也为马氏体相变提供了一定的塑性,从而使得Ti-Al-Mo-Cr系β钛合金具有良好的强塑性匹配。
3、本发明的Ti-Al-Mo-Cr系β钛合金中含有质量份数为6%~7%的同晶型β稳定元素Mo,由于Mo在bcc-Ti中的扩散速率低,降低了合金在两相区锻造时的温度敏感性,扩大合金加工窗口,降低组织控制难度;同时Mo的加入抑制了Ti-Cr共析反应的发生,提高合金的热稳定性。
4、本发明经热处理工艺处理后的Ti-Al-Mo-Cr系β钛合金不仅具有超低弹性模量和超高加工硬化率,还具有良好的强塑性匹配,该合金的弹性模量不大于65GPa,加工硬化率不小于9GPa,室温抗拉强度Rm不低于1100MPa,断后延伸率A为17%~20%。
下面通过实施例对本发明的技术方案作进一步的详细描述。
具体实施方式
实施例1
本实施例的Ti-Al-Mo-Cr系β钛合金由以下质量百分含量的成分组成:Al 4.7%,Mo 6.26%,Cr 2.85%,余量为Ti及不可避免的杂质元素;该Ti-Al-Mo-Cr系β钛合金的Md=2.386,Bo=2.768。
本实施例的Ti-Al-Mo-Cr系β钛合金的制备过程为:根据目标产物的设计成分将Al-Mo中间合金与电解Cr、海绵钛、铝豆混合均匀,并压制成电极,然后进行两次真空自耗熔炼得到铸锭,并控制铸锭中杂质元素含量C≤0.1%,N≤0.03%,H≤0.15%,O≤0.15%;然后将铸锭切除冒口后在1150℃保温12h进行高温均匀化处理,经扒皮、切冒口和尾端后,再依次在1100℃下进行开坯锻造,在(Tβ+50℃)~(Tβ+100℃)的温度下完成二火和三火锻造,且各火锻造的变形量均大于50%,得到锻坯,继续将锻坯在830℃下进行轧制,得到直径为16mm的Ti-Al-Mo-Cr系β钛合金棒材,并在910℃下进行固溶处理40min后淬火至室温。
对比例1
本对比例与实施例1的不同之处在于:固溶处理的温度为780℃。
实施例2
本实施例与实施例1的不同之处在于:固溶处理的温度为860℃。
实施例3
本实施例与实施例1的不同之处在于:固溶处理的温度为810℃。
实施例4
本实施例与实施例1的不同之处在于:本实施例的Ti-Al-Mo-Cr系β钛合金由以下质量百分含量的成分组成:Al 5.5%,Mo 7%,Cr 2.5%,余量为Ti及不可避免的杂质元素;该Ti-Al-Mo-Cr系β钛合金的Md=2.386,Bo=2.768。
本实施例的Ti-Al-Mo-Cr系β钛合金的制备过程与实施例1的不同之处在于:Mo原料采用Mo-Cr中间合金;锻坯轧制温度为800℃,固溶处理的温度为890℃。
实施例5
本实施例的Ti-Al-Mo-Cr系β钛合金由以下质量百分含量的成分组成:Al 4.5%,Mo 6%,Cr 3.5%,余量为Ti及不可避免的杂质元素;该Ti-Al-Mo-Cr系β钛合金的Md=2.386,Bo=2.768。
本实施例的Ti-Al-Mo-Cr系β钛合金的制备过程与实施例1的不同之处在于:高温均匀化处理的温度为1100℃,保温时间为24h;固溶处理的温度为920℃。
实施例6
本实施例的Ti-Al-Mo-Cr系β钛合金由以下质量百分含量的成分组成:Al 4.82%,Mo 6.28%,Cr 2.83%,余量为Ti及不可避免的杂质元素;该Ti-Al-Mo-Cr系β钛合金的Md=2.386,Bo=2.768。
本实施例的Ti-Al-Mo-Cr系β钛合金的制备过程与实施例1的不同之处在于:高温均匀化处理的温度为1100℃,保温时间为24h;固溶处理的温度为920℃。
对本发明实施例1~实施例6中经固溶处理后淬火至室温的Ti-Al-Mo-Cr系β钛合金的力学性能进行检测,结果如表1所示。
表1
Figure BDA0002900450830000061
Figure BDA0002900450830000071
从表1可以看出,本发明实施例1~实施例6经固溶处理后淬火至室温的Ti-Al-Mo-Cr系β钛合金的弹性模量较低均不大于65GPa,且加工硬化率高均不小于9GPa,强度较高且具有一定的塑性,具有良好的强塑性匹配。将实施例1~实施例3与对比例1进行比较可知,实施例1~实施例3经固溶处理后淬火至室温的Ti-Al-Mo-Cr系β钛合金的弹性模量均小于对比例1,且加工硬化率高均大于对比例1,说明本发明通过控制Ti-Al-Mo-Cr系β钛合金的固溶处理温度在(Tβ-50℃)~(Tβ+50℃)的范围内,使得Ti-Al-Mo-Cr系β钛合金在较大温度范围内均处于易于马氏体相变的不稳定状态,保证了Ti-Al-Mo-Cr系β钛合金的超低模量和超高加工硬化率性能。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (2)

1.超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金,其特征在于,由以下质量百分含量的成分组成:Al 4.5%~5.5%,Mo 6.0%~7.0%,Cr 2.5%~3.5%,余量为Ti及不可避免的杂质元素;所述Ti-Al-Mo-Cr系β钛合金的弹性模量不大于65GPa,加工硬化率不小于9GP a;
所述Ti-Al-Mo-Cr系β钛合金的制备过程为:根据目标产物的设计成分将Al-Mo中间合金或者Mo-Cr中间合金与电解Cr、海绵钛、铝豆混合均匀,并压制成电极,然后进行真空自耗熔炼得到铸锭,将铸锭切除冒口后进行高温均匀化处理,再依次在(Tβ+50℃)~(Tβ+100℃)的温度下进行三火锻造,且各火锻造的变形量均大于50%,得到锻坯,继续将锻坯在800℃~830℃下进行轧制,得到Ti-Al-Mo-Cr系β钛合金,将Ti-Al-Mo-Cr系β钛合金在(Tβ-50℃)~(Tβ+50℃)的温度下进行固溶处理后淬火至室温,其中,Tβ为Ti-Al-Mo-Cr系β钛合金的β相变点温度;所述高温均匀化处理的温度为1100℃~1150℃,保温时间为12h~24h,所述固溶处理的保温时间为(d+30)min,其中d为Ti-Al-Mo-Cr系β钛合金制备的型材的截面长度的一半,单位为mm。
2.根据权利要求1所述的超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金,其特征在于,由以下质量百分含量的成分组成:Al 4.8%~4.82%,Mo 6.26%~6.28%,Cr 2.83%~2.85%,余量为Ti及不可避免的杂质元素。
CN202110054566.2A 2021-01-15 2021-01-15 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺 Active CN112899522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110054566.2A CN112899522B (zh) 2021-01-15 2021-01-15 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110054566.2A CN112899522B (zh) 2021-01-15 2021-01-15 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺

Publications (2)

Publication Number Publication Date
CN112899522A CN112899522A (zh) 2021-06-04
CN112899522B true CN112899522B (zh) 2022-04-05

Family

ID=76113353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110054566.2A Active CN112899522B (zh) 2021-01-15 2021-01-15 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺

Country Status (1)

Country Link
CN (1) CN112899522B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897513B (zh) * 2021-10-12 2022-06-14 西安稀有金属材料研究院有限公司 一种1200MPa级耐硝酸腐蚀高强度钛合金及其制备方法
CN114277276B (zh) * 2021-12-24 2023-03-24 东莞理工学院 Ti5Si3/TiC颗粒增强且热膨胀系数可调控的钛钽基复合材料制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329899B8 (de) * 2003-07-03 2005-05-19 Deutsche Titan Gmbh Beta-Titanlegierung, Verfahren zur Herstellung eines Warmwalzproduktes aus einer solchen Legierung und deren Verwendungen
RU2463365C2 (ru) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ПСЕВДО β-ТИТАНОВОГО СПЛАВА, СОДЕРЖАЩЕГО (4,0-6,0)% Аl, (4,5-6,0)% Мo, (4,5-6,0)% V, (2,0-3,6)% Cr, (0,2-0,5)% Fe, (0,1-2,0)% Zr
CN104862529B (zh) * 2015-06-06 2016-09-28 西北有色金属研究院 一种超高强高塑性钛合金
CN107217173A (zh) * 2017-05-27 2017-09-29 中国科学院金属研究所 具有高强高塑和良好断裂韧性的钛合金及其制备工艺
CN108486410A (zh) * 2018-05-24 2018-09-04 北京航空航天大学 一种超高强塑积低成本钛合金及其制备方法与应用

Also Published As

Publication number Publication date
CN112899522A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
JP6104164B2 (ja) 高強度および延性アルファ/ベータチタン合金
JP5094393B2 (ja) 準安定ベータ型チタン合金及び直接時効によるその加工方法
JP5850859B2 (ja) 高強度チタンの生産
CN112899522B (zh) 超低弹性模量超高加工硬化率Ti-Al-Mo-Cr系β钛合金及其热处理工艺
CN110273118B (zh) 一种钛合金的热处理工艺
CN112063945B (zh) 一种提高Ti2AlNb基合金持久和蠕变性能的热处理工艺
CN111455214B (zh) 一种舰船用铸态Ti6321钛合金及其制备方法
CN112210736B (zh) 一种近β钛合金显微组织及显微硬度调控的热处理方法
JP3873313B2 (ja) 高強度チタン合金の製造方法
CN113862512B (zh) 一种新型双态组织高强韧高温钛合金的加工制造方法
CN114107734A (zh) 一种低弹性模量、高强度α+β钛合金及其制备方法
CN116000134A (zh) Gh4738合金冷拔棒材及其制备方法和应用
CN115194069A (zh) 一种Ti175合金大尺寸整体叶盘锻件的制备方法
CN111647835A (zh) 一种改善β型钛合金机械热处理的方法
CN113862514B (zh) 一种高强度高塑性亚稳态β型钛合金及其制备方法
CN114318091A (zh) 一种高纵向载重车辆连接装置用铝合金厚板及其制备方法
CN113817972A (zh) 通过热处理任意调整钛合金中等轴α相含量的方法
US5281285A (en) Tri-titanium aluminide alloys having improved combination of strength and ductility and processing method therefor
CN116676521A (zh) 一种具有非均匀晶粒异质结构CrCoNi基中熵合金及其制备方法
JPH07252617A (ja) 高強度高靱性チタン合金の製造方法
CN112877566A (zh) 一种低间隙医用钛合金tc4eli及其制备方法
CN114774817B (zh) 一种Ti6246合金铸件的热处理工艺
CN115927915B (zh) 一种Ti-Ni-Zr形状记忆合金及其制备方法
CN115261671B (zh) 一种热强性高温钛合金及其热加工方法
CN115786832B (zh) 一种改善高强亚稳β钛合金强塑性匹配的方法及钛合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant