CN112853292A - 太阳能选择性吸收涂层的制备方法及涂层 - Google Patents

太阳能选择性吸收涂层的制备方法及涂层 Download PDF

Info

Publication number
CN112853292A
CN112853292A CN202110010622.2A CN202110010622A CN112853292A CN 112853292 A CN112853292 A CN 112853292A CN 202110010622 A CN202110010622 A CN 202110010622A CN 112853292 A CN112853292 A CN 112853292A
Authority
CN
China
Prior art keywords
target
layer
metal
preparing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110010622.2A
Other languages
English (en)
Inventor
闵捷
陈宇飞
兰亚鹏
古龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202110010622.2A priority Critical patent/CN112853292A/zh
Publication of CN112853292A publication Critical patent/CN112853292A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供一种太阳能选择性吸收涂层的制备方法及涂层,其制备方法包括如下步骤:将基体材料清洗干净并干燥;采用Mo靶通过磁控溅射法在基体材料上制备红外反射层;以Ar气和N2混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在红外反射层上制备高金属含量吸收层;以Ar气、N2和O2混合气体为反应气,通过Mo靶和Al靶,采用磁控溅射法在高金属含量吸收层制备低金属含量吸收层;以Ar气和O2混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在低金属含量吸收层上制备减反层。本发明制备的涂层在中高温条件下可保持较高的吸收发射比,可在中高温条件下推广应用,且制备工艺简单,且均选用常规材料,靶材利用率高,适于大规模生产。

Description

太阳能选择性吸收涂层的制备方法及涂层
技术领域
本发明属于太阳能利用的技术领域,具体涉及一种太阳能选择性吸收涂层的制备方法及涂层。
背景技术
太阳能是清洁能源也是可再生能源,增强清洁能源和可再生能源发电技术的开发与应用,是降低常规能源消耗、减少污染排放的有效途径之一。目前世界上太阳能发电分为光伏发电和聚热发电两种方式。光伏发电已经形成成熟技术,而聚热发电还处于起步阶段。但是光伏发电成本高、转化率低、存储条件苛刻。太阳能热发电就是通过聚光集热器聚焦太阳直射光,将太阳能聚集起来产生高温热能,加热真空集热管里面的工质,产生高温,再通过换热设备加热水产生高温高压的蒸汽,驱动汽轮机发电机组发电。太阳能选择性吸收涂层在波长范围为0.3μm-2.5μm的太阳光波段具有高吸收率α,在波长范围为2.5μm-25μm的红外波段具有低发射率ε,因此,太阳能选择性吸收涂层广泛应用于太阳能集热器或集热管,是实现太阳能光热转换的核心材料。
目前已广泛使用的黑镍、黑铬以及Ni-Al2O3体系等太阳能选择性吸收涂层,在中低温环境下表现出优异的光学性能,但在中高温条件下(≥500℃),由于涂层内部间存在元素的相互扩散,导致其红外发射率随温度上升明显升高,集热器热损失明显上升,使得热效率大幅下降。对于太阳能的中高温利用,尤其是高温应用,需要一种吸收率高、发射率低、热稳定性好、在中高温条件下涂层内部元素相互扩散低且具备一定耐候性能以及工艺简单的选择性吸收涂层。
发明内容
本发明的目的在于针对现有技术的不足之处,提供一种太阳能选择性吸收涂层的制备方法,该方法制备的涂层在中高温条件下可保持较高的吸收发射比,可在中高温条件下推广应用。
为解决上述技术问题,本发明采用如下技术方案:
一种太阳能选择性吸收涂层的制备方法,包括如下步骤:
步骤1:将基体材料清洗干净并干燥;
步骤2:采用Mo靶通过磁控溅射法在基体材料上制备红外反射层;
步骤3:以Ar气和N2气的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在红外反射层上制备高金属含量吸收层;
步骤4:以Ar气、N2和O2的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在高金属含量吸收层上制备低金属含量吸收层;
步骤5:以Ar气和O2的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在低金属含量吸收层上制备减反层。
进一步地,步骤2中,在制备红外反射层时的腔室压力为0.7-0.85Pa,Mo靶的直流功率为60-80W。
进一步地,步骤3中,溅射时的腔室压力为0.7-0.95Pa,Mo靶的溅射功率分别为40-60W,Al靶的溅射功率为60-80W。
进一步地,步骤4中,溅射时的腔室压力为0.75-1Pa,Mo靶的溅射功率为40-60W,Al靶的溅射功率为60-80W。
进一步地,步骤5中,溅射时的腔室压力为0.7-0.9Pa,Mo靶的溅射功率为40-60W,Al靶的溅射功率为60-80W。
本发明的另一个目的是提供一种根据上述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,所述涂层包括依次覆盖在基体表面上的红外反射层、高金属含量吸收层、低金属含量吸收层和减反层。
进一步地,所述红外反射层为金属Mo薄膜层,其厚度为120-250nm。
进一步地,所述高金属含量吸收层为含有Al、Mo、N三种元素的金属陶瓷结构的薄膜层,该层厚度为80-100nm。
进一步地,所述低金属含量吸收层为含有Al、Mo、N、O四种元素的金属陶瓷结构的薄膜层,该层厚度为60-80nm。
进一步地,所述减反层为含有Al、Mo、O三种元素的金属陶瓷结构的薄膜层,该层厚度为80-120nm。
与现有技术相比,本发明的有益效果为:
1、本发明采用高熔点的金属Mo作为为红外反射层,具有较好的高温稳定性,且由于红外反射层中的Mo粒子与吸收层中的Mo粒子,高温下动态平衡,从而可以阻止由Mo金属粒子的扩散而引起吸收层金属体积分数的改变,进而防止膜层被破坏,因此其能显著提高涂层的高温稳定性;本发明的涂层与金属基底结核性强且不易脱落,具有非真空高温稳定性;
2、高金属含量吸收层和低金属含量吸收层的区别是金属Mo体积分数不同以及有无O元素,通过改变金属部分的溅射功率以及各反应气的气体流量,来调控金属粒子的掺入量,涂层最终的光学性能不仅与金属体积分数匹配有关,还与两层的厚度匹配有关,选择两吸收层适当的金属含量,并选择适当的厚度,可达最佳光学性能;
3、涂层在太阳能光谱范围内(0.3~2.5μm)具有高的吸收率α(0.79~0.83),在红外区域(2.5~25μm)有很低的发射率ε(0.09~0.12)
4、本发明的涂层制备工艺简单,且均选用常规材料,便于选择和控制,没有采用价格高的金属,制作成本较低;靶材利用率高,适于大规模生产。
附图说明
图1为本发明实施例涂层的结构示意图;
图2为本发明实施例1制备的太阳能选择性吸收涂层在常温下和500℃保持100h的反射曲线;
图3为本发明实施例3制备的太阳能选择性吸收涂层常温下和500℃保持100h的反射曲线。
具体实施方式
下面将结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合具体实施例对本发明作进一步说明,但不作为本发明的限定。
实施例1
步骤一:基片1的准备;准备好规格为25mm×50mm的不锈钢基片1,以丙酮、无水乙醇以及去离子水分别超声清洗15分钟,干燥后套袋装好已备使用。
步骤二:红外反射层2的制备;在清洗和干燥好的不锈钢基体1上,通过Mo靶,采用直流磁控溅射法制备红外反射层,具体地,先将腔室真空抽至10-4Pa,待压力稳定后以Ar气作为反应气体,使溅射时的腔室气压为0.74Pa,Mo靶溅射功率为60W,溅射时间3min,所制备的红外反射层2为Mo薄膜层,其厚度为120nm。
步骤三:高金属含量吸收层3的制备;在步骤二制得的红外反射层2上采用Mo靶和Al靶,通过直流磁控溅射法制备出高金属含量吸收层3,具体地,在腔室内通入Ar气和N2作为反应气,待腔室内真空度达到0.78Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W后开始溅射,溅射时间3min,得到AlMoN金属陶瓷型结构的高金属含量吸收层3,该层的薄膜厚度为85nm。
步骤四:低金属含量吸收层4的制备;在步骤三制备的高金属含量吸收层3上采用Mo靶和Al靶,通过直流磁控溅射法制备出低金属含量吸收层4,具体地,在腔室中通入Ar气、N2和O2作为反应气,待腔室内真空至0.83Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W后开始溅射,溅射时间2min,得到AlMoNO金属陶瓷型结构的低金属含量吸收层4,该层的薄膜厚度为70nm。
步骤五:减反层5的制备;在步骤四制备的低金属含量吸收层4上采用Mo靶和Al靶,通过直流磁控溅射法制备出减反层5,具体地,在腔室中通入Ar气和O2作为反应气,待腔室内真空至0.77Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W开始溅射,溅射时间3min,得到AlMoO金属陶瓷型结构的减反层5,该层的薄膜厚度为90nm。至此涂层制备完成,其结构如图1所示。
将得到的涂层在常温下和经过500℃保温100h退火处理后的吸收率和反射率进行测算,得到如下检测结果(见图2):该实施例制得的涂层总厚度为365nm,在太阳能光谱范围内(0.3~2.5μm)的吸收率α=0.83,在红外区域(2.5~50μm)的发射率ε=0.09,在大气中,经过500℃保温100h退火处理,其颜色无变化,经过高温处理后的涂层在太阳能光谱范围内(0.3~2.5μm)的吸收率α=0.82,在红外区域(2.5~50μm)的发射率ε=0.11,高温发射率变化不大。从图2可以看出,经过高温处理后的涂层仍然保持较高的吸收发射比。
实施例2
步骤一:基片1的准备;准备好规格为25mm×50mm的不锈钢基片1,以丙酮、无水乙醇以及去离子水分别超声清洗15分钟,干燥后套袋装好已备使用。
步骤二:红外反射层2的制备;在清洗和干燥好的不锈钢基体1上,通过Mo靶,采用直流磁控溅射法制备红外反射层2,具体地,先将真空抽至10-4Pa,待压力稳定后以Ar气作为反应气体,使溅射时的腔室气压为0.8Pa,Mo靶溅射功率为80W,溅射时间4min,所制备的红外反射层2为Mo薄膜层,其厚度为200nm。
步骤三:高金属含量吸收层3的制备;在步骤二制得的红外反射层2上采用Mo靶和Al靶,通过直流磁控溅射法制备出高金属含量吸收层3,具体地,在腔室内通入Ar气和N2作为反应气,待腔室内真空度达到0.95Pa且稳定时,调整Mo靶的溅射功率为60W、Al靶溅射功率为80W后开始溅射,溅射时间4min,得到AlMoN金属陶瓷型结构的高金属含量吸收层3,该层的薄膜厚度为100nm。
步骤四:低金属含量吸收层4的制备;在步骤三制备的高金属含量吸收层3上采用Mo靶和Al靶,通过直流磁控溅射法制备出低金属含量吸收层4,具体地,在腔室中通入Ar气、N2和O2作为反应气,待腔室内真空至0.75Pa且稳定时,调整Mo靶的溅射功率为50W、Al靶溅射功率为65W后开始溅射,溅射时间2min,得到AlMoNO金属陶瓷型结构的低金属含量吸收层4,该层的薄膜厚度为60nm。
步骤五:减反层5的制备;在步骤四制备的低金属含量吸收层4上采用Mo靶和Al靶,通过直流磁控溅射法制备出减反层5,具体低,在腔室中通入Ar气和O2作为反应气,待腔室内真空至0.9Pa且稳定时,调整Mo靶的溅射功率为45W、Al靶溅射功率为65W开始溅射,溅射时间3min,得到AlMoO金属陶瓷型结构的减反层5,该层的薄膜厚度为80nm。
将得到的涂层在常温下和经过500℃保温100h退火处理后的吸收率和反射率进行测算,得到如下检测结果:实施例2制得的涂层总厚度为440nm,在太阳能光谱范围内(0.3~2.5μm)吸收率α=0.81,在红外区域(2.5~50μm)的发射率ε=0.10,在大气中,经过500℃保温100h退火处理,其颜色无变化,经过高温处理后的涂层在太阳能光谱范围内(0.3~2.5μm)的吸收率α=0.80,在红外区域(2.5~50μm)的发射率ε=0.11,高温发射率变化不大。
实施例3
步骤一:基片1的准备;准备好规格为25mm×50mm的不锈钢基片1,以丙酮、无水乙醇以及去离子水分别超声清洗15分钟,干燥后套袋装好已备使用。
步骤二:红外反射层2的制备;在清洗和干燥好的不锈钢基体1上,通过Mo靶,采用直流磁控溅射法制备红外反射层2,具体地,先将腔室真空抽至10-4Pa,待压力稳定后以Ar气作为反应气体,使溅射时的腔室气压为0.74Pa,Mo靶溅射功率为60W,溅射时间3min,所制备的红外反射层2为Mo薄膜层,其厚度为150nm。
步骤三:高金属含量吸收层3的制备;在步骤二制得的红外反射层2上采用Mo靶和Al靶,通过直流磁控溅射法制备出高金属含量吸收层3,具体地,在腔室内通入Ar气和N2作为反应气,待腔室内真空度达到0.78Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W后开始溅射,溅射时间3min,得到AlMoN金属陶瓷型结构的高金属含量吸收层3,该层的薄膜厚度为85nm。
步骤四:低金属含量吸收层4的制备;在步骤三制备的高金属含量吸收层3上采用Mo靶和Al靶,通过直流磁控溅射法制备出低金属含量吸收层4,具体地,在腔室中通入Ar气、N2和O2作为反应气,待腔室内真空至0.83Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W后开始溅射,溅射时间2min,得到AlMoNO金属陶瓷型结构的低金属含量吸收层4,该层的薄膜厚度为70nm。
步骤五:减反层5的制备;在步骤四制备的低金属含量吸收层4上采用Mo靶和Al靶,通过直流磁控溅射法制备出减反层5,具体地,在腔室中通入Ar气和O2作为反应气,待腔室内真空至0.77Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W开始溅射,溅射时间3min,得到AlMoO金属陶瓷型结构的减反层5,该层的薄膜厚度为90nm。
将得到的涂层在常温下和经过500℃保温100h退火处理后的吸收率和反射率进行测算,得到如下检测结果(见图3):实施例3制得的涂层总厚度为395nm,在太阳能光谱范围内(0.3~2.5μm)吸收率α=0.82,在红外区域(2.5~50μm)的发射率ε=0.09,在大气中,经过500℃保温100h退火处理,其颜色无变化,经过高温处理后的涂层在太阳能光谱范围内(0.3~2.5μm)的吸收率α=0.80,在红外区域(2.5~50μm)的发射率ε=0.12,高温发射率变化不大。从图3可以看出,经过高温处理后的涂层仍然保持较高的吸收发射比。
实施例4
步骤一:基片1的准备;准备好规格为25mm×50mm的不锈钢基片1,以丙酮、无水乙醇以及去离子水分别超声清洗15分钟,干燥后套袋装好已备使用。
步骤二:红外反射层2的制备;在清洗和干燥好的不锈钢基体1上,通过Mo靶,采用直流磁控溅射法制备红外反射层2,具体地,先将腔室真空抽至10-4Pa,待压力稳定后以Ar气作为反应气体,使溅射时的腔室气压为0.7Pa,Mo靶溅射功率为68W,溅射时间5min,所制备的红外反射层2为Mo薄膜层,该层的厚度为250nm。
步骤三:高金属含量吸收层3的制备;在步骤二制得的红外反射层2上采用Mo靶和Al靶,通过直流磁控溅射法制备出高金属含量吸收层3,具体地,在腔室内通入Ar气和N2作为反应气,待腔室内真空度达到0.82Pa且稳定时,调整Mo靶的溅射功率为55W、Al靶溅射功率为70W后开始溅射,溅射时间3min,得到AlMoN金属陶瓷型结构的高金属含量吸收层3,该层的薄膜厚度为80nm。
步骤四:低金属含量吸收层4的制备;在步骤三制备的高金属含量吸收层3上采用Mo靶和Al靶,通过直流磁控溅射法制备出低金属含量吸收层4,具体地,在腔室中通入Ar气、N2和O2作为反应气,待腔室内真空至0.9Pa且稳定时,调整Mo靶的溅射功率为40W、Al靶溅射功率为60W后开始溅射,溅射时间2min,得到AlMoNO金属陶瓷型结构的低金属含量吸收层4,该层的薄膜厚度为80nm。
步骤五:减反层5的制备;在步骤四制备的低金属含量吸收层4上采用Mo靶和Al靶,通过直流磁控溅射法制备出减反层5,具体地,在腔室中通入Ar气和O2作为反应气,待腔室内真空至0.77Pa且稳定时,调整Mo靶的溅射功率为60W、Al靶溅射功率为80W开始溅射,溅射时间4min,得到AlMoO金属陶瓷型结构的减反层5,该层的薄膜厚度为120nm。
将得到的涂层在常温下和经过500℃保温100h退火处理后的吸收率和反射率进行测算,得到如下检测结果:实施例4制得的涂层总厚度为530nm,在太阳能光谱范围内(0.3~2.5μm)吸收率α=0.81,在红外区域(2.5~50μm)的发射率ε=0.12,在大气中,经过500℃保温100h退火处理,其颜色无变化,经过高温处理后的涂层在太阳能光谱范围内(0.3~2.5μm)的吸收率α=0.77,在红外区域(2.5~50μm)的发射率ε=0.15,高温发射率变化不大。
以上仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

1.一种太阳能选择性吸收涂层的制备方法,其特征在于,包括如下步骤:
步骤1:将基体材料清洗干净并干燥;
步骤2:采用Mo靶通过磁控溅射法在基体材料上制备红外反射层;
步骤3:以Ar气和N2气的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在红外反射层上制备高金属含量吸收层;
步骤4:以Ar气、N2和O2的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在高金属含量吸收层上制备低金属含量吸收层;
步骤5:以Ar气和O2的混合气体为反应气体,通过Mo靶和Al靶,采用磁控溅射法在低金属含量吸收层上制备减反层。
2.根据权利要求1所述的太阳能选择性吸收涂层的制备方法,其特征在于,步骤2中,在制备红外反射层时的腔室压力为0.7-0.85Pa,Mo靶的直流功率为60-80W。
3.根据权利要求1所述的太阳能选择性吸收涂层的制备方法,其特征在于,步骤3中,溅射时的腔室压力为0.7-0.95Pa,Mo靶的溅射功率分别为40-60W,Al靶的溅射功率为60-80W。
4.根据权利要求1所述的太阳能选择性吸收涂层的制备方法,其特征在于,步骤4中,溅射时的腔室压力为0.75-1Pa,Mo靶的溅射功率为40-60W,Al靶的溅射功率为60-80W。
5.根据权利要求1所述的太阳能选择性吸收涂层的制备方法,其特征在于,步骤5中,溅射时的腔室压力为0.7-0.9Pa,Mo靶的溅射功率为40-60W,Al靶的溅射功率为60-80W。
6.一种根据权利要求1-5任意一项所述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,其特征在于,所述涂层包括依次覆盖在基体表面上的红外反射层、高金属含量吸收层、低金属含量吸收层和减反层。
7.根据权利要求6所述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,其特征在于,所述红外反射层为金属Mo薄膜层,其厚度为120-250nm。
8.根据权利要求6所述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,其特征在于,所述高金属含量吸收层为含有Al、Mo、N三种元素的金属陶瓷结构的薄膜层,该层厚度为80-100nm。
9.根据权利要求6所述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,其特征在于,所述低金属含量吸收层为含有Al、Mo、N、O四种元素的金属陶瓷结构的薄膜层,该层厚度为60-80nm。
10.根据权利要求6所述的太阳能选择性吸收涂层的制备方法制备的吸收涂层,其特征在于,所述减反层为含有Al、Mo、O三种元素的金属陶瓷结构的薄膜层,该层厚度为80-120nm。
CN202110010622.2A 2021-01-06 2021-01-06 太阳能选择性吸收涂层的制备方法及涂层 Pending CN112853292A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110010622.2A CN112853292A (zh) 2021-01-06 2021-01-06 太阳能选择性吸收涂层的制备方法及涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110010622.2A CN112853292A (zh) 2021-01-06 2021-01-06 太阳能选择性吸收涂层的制备方法及涂层

Publications (1)

Publication Number Publication Date
CN112853292A true CN112853292A (zh) 2021-05-28

Family

ID=76003991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110010622.2A Pending CN112853292A (zh) 2021-01-06 2021-01-06 太阳能选择性吸收涂层的制备方法及涂层

Country Status (1)

Country Link
CN (1) CN112853292A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501459A (zh) * 2011-10-26 2012-06-20 东莞市康达机电工程有限公司 一种中高温太阳能选择性吸收涂层的制备方法
DE102013103679A1 (de) * 2013-04-11 2014-10-30 Heraeus Materials Technology Gmbh & Co. Kg Licht absorbierende Schicht und die Schicht enthaltendes Schichtsystem, Verfahren zur dessen Herstellung und dafür geeignetes Sputtertarget
CN105605814A (zh) * 2014-11-25 2016-05-25 北京有色金属研究总院 一种太阳光谱选择性吸收涂层及其制备方法
CN107699848A (zh) * 2017-09-27 2018-02-16 湖北工业大学 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法
CN110701803A (zh) * 2019-10-11 2020-01-17 中国科学院兰州化学物理研究所 一种彩色太阳能吸收涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501459A (zh) * 2011-10-26 2012-06-20 东莞市康达机电工程有限公司 一种中高温太阳能选择性吸收涂层的制备方法
DE102013103679A1 (de) * 2013-04-11 2014-10-30 Heraeus Materials Technology Gmbh & Co. Kg Licht absorbierende Schicht und die Schicht enthaltendes Schichtsystem, Verfahren zur dessen Herstellung und dafür geeignetes Sputtertarget
CN105605814A (zh) * 2014-11-25 2016-05-25 北京有色金属研究总院 一种太阳光谱选择性吸收涂层及其制备方法
CN107699848A (zh) * 2017-09-27 2018-02-16 湖北工业大学 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法
CN110701803A (zh) * 2019-10-11 2020-01-17 中国科学院兰州化学物理研究所 一种彩色太阳能吸收涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国材料研究学会组织编写, 中国铁道出版社 *

Similar Documents

Publication Publication Date Title
CN103032978B (zh) 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN103388917B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN103625032A (zh) 一种中高温太阳能光热选择性吸收涂层
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN103105011B (zh) 适于中高温热利用的太阳能选择性吸收膜系及其制备方法
CN102721216A (zh) 高温太阳能选择性吸收涂层
CN104681662A (zh) 一种高反射率太阳能薄膜的制备方法
CN202782003U (zh) 太阳选择性吸收涂层
CN201463375U (zh) 一种太阳能集热管
CN102109236A (zh) 铜铝复合涂层蒸汽驱动式太阳真空集热管
CN103032977A (zh) 一种中温太阳能选择性吸收涂层及其制备方法
CN112853292A (zh) 太阳能选择性吸收涂层的制备方法及涂层
CN104596138A (zh) 一种太阳能选择性吸收膜系
CN105274474B (zh) 一种耐高温多层太阳能选择性吸收涂层及其制备方法
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN110699642A (zh) 一种高熵合金基高温太阳能吸收涂层及其制备方法
CN105568238A (zh) 具有太阳能选择性吸收薄膜膜系的制备方法
CN109972111A (zh) 一种高掺杂MoOx基光热转换涂层及其制备方法
CN110093590A (zh) 一种柔性的Mo-MoOx基太阳能吸收涂层及其制备方法
CN101423934A (zh) 一种太阳集热管增透涂层的制备方法
CN202119152U (zh) 具有太阳能选择性吸收性能的涂层
CN104633972A (zh) 一种采用渐变减反射层的选择性涂层及其制备方法
CN111947333A (zh) 一种用于线性菲涅尔式聚光集热器的二次聚光器
CN112147722A (zh) 一种光伏玻璃用的增透膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528

RJ01 Rejection of invention patent application after publication