JPH07252617A - 高強度高靱性チタン合金の製造方法 - Google Patents

高強度高靱性チタン合金の製造方法

Info

Publication number
JPH07252617A
JPH07252617A JP6800294A JP6800294A JPH07252617A JP H07252617 A JPH07252617 A JP H07252617A JP 6800294 A JP6800294 A JP 6800294A JP 6800294 A JP6800294 A JP 6800294A JP H07252617 A JPH07252617 A JP H07252617A
Authority
JP
Japan
Prior art keywords
temperature
titanium alloy
forging
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6800294A
Other languages
English (en)
Other versions
JP3252596B2 (ja
Inventor
Hisashi Maeda
尚志 前田
Minoru Okada
岡田  稔
Yasuhiro Sato
恭博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06800294A priority Critical patent/JP3252596B2/ja
Publication of JPH07252617A publication Critical patent/JPH07252617A/ja
Application granted granted Critical
Publication of JP3252596B2 publication Critical patent/JP3252596B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

(57)【要約】 【目的】 Nearβ型チタン合金の高強度・高靱性という
特性をバランス良く向上させると共に、十分な伸びをも
示す均質なチタン合金の製造手段を確立する。 【構成】 Nearβ型のチタン合金に、〔β変態点−60
℃〕〜〔β変態点−10℃〕の温度域で加工度が30%以
上の恒温鍛造を施した後、この温度範囲内であってかつ
〔恒温鍛造温度−20℃〕〜〔恒温鍛造温度+20℃〕の範
囲を外れない温度域にて30分以上の溶体化処理を行
い、その後に400〜600℃で30分以上の時効処理
を施すことによって、0.2%耐力:110kgf/mm2 以上,
伸び:10%以上,破壊靱性:180kgf/mm3/2 以上を
示す均質な高強度高靱性チタン合金を安定製造する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、例えば航空機等の軽
量化や高速化にも大きく寄与することができる高強度・
高靱性でかつ均質なチタン合金の製造方法に関するもの
である。
【0002】
【従来技術とその課題】チタン合金は軽量でありながら
強度が高く、比重で標準化した比強度は金属材料の中で
最も高いことに加えて、非常に優れた耐食性を有してい
ることから、現在では軽量高強度材料として航空・宇宙
産業を中心に多くの分野で使用されている金属材料であ
るが、最近、航空機分野において更なる軽量化や高速化
が求められるようになり、そのためより高強度でかつ靱
性の高いチタン合金が必要になるものと予想される。
【0003】ところで、近年、β単相域から急冷しても
マルテンサイト変態が起こらずに準安定なβ単相組織が
得られる“Nearβ型のチタン合金”が知られるようにな
り、Ti−6Al−4V合金に代表されるα+β合金と比較
して高い強度及び靱性を備えているため航空機分野等か
ら厚い注目を集めるようになった。しかも、このNearβ
型合金は、β型の合金よりも合金元素量が少なくて熱間
変形抵抗が小さいので鍛造性にも優れており、従来のTi
−6Al−4V合金に代わる合金として期待されている。
【0004】なお、これまでに開発された商用のNearβ
型チタン合金としてはTi−10V−2Fe−3Al合金やTi−
5Al−2Sn−2Zr−4Mo−4Cr合金等を挙げられるが、
これらNearβ型合金の準安定β相は多量のω相を含んで
おり、加工によってマルテンサイト変態が起こる応力誘
起変態を示すことが知られている。また、Nearβ型チタ
ン合金は、加工の後で時効処理を施すと析出硬化によっ
て強度が向上する材料であるが、低温時効や短時間時効
の場合には時効ω相が生成し、中・高温域や長時間の時
効では最終的に母相であるβ相中にα相が析出した組織
となることも知られている。
【0005】上述のようなNearβ型合金の強化機構は
「β変態点以下の2相域における溶体化処理とこれに続
く時効によってβ相中に微細なα相が析出する」という
ものであるが、これまで採られてきたNearβ型チタン合
金に対する特性改善策は、主として前記強化機構を制御
してこの合金系の特徴であるとされている高強度・高靱
性の特性を更に向上させようとするものであった。
【0006】例えば、AMS規格の4983を参照する
と、Nearβ型チタン合金の規格特性確保手段として
「〔β変態点−40℃〕〜〔β変態点−15℃〕の温度
域に30分以上保持した後に炉冷又は空冷にて室温まで
冷却し、 その後更に同様の加熱保持後に水冷を行い室温
まで冷却して時効するという“2段溶体化処理法”」が
開示されている。また、特開昭63−105954号公
報では、「Nearβ型チタン合金をβ域からの冷却中にα
+β域で加工し、 その後更にα+β域に再加熱して加工
することにより、 破壊靱性の異方性を生じさせることな
く高い強度,靱性を確保できるようになる」としてい
る。更に、特開平2−217452号公報には、「Near
β型チタン合金に“α+βの高温域で行う1段目の溶体
化処理”と“これに続くこれより低い温度で行う2段目
の溶体化処理”とを施し、 その後に低温時効を施すこと
によって高い強度と共に良好な破壊靱性を確保しようと
する方法」が開示されている。
【0007】しかし、このようにNearβ型チタン合金の
強度及び破壊靱性の向上に関する幾つかの提案がなされ
てきたにもかかわらず、「強度が向上するとこれに反し
て破壊靱性が低下する」というチタン合金に共通する特
質の故にこれまで提案された手段では強度と破壊靱性の
両方を共に十分向上させることは難しく、しかも“伸
び”や“特性の均質性”という観点からしても十分に満
足できる合金を得るのは困難であった。
【0008】このようなことから、本発明が目的とした
のは、Nearβ型チタン合金が有する高強度・高靱性とい
う優れた特性をバランス良く更に向上させると共に、十
分な伸びをも示す均質なチタン合金、具体的には0.2%耐
力:110kgf/mm2 以上,破壊靱性:180kgf/mm3/2
以上で、かつ10%以上の伸びを示す均質なチタン合金
を提供することである。
【0009】
【課題を解決するための手段】そこで、本発明は上記目
的を達成すべく鋭意研究を行ったところ、次のような知
見を得ることができた。即ち、Nearβ型のチタン合金
は、一般的な工程であるα+β域での加工がなされた状
態では初析α相とβ相からなる組織が生成するが、この
ような組織に標準的なプロセスである“α+β域におけ
る溶体化処理”を施すと温度の上昇に伴って強度及び破
壊靱性が向上するものの、その温度がβ変態点に近接し
すぎたりあるいはβ変態点を超えると延性が著しく低下
し、工業材料としての信頼性が大きく低下する。
【0010】これは、溶体化処理温度がβ変態点へ近接
するのに伴って溶体化処理により生成するβ相のサブグ
レインが部分的に異常に粗大化する現象が起きること
や、更にはβ変態点以上になると非常に粗大なβ粒から
なる単相組織が生成することによるものである。従っ
て、十分な延性を確保しながら強度及び破壊靱性を共に
十分向上させるには、延性の低下が大きくならない程度
にサブグレインを均質に粗大化させた組織を実現するこ
とが重要であり、そのためには、Nearβ型のチタン合金
に対してβ変態点に近付き過ぎない下方温度域であって
しかもその範囲内のできるだけ高い温度域で恒温鍛造を
施し、続いてその規制温度域内の鍛造温度近辺で溶体化
処理を行ってから更に時効処理を施すことが非常に有効
である。
【0011】本発明は、上記知見事項等を基にした更な
る研究の結果完成されたもので、「Nearβ型のチタン合
金に、 〔β変態点−60℃〕〜〔β変態点−10℃〕の
温度域で加工度が30%以上の恒温鍛造を施した後、 こ
の温度範囲内であってかつ〔恒温鍛造温度−20℃〕〜
〔恒温鍛造温度+20℃〕の範囲を外れない温度域にて
30分以上の溶体化処理を行い、 その後に400〜60
0℃で30分以上の時効処理を施すことによって、 0.2%
耐力:110kgf/mm2 以上,伸び:10%以上,破壊靱
性:180kgf/mm3/2 以上を示す均質な高強度高靱性チ
タン合金を安定して製造できるようにした点」に大きな
特徴を有している。
【0012】なお、前記「Nearβ型チタン合金」とは、
β域から室温に急冷された際にα相が析出せずにβ相が
残留する合金(β型チタン合金)のうちω相を生成する
チタン合金であることは言うまでもなく、例えばTi−10
V−2Fe−3Al合金,Ti−17V合金,Ti−5Al−2Sn−
2Zr−4Mo−4Cr合金,Ti−11.5V−2Al−2Sn−11Zr
合金,Ti−12V−2.3 Al−2Sn−6Zr合金等を例示する
ことができる。
【0013】また、前記恒温鍛造に供するNearβ型チタ
ン合金の形態としては、α+β域で鍛造により作成され
たビレットやスラブ等を用いることが望ましい。これ
は、β鍛造材では恒温鍛造での加工度を十分に取らなけ
れば均質微細な組織が得られにくいためである。勿論、
恒温鍛造での加工度増加が問題とならなければβ鍛造材
を用いても差支えはなく、むしろこの場合には靱性が向
上するものと考えられるが、一方で伸びの低下や強度・
靱性の異方性が上昇する等の問題が出てくるので好まし
くないと言える。
【0014】以下、本発明において高強度高靱性チタン
合金の製造条件を前記の如くに限定した理由を、その作
用と共に詳述する。
【作用】
A) 恒温鍛造条件 本発明において、Nearβ型チタン合金の加工を特に“恒
温鍛造”とした理由は次の通りである。つまり、“通常
の鍛造”では温度が不均一であるために組織が不均質と
なり、強度,靱性,伸びといった機械的性質のバラツキ
が大きくなるのに対して、“恒温鍛造”では加工物の表
面も中心も同じ温度で加工されるために組織の均質性が
良くなるからである。また、圧延や押出等では組織が層
状になりやすく、機械的性質の異方性が大きくなるため
に不適である。更に、本発明は恒温鍛造と溶体化処理を
ほぼ同一の温度で行うことを特徴とするが、恒温鍛造を
施すことによって合金組織が溶体化処理で形成される組
織に近付くことも、組織の均一性(即ち機械適性質の均
質性)を向上させる上で有利となることも大きな理由の
1つである。
【0015】そして、この恒温鍛造の温度を〔β変態点
−60℃〕〜〔β変態点−10℃〕としたのは、次の理
由による。即ち、該温度が〔β変態点−10℃〕より高
くなるとα+β域においてはサブグレインの粗大化しす
ぎ、またβ域であるとサブグレインが消失して非常に粗
大なβ単相組織となり、何れにしても材料の延性が著し
く低下する。一方、恒温鍛造温度が〔β変態点−60
℃〕よりも低くなるとサブグレインの成長が不十分とな
って材料の強度,靱性が低下する。なお、望ましくは、
恒温鍛造温度は〔β変態点−50℃〕〜〔β変態点−1
5℃〕の範囲とするのが良い。また、恒温鍛造での加工
度が30%を下回るとβ相のサブグレインの発達が不十
分であると共に材料の組織が不均質となり、材料に高い
破壊靱性が得られないことから、恒温鍛造時の加工度は
30%以上と限定した。
【0016】B) 溶体化処理条件 本発明では、恒温鍛造に続いて恒温鍛造温度範囲内であ
ってかつ〔恒温鍛造温度±20℃〕の範囲内の温度で溶
体化処理を行うが、この溶体化処理を恒温鍛造とほぼ同
じ温度で行うことが本発明の最も重要とする点である。
つまり、恒温鍛造では材料が通常の鍛造よりも長い時間
均一の温度に保持されることから、恒温鍛造後の組織は
その温度において安定な状態になっている。そして、次
の溶体化処理時の温度が〔恒温鍛造温度−20℃〕から
〔恒温鍛造温度+20℃〕の範囲にあれば、この溶体化
処理状態においても恒温鍛造により生成した組織が安定
に維持され、組織の均質性が良好な状態が得られるの
で、機械的性質の均質性が非常に高い材料が実現される
ことになる。
【0017】ここで、溶体化処理温度がβ変態点を超え
ると粗大なβ単相組織となって材料の延性が著しく低下
するが、溶体化処理温度が〔恒温鍛造温度+20℃〕よ
りも高い場合でも合金元素の拡散が起こり、恒温鍛造に
より生成した組織が変化することになる。そして、顕著
なサブグレインの粗大化が起こるが、このとき粗大化が
不均質に起こるために組織の不均質性が生じ、延性が低
下する。一方、溶体化処理温度が〔恒温鍛造温度−20
℃〕よりも低いと、恒温鍛造により生成した組織にα相
の増加が起こり、強度及び破壊靱性を支えるβ相が減少
するために好ましくない。従って、溶体化処理温度は基
本的に恒温鍛造温度と同一温度が好ましい。また、溶体
化処理時間が30分未満では、溶体化処理状態で均質な
α+βの組織にならず、材料の機械的性質が不均質にな
る。
【0018】C) 時効処理条件 最後に時効処理を行うが、この際の処理温度は400〜
600℃、処理時間は30分以上とされる。なぜなら、
時効処理温度が400℃未満であると高強度は得られる
ものの破壊靱性や延性に寄与する時効α相の析出が十分
に起こらず、また600℃を超えると時効析出α相の粗
大化が起こり高い強度が得られなくなるためである。ま
た、時効処理時間が30分未満であると時効α相の析出
が不均質であり、材料の機械的性質も不均質となるた
め、時効処理時間は30分以上とする必要がある。な
お、具体的な時効処理温度と処理時間は合金組成,溶体
化処理温度に応じて設定すれば良い。
【0019】続いて、本発明の効果を実施例によって更
に具体的に説明する。
【実施例】まず、二重真空ア−ク溶解で得られたTi−10
V−2Fe−3Al合金の鋳塊(直径420mm)をβ温度域
に加熱し(なお、 この合金のβ変態点は約800℃であ
った)、β鍛造により直径200mmの丸棒とした後、更
にα+β域である750℃に加熱して、鍛造により厚さ
100mm,幅100mmのスラブを得た。
【0020】次に、このスラブより長さ150mm×幅1
00mm×厚さ100mmのブロックを複数採取して表1に
示す各条件で恒温鍛造し、表1に示す溶体化処理温度に
2時間保持してから水冷する溶体化処理を行い、更に表
1に示す時効温度に8時間保持した後で空冷する時効処
理を施した。
【0021】
【表1】
【0022】次いで、時効処理後の各材料から直径6.25
mm,平行部の長さ32mmの丸棒引張試験片を鍛造方向と
垂直な方向から採取すると共に、破壊靱性測定用にハ−
フサイズのCT試験片を、亀裂の面が板厚方向と同一で
ありかつ亀裂が鍛造方向に垂直に進展するように採取
し、それぞれを引張試験並びに破壊靱性試験に供した。
なお、常温で実施した引張試験は歪速度が0.2%耐力まで
は0.5%/min ,0.2%耐力以後は 15%/min の条件にて、
一方、破壊靱性試験はASTM−E399に準拠してそれぞ
れ実施した。これらの試験結果を表1に併せて示す。
【0023】表1に示す結果から明らかなように、本発
明で規定する条件に従った場合には強度,伸び,破壊靱
性のバランスが優れたNearβ型チタン合金材を安定して
得ることができるのに対して、製造条件が本発明の規定
を満たしていない場合には強度,伸び,破壊靱性の少な
くとも1つが劣った結果となり、十分に満足できる材料
を得られないことが分かる。
【0024】
【効果の総括】以上に説明した如く、この発明によれ
ば、強度,伸び,破壊靱性が共に優れる均質なNearβ型
チタン合金部材の製造が可能になり、航空機用を始めと
した特に信頼性が要求される分野の厳しい要望に応え得
るチタン合金材料の安定供給ができるようになるなど、
産業上有用な効果がもたらされる。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 Nearβ型のチタン合金に、〔β変態点−
    60℃〕〜〔β変態点−10℃〕の温度域で加工度が3
    0%以上の恒温鍛造を施した後、この温度範囲内であっ
    てかつ〔恒温鍛造温度−20℃〕〜〔恒温鍛造温度+2
    0℃〕の範囲を外れない温度域にて30分以上の溶体化
    処理を行い、その後に400〜600℃で30分以上の
    時効処理を施すことを特徴とする、高強度高靱性チタン
    合金の製造方法。
JP06800294A 1994-03-11 1994-03-11 高強度高靱性チタン合金の製造方法 Expired - Fee Related JP3252596B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06800294A JP3252596B2 (ja) 1994-03-11 1994-03-11 高強度高靱性チタン合金の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06800294A JP3252596B2 (ja) 1994-03-11 1994-03-11 高強度高靱性チタン合金の製造方法

Publications (2)

Publication Number Publication Date
JPH07252617A true JPH07252617A (ja) 1995-10-03
JP3252596B2 JP3252596B2 (ja) 2002-02-04

Family

ID=13361246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06800294A Expired - Fee Related JP3252596B2 (ja) 1994-03-11 1994-03-11 高強度高靱性チタン合金の製造方法

Country Status (1)

Country Link
JP (1) JP3252596B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786943A2 (en) * 2004-06-10 2007-05-23 Howmet Corporation Near-beta titanium alloy heat treated casting
CN102896267A (zh) * 2012-09-28 2013-01-30 中国航空工业集团公司北京航空材料研究院 一种tc17钛合金盘形锻件的等温锻造方法
CN104762576A (zh) * 2015-04-24 2015-07-08 西北有色金属研究院 Tc18钛合金全网篮组织中等规格超长棒材的制备方法
JP2017002390A (ja) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 チタン合金鍛造材
JP2017002373A (ja) * 2015-06-12 2017-01-05 株式会社神戸製鋼所 チタン合金鍛造材
JP2017218661A (ja) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 チタン合金鍛造材
JP2017218660A (ja) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 チタン合金鍛造材
CN109930100A (zh) * 2019-03-29 2019-06-25 中国科学院金属研究所 一种损伤容限钛合金板材轧制及配套热处理工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517530B (zh) * 2011-12-16 2013-09-11 陕西宏远航空锻造有限责任公司 一种提高Ti5553钛合金组织性能的热加工方法
CN105755311A (zh) * 2014-12-19 2016-07-13 北京有色金属研究总院 一种高强高韧钛合金及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786943A2 (en) * 2004-06-10 2007-05-23 Howmet Corporation Near-beta titanium alloy heat treated casting
EP1786943A4 (en) * 2004-06-10 2008-02-13 Howmet Corp THERMALLY PROCESSED MOLD PRODUCT BASED ON TITANIUM ALLOY QUASI BETA
CN102896267A (zh) * 2012-09-28 2013-01-30 中国航空工业集团公司北京航空材料研究院 一种tc17钛合金盘形锻件的等温锻造方法
CN104762576A (zh) * 2015-04-24 2015-07-08 西北有色金属研究院 Tc18钛合金全网篮组织中等规格超长棒材的制备方法
CN104762576B (zh) * 2015-04-24 2016-10-12 西北有色金属研究院 Tc18钛合金全网篮组织中等规格超长棒材的制备方法
JP2017002373A (ja) * 2015-06-12 2017-01-05 株式会社神戸製鋼所 チタン合金鍛造材
JP2017002390A (ja) * 2015-06-16 2017-01-05 株式会社神戸製鋼所 チタン合金鍛造材
JP2017218661A (ja) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 チタン合金鍛造材
JP2017218660A (ja) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 チタン合金鍛造材
CN109930100A (zh) * 2019-03-29 2019-06-25 中国科学院金属研究所 一种损伤容限钛合金板材轧制及配套热处理工艺

Also Published As

Publication number Publication date
JP3252596B2 (ja) 2002-02-04

Similar Documents

Publication Publication Date Title
JP6058535B2 (ja) α/β処理を施した高強度チタンの熱延による歪み矯正
EP0683242B1 (en) Method for making titanium alloy products
CN110144496A (zh) 具有改良性能的钛合金
JPH0686638B2 (ja) 加工性の優れた高強度Ti合金材及びその製造方法
JPH10306335A (ja) (α+β)型チタン合金棒線材およびその製造方法
AU2019350496B2 (en) Creep resistant titanium alloys
JP3873313B2 (ja) 高強度チタン合金の製造方法
JPH04103737A (ja) 高強度高靭性チタン合金およびその製造方法
JP2022511276A (ja) 鍛造チタン合金による高強度のファスナ素材及びその製造方法
JPH01279736A (ja) β型チタン合金材の熱処理方法
JPH07252617A (ja) 高強度高靱性チタン合金の製造方法
JP2022502568A (ja) 中強度と高延性を備えたチタン合金
JPH09228014A (ja) 破壊靭性に優れるα+β型チタン合金継ぎ目無し管の製造方法
JP6536317B2 (ja) α+β型チタン合金板およびその製造方法
JPH11256278A (ja) コバルトを含まないマレ―ジング鋼
JP2004091893A (ja) 高強度チタン合金
JPH0565601A (ja) 高強度、高疲労強度オーステナイト系ステンレス鋼およびその製造方法
JP2018053313A (ja) α+β型チタン合金棒およびその製造方法
JPH08144034A (ja) Ti−Al系金属間化合物基合金の製造方法
JPH06220566A (ja) 異方性の小さいモリブデン基合金と製造方法
JP2017002373A (ja) チタン合金鍛造材
JP3036396B2 (ja) Nearβ型チタン合金の製造方法
JPH03240939A (ja) 高延性、高靭性チタン合金の製造方法
JPH09228013A (ja) α+β型チタン合金からなる継ぎ目無し管の製造方法
JPH03294442A (ja) 高靭性チタン合金およびその製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees