CN112882527B - 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法 - Google Patents

一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法 Download PDF

Info

Publication number
CN112882527B
CN112882527B CN202110099542.9A CN202110099542A CN112882527B CN 112882527 B CN112882527 B CN 112882527B CN 202110099542 A CN202110099542 A CN 202110099542A CN 112882527 B CN112882527 B CN 112882527B
Authority
CN
China
Prior art keywords
current
triode
circuit
output
generating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110099542.9A
Other languages
English (en)
Other versions
CN112882527A (zh
Inventor
潘俊
邱雷
李典武
季芬芬
王威
韩磊
王科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Aichuang Microelectronics Technology Co ltd
Original Assignee
Hefei Aichuang Microelectronics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Aichuang Microelectronics Technology Co ltd filed Critical Hefei Aichuang Microelectronics Technology Co ltd
Priority to CN202110099542.9A priority Critical patent/CN112882527B/zh
Publication of CN112882527A publication Critical patent/CN112882527A/zh
Priority to US17/491,087 priority patent/US11934216B2/en
Application granted granted Critical
Publication of CN112882527B publication Critical patent/CN112882527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/085Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light using opto-couplers between stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/34Dc amplifiers in which all stages are dc-coupled
    • H03F3/343Dc amplifiers in which all stages are dc-coupled with semiconductor devices only
    • H03F3/3432Dc amplifiers in which all stages are dc-coupled with semiconductor devices only with bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/91Indexing scheme relating to amplifiers the amplifier has a current mode topology

Abstract

本发明提供一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法,包括集成于同一衬底基片上的启动电路、电流产生电路以及精度修调及输出电路,所述启动电路能够产生并输出第一启动电流和第二启动电流;所述电流产生电路包括与第一启动电流输出端连接的负温度变化率电流产生电路和与第二启动电流输出端连接的正温度变化率电流产生电路;所述精度修调及输出电路用于对电流产生电路输出的两个电流通过比例精度调节后输出符合光耦隔离放大器应用要求的恒定电流。本发明通过将启动电路、负温度变化率电流产生电路、正温度变化率电流产生电路、精度修调及输出电路综合并单片集成,形成与温度变化、电源电压变化、流片工艺参数变化无关的恒流输出电路,得到了高性能输出恒定电流源。

Description

一种用于光耦隔离放大器的恒流产生电路及电流精度修调 方法
技术领域
本发明涉及半导体集成电路设计技术领域,具体涉及一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法。
背景技术
光耦隔离放大器电路,特别是半导体集成电路设计领域中的光耦隔离放大器电路,需要高性能恒定电流来完成偏置和输出,且要求该电流大小为期望精度范围内的值,最终实现此电流大小与温度变化、电源电压变化、流片工艺参数变化等无关。
发明内容
本发明的目的在于提供一种光耦隔离放大器中的恒流产生电路及电流精度修调方法,该电路输出与温度变化、电源电压变化、流片工艺参数变化等均无关的高性能输出恒定电流源。
为实现上述目的,本发明采用如下技术方案:
一种用于光耦隔离放大器的恒流产生电路,其特征在于,包括集成于同一衬底基片上的:
启动电路,该启动电路能够产生并输出第一启动电流和第二启动电流;
电流产生电路,该电流产生电路包括与第一启动电流输出端连接的负温度变化率电流产生电路和与第二启动电流输出端连接的正温度变化率电流产生电路;以及
精度修调及输出电路,该精度修调及输出电路用于对电流产生电路输出的两个电流通过比例精度调节后输出符合光耦隔离放大器应用要求的恒定电流。
进一步地,所述启动电路包括依次连接电源的二极管D1、电阻R1、二极管D2,所述二极管D1的正极连接电源的输出端、负极连接电阻R1的一端,所述电阻R1的另一端连接二极管的D2的负极,所述二极管D2的正极分别通过电阻R2、R3引出第一启动电流输出端和第二启动电流输出端。
优选地,所述负温度变化率电流产生电路包括相互连接的三极管Q1、Q2、Q3、Q4,所述三极管Q1的漏极连接电阻R2并与自身栅极连接、源极与三极管Q2的漏极以及三极管Q3的栅极连接,所述三极管Q2的源极接地并通过电阻R4与三极管Q3的源极连接、栅极与三极管Q4的源极连接,所述三极管Q3的漏极与三级管Q4的源极连接,所述三极管Q4的栅极与三极管Q1的栅极连接、漏极与精度修调及输出电路的输入端连接。
优选地,所述正温度变化率电流产生电路包括相互连接的三极管Q5、Q6、Q7、Q8,所述三极管Q5的漏极连接电阻R3并与自身栅极连接、源极与三极管Q6的漏极以及三极管Q7的栅极连接,所述三极管Q6的源极与三极管Q2和电阻R4的中间位置连接并通过电阻R5与三极管Q7的源极连接、栅极与三极管Q8的源极连接,所述三极管Q7的漏极与三级管Q8的源极连接,所述三极管Q8的栅极与三极管Q5的栅极连接、漏极与精度修调及输出电路的输入端连接。
进一步地,所述精度修调及输出电路包括三极管Q9、Q10,所述三极管Q9的源极与所述电源的输出端以及三极管Q10的源极连接、漏极连接电流产生电路的输出端并与自身栅极连接、栅极与三极管Q10的栅极连接,所述三极管Q10的漏极为恒定电流的输出端。
进一步地,所述电阻R4、R5为半导体集成电路工艺中的离子注入类型电阻,所述电阻R4的温度系数大于半导体集成电路工艺热电压的温度系数,所述电阻R5的温度系数小于半导体集成电路工艺热电压的温度系数。
一种用于光耦隔离放大器的恒流产生电路的精度修调方法,包括以下步骤:
步骤一、计算出电流产生电路输出的电流,该电流的计算公式为:
Figure BDA0002915171710000031
其中:I1为负温度系数电流产生电路的输出电流,I1为正温度系数电流产生电路的输出电流,I3为电流产生电路输出的电流,
Figure BDA0002915171710000032
电流I3的温度系数,
Figure BDA0002915171710000033
为电阻R4的温度系数,
Figure BDA0002915171710000034
为电阻R5的温度系数,TCvt为半导体集成电路工艺热电压Vt的温度系数。
步骤二、电流I3通过精度修调电路,该输出电流的计算公式为:
Figure BDA0002915171710000035
其中:
Figure BDA0002915171710000036
为三级管Q9的发射区面积,
Figure BDA0002915171710000037
为三级管Q10的发射区面积。
由以上技术方案可知,本发明通过将启动电路、负温度变化率电流产生电路、正温度变化率电流产生电路、精度修调及输出电路综合并单片集成,形成与温度变化、电源电压变化、流片工艺参数变化无关的恒流输出电路,得到了高性能输出恒定电流源。
附图说明
图1为本发明的整体结构示意框图;
图2为本发明的电路连接示意图;
图中:1、启动电路;21、负温度变化率电流产生电路;22、正温度变化率电流产生电路;3、精度修调及输出电路。
具体实施方式
下面结合附图对本发明的一种优选实施方式做详细的说明。
如图1和2所示的用于光耦隔离放大器的恒流产生电路,包括集成于同一衬底基片上的启动电路1、电流产生电路以及精度修调及输出电路3,所述启动电路能够产生并输出第一启动电流和第二启动电流;所述电流产生电路包括与第一启动电流输出端连接的负温度变化率电流产生电路21和与第二启动电流输出端连接的正温度变化率电流产生电路22;所述精度修调及输出电路用于对电流产生电路输出的两个电流通过比例精度调节后输出符合光耦隔离放大器应用要求的恒定电流。
本发明基于同一衬底基片,利用半导体集成电路工艺的固有器件,实现了一个高性能恒定电流源输出电路,负温度变化率电流产生电路21能够产生与电源电压变化无关,但与温度变化以及流片工艺参数变化相关的电流I1,该电流I1与温度变化呈现反比关系;同样的,正温度变化率电流产生电路22能够产生与电源电压变化无关,但与温度变化以及流片工艺参数变化相关的电流I2,且电流I2与温度变化呈现正比关系。
具体的,本优选实施例所述的启动电路包括依次连接电源的二极管D1、电阻R1、二极管D2,所述二极管D1的正极连接电源的输出端、负极连接电阻R1的一端,所述电阻R1的另一端连接二极管的D2的负极,所述二极管D2的正极分别通过电阻R2、R3引出第一启动电流输出端和第二启动电流输出端。
本优选实施例所述的负温度变化率电流产生电路21包括相互连接的三极管Q1、Q2、Q3、Q4,所述三极管Q1的漏极连接电阻R2并与自身栅极连接、源极与三极管Q2的漏极以及三极管Q3的栅极连接,所述三极管Q2的源极接地并通过电阻R4与三极管Q3的源极连接、栅极与三极管Q4的源极连接,所述三极管Q3的漏极与三级管Q4的源极连接,所述三极管Q4的栅极与三极管Q1的栅极连接、漏极与精度修调及输出电路的输入端连接。
本优选实施例所述的正温度变化率电流产生电路22包括相互连接的三极管Q5、Q6、Q7、Q8,所述三极管Q5的漏极连接电阻R3并与自身栅极连接、源极与三极管Q6的漏极以及三极管Q7的栅极连接,所述三极管Q6的源极与三极管Q2和电阻R4的中间位置连接并通过电阻R5与三极管Q7的源极连接、栅极与三极管Q8的源极连接,所述三极管Q7的漏极与三级管Q8的源极连接,所述三极管Q8的栅极与三极管Q5的栅极连接、漏极与精度修调及输出电路的输入端连接。
本优选实施例所述的精度修调及输出电路3包括三极管Q9、Q10,所述三极管Q9的源极与所述电源的输出端以及三极管Q10的源极连接、漏极连接电流产生电路的输出端并与自身栅极连接、栅极与三极管Q10的栅极连接,所述三极管Q10的漏极为恒定电流的输出端。
特别的,上述所有三极管的电流放大倍数远远大于一倍,所述电阻R1、R2、R3、R4均为半导体集成电路工艺中的离子注入类型电阻,所述电阻R5为半导体集成电路工艺中的扩散注入类型电阻,且所述电阻R4的温度系数大于半导体集成电路工艺热电压的温度系数,所述电阻R5的温度系数小于半导体集成电路工艺热电压的温度系数。
本发明所述的一种用于光耦隔离放大器的恒流产生电路的精度修调方法,包括以下步骤:
步骤一、计算出电流产生电路输出的电流,该电流的计算公式为:
Figure BDA0002915171710000051
其中:I1为负温度系数电流产生电路的输出电流,I2为正温度系数电流产生电路的输出电流,I3为电流产生电路输出的电流,
Figure BDA0002915171710000052
为电阻R4的温度系数,
Figure BDA0002915171710000053
为电阻R5的温度系数,TCvt为半导体集成电路工艺热电压Vt的温度系数。
具体的,由上述内容可知,所述电阻R4的温度变化率特性满足
Figure BDA0002915171710000054
Figure BDA0002915171710000055
所述电阻R5的温度变化率特性满足
Figure BDA0002915171710000056
即电流I1随温度的上升而下降,电流I2随温度的上升而上升,通过上述计算公式设定合理电流I1与电流I2的比例,最终可令电流I3温度系数
Figure BDA0002915171710000057
为零,如此实现了电流I3大小与温度变化无关,同时电流I3的大小也不会受到电源电压VCC变化的影响。
步骤二、为了令输出电流IOUT符合光耦隔离放大器电路应用精度要求,还需对上述电流I3进行合理调整。将此电流I3输入至精度修调及输出电路中,精度修调及输出电路中的三极管Q9与三极管Q10构成电流镜像关系,即精度修调及输出电路的输出电流IOUT与输入电流I3成比例关系。因此电流I3通过精度修调电路,该输出电流的计算公式为:
Figure BDA0002915171710000061
其中:
Figure BDA0002915171710000062
为三级管Q9的发射区面积,
Figure BDA0002915171710000063
为三级管Q10的发射区面积。
上式表明,通过合理调节的三极管Q9与三极管Q10的发射区面积比例值,有精度修调及输出电路的输出电流IOUT可被调整至期望的精度范围,由于前述电流I3大小不受电源电压VCC变化影响,故此输出电流IOUT也不受电源电压VCC变化影响,并且由于此输出电流IOUT的温度系数值与前述电流I3的温度系数值一致,均为零,则此输出电流IOUT的变化与温度变化亦无关,从而实现高性能恒定电流源的输出。
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (4)

1.一种用于光耦隔离放大器的恒流产生电路,其特征在于,包括集成于同一衬底基片上的:
启动电路(1),该启动电路能够产生并输出第一启动电流和第二启动电流;
电流产生电路,该电流产生电路包括与第一启动电流输出端连接的负温度变化率电流产生电路(21)和与第二启动电流输出端连接的正温度变化率电流产生电路(22);以及
精度修调及输出电路(3),该精度修调及输出电路用于对电流产生电路输出的两个电流通过比例精度调节后输出符合光耦隔离放大器应用要求的恒定电流;
所述启动电路(1)包括依次连接电源的二极管D1、电阻R1、二极管D2,所述二极管D1的正极连接电源的输出端、负极连接电阻R1的一端,所述电阻R1的另一端连接二极管的D2的负极,所述二极管D2的正极分别通过电阻R2、R3引出第一启动电流输出端和第二启动电流输出端;
所述负温度变化率电流产生电路(21)包括相互连接的三极管Q1、Q2、Q3、Q4,所述三极管Q1的漏极连接电阻R2并与自身栅极连接、源极与三极管Q2的漏极以及三极管Q3的栅极连接,所述三极管Q2的源极接地并通过电阻R4与三极管Q3的源极连接、栅极与三极管Q4的源极连接,所述三极管Q3的漏极与三级管Q4的源极连接,所述三极管Q4的栅极与三极管Q1的栅极连接、漏极与精度修调及输出电路的输入端连接;
所述正温度变化率电流产生电路(22)包括相互连接的三极管Q5、Q6、Q7、Q8,所述三极管Q5的漏极连接电阻R3并与自身栅极连接、源极与三极管Q6的漏极以及三极管Q7的栅极连接,所述三极管Q6的源极与三极管Q2和电阻R4的中间位置连接并通过电阻R5与三极管Q7的源极连接、栅极与三极管Q8的源极连接,所述三极管Q7的漏极与三级管Q8的源极连接,所述三极管Q8的栅极与三极管Q5的栅极连接、漏极与精度修调及输出电路的输入端连接。
2.根据权利要求1所述的一种用于光耦隔离放大器的恒流产生电路,其特征在于,所述精度修调及输出电路(3)包括三极管Q9、Q10,所述三极管Q9的源极与所述电源的输出端以及三极管Q10的源极连接、漏极连接电流产生电路的输出端并与自身栅极连接、栅极与三极管Q10的栅极连接,所述三极管Q10的漏极为恒定电流的输出端。
3.根据权利要求1所述的一种用于光耦隔离放大器的恒流产生电路,其特征在于,所述电阻R1、R2、R3、R4均为半导体集成电路工艺中的离子注入类型电阻,所述电阻R5为半导体集成电路工艺中的扩散注入类型电阻,且所述电阻R4的温度系数大于半导体集成电路工艺热电压的温度系数,所述电阻R5的温度系数小于半导体集成电路工艺热电压的温度系数。
4.一种基于上述权利要求1-3任一所述用于光耦隔离放大器的恒流产生电路的精度修调方法,其特征在于,包括以下步骤:
步骤一、计算出电流产生电路输出的电流,该电流的计算公式为:
Figure FDA0003803412120000021
其中:I1为负温度系数电流产生电路的输出电流,I2为正温度系数电流产生电路的输出电流,I3为电流产生电路输出的电流,
Figure FDA0003803412120000022
电流I3的温度系数,
Figure FDA0003803412120000023
为电阻R4的温度系数,
Figure FDA0003803412120000024
为电阻R5的温度系数,TCvt为半导体集成电路工艺热电压Vt的温度系数;
步骤二、电流I3通过精度修调电路,该输出电流的计算公式为:
Figure FDA0003803412120000025
其中:
Figure FDA0003803412120000026
为三级管Q9的发射区面积,
Figure FDA0003803412120000027
为三级管Q10的发射区面积。
CN202110099542.9A 2021-01-25 2021-01-25 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法 Active CN112882527B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110099542.9A CN112882527B (zh) 2021-01-25 2021-01-25 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法
US17/491,087 US11934216B2 (en) 2021-01-25 2021-09-30 Constant current generation circuit for optocoupler isolation amplifier and current precision adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110099542.9A CN112882527B (zh) 2021-01-25 2021-01-25 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法

Publications (2)

Publication Number Publication Date
CN112882527A CN112882527A (zh) 2021-06-01
CN112882527B true CN112882527B (zh) 2022-10-21

Family

ID=76051215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110099542.9A Active CN112882527B (zh) 2021-01-25 2021-01-25 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法

Country Status (2)

Country Link
US (1) US11934216B2 (zh)
CN (1) CN112882527B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549689A (en) * 1975-07-28 1979-08-08 Nippon Kogaku Kk Voltage generating circuit
CN105022441A (zh) * 2014-04-30 2015-11-04 中国科学院声学研究所 一种与温度无关的电流基准源
CN204808100U (zh) * 2015-07-08 2015-11-25 北京兆易创新科技股份有限公司 一种无运放低压低功耗的带隙基准电路
CN111277234A (zh) * 2020-04-10 2020-06-12 重庆百瑞互联电子技术有限公司 一种功率放大器
CN111880600A (zh) * 2020-09-28 2020-11-03 深圳英集芯科技有限公司 恒温电流源、芯片及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836160B2 (en) * 2002-11-19 2004-12-28 Intersil Americas Inc. Modified Brokaw cell-based circuit for generating output current that varies linearly with temperature
US7863882B2 (en) * 2007-11-12 2011-01-04 Intersil Americas Inc. Bandgap voltage reference circuits and methods for producing bandgap voltages
US7791401B1 (en) * 2008-02-08 2010-09-07 National Semiconductor Corporation Adjustment of op amp offset voltage temperature coefficient
KR101241378B1 (ko) * 2008-12-05 2013-03-07 한국전자통신연구원 기준 바이어스 발생 회로
US8421433B2 (en) * 2010-03-31 2013-04-16 Maxim Integrated Products, Inc. Low noise bandgap references
US10228715B2 (en) * 2017-07-20 2019-03-12 Intrinsix Corp. Self-starting bandgap reference devices and methods thereof
US10673415B2 (en) * 2018-07-30 2020-06-02 Analog Devices Global Unlimited Company Techniques for generating multiple low noise reference voltages
GB2598742B (en) * 2020-09-09 2022-11-02 Analog Design Services Ltd Low noise reference circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549689A (en) * 1975-07-28 1979-08-08 Nippon Kogaku Kk Voltage generating circuit
CN105022441A (zh) * 2014-04-30 2015-11-04 中国科学院声学研究所 一种与温度无关的电流基准源
CN204808100U (zh) * 2015-07-08 2015-11-25 北京兆易创新科技股份有限公司 一种无运放低压低功耗的带隙基准电路
CN111277234A (zh) * 2020-04-10 2020-06-12 重庆百瑞互联电子技术有限公司 一种功率放大器
CN111880600A (zh) * 2020-09-28 2020-11-03 深圳英集芯科技有限公司 恒温电流源、芯片及电子设备

Also Published As

Publication number Publication date
CN112882527A (zh) 2021-06-01
US20220236755A1 (en) 2022-07-28
US11934216B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
CN106959723B (zh) 一种宽输入范围高电源抑制比的带隙基准电压源
CN102053645B (zh) 一种宽输入电压高电源抑制比基准电压源
CN106909192B (zh) 一种高阶温度补偿电压基准源
CN109491440B (zh) 一种电压参考电路
CN108351662B (zh) 具有曲率补偿的带隙参考电路
CN108037791A (zh) 一种无运放的带隙基准电路
CN202383552U (zh) 一种改进的带隙基准电压源
CN109164867B (zh) 全mos基准电流产生电路
CN101149628B (zh) 一种基准电压源电路
TW201447533A (zh) 能帶隙參考電壓產生電路與使用其的電子系統
CN114489221B (zh) 一种带隙基准电压源电路及带隙基准电压源
CN107066024A (zh) 一种低功耗高精度非带隙基准电压源
TWI654509B (zh) 參考電壓產生器
CN103645769A (zh) 低压带隙基准源电路
CN112882527B (zh) 一种用于光耦隔离放大器的恒流产生电路及电流精度修调方法
CN111427406B (zh) 带隙基准电路
CN105159381A (zh) 一种具有指数补偿特性的带隙基准电压源
CN201097247Y (zh) 一种基准电压源电路
CN100465851C (zh) 一种带隙基准参考源
TWI688205B (zh) 帶差電壓參考電路
TWI714188B (zh) 參考電壓產生電路
CN108345336A (zh) 能隙参考电路
CN111966158B (zh) 一种互补式低漂移的恒流源及其控制方法
CN111061329A (zh) 一种高环路增益双环负反馈的带隙基准电路
CN214795740U (zh) 带隙基准电压源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Floor 1-5, Building B7, Hefei Innovation and Technology Park, Intersection of Jianghuai Avenue and Sugang Road, Feixi County Economic Development Zone, Hefei City, Anhui Province, 231200

Patentee after: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

Address before: 231200 the third floor of A2 East, Liheng industrial Plaza, Fanhua West Road, Taohua Industrial Park Development Zone, Feixi County, Hefei City, Anhui Province

Patentee before: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

CP02 Change in the address of a patent holder
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210601

Assignee: Hefei Xinnengyan Electronic Technology Co.,Ltd.

Assignor: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

Contract record no.: X2024980003344

Denomination of invention: A constant current generation circuit and current accuracy tuning method for optocoupler isolation amplifiers

Granted publication date: 20221021

License type: Common License

Record date: 20240327

Application publication date: 20210601

Assignee: Aichuang Microelectronics Technology (Nanjing) Co.,Ltd.

Assignor: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

Contract record no.: X2024980003341

Denomination of invention: A constant current generation circuit and current accuracy tuning method for optocoupler isolation amplifiers

Granted publication date: 20221021

License type: Common License

Record date: 20240327

Application publication date: 20210601

Assignee: Aichuangwei (Shanghai) Electronic Technology Co.,Ltd.

Assignor: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

Contract record no.: X2024980003340

Denomination of invention: A constant current generation circuit and current accuracy tuning method for optocoupler isolation amplifiers

Granted publication date: 20221021

License type: Common License

Record date: 20240327

EE01 Entry into force of recordation of patent licensing contract