CN107699848A - Mo/Si/SiO2太阳能选择性吸收涂层的制备方法 - Google Patents

Mo/Si/SiO2太阳能选择性吸收涂层的制备方法 Download PDF

Info

Publication number
CN107699848A
CN107699848A CN201710893020.XA CN201710893020A CN107699848A CN 107699848 A CN107699848 A CN 107699848A CN 201710893020 A CN201710893020 A CN 201710893020A CN 107699848 A CN107699848 A CN 107699848A
Authority
CN
China
Prior art keywords
sio
coating
layer
cermet
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710893020.XA
Other languages
English (en)
Other versions
CN107699848B (zh
Inventor
闵捷
程旭东
张运华
熊剑
袁颂东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201710893020.XA priority Critical patent/CN107699848B/zh
Publication of CN107699848A publication Critical patent/CN107699848A/zh
Application granted granted Critical
Publication of CN107699848B publication Critical patent/CN107699848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开一种Mo/Si/SiO2太阳能选择性吸收涂层的制备方法。所述涂层以Cu板作为基体材料;先以等离子喷涂技术在基体表面制备一层Mo/Si/SiO2金属陶瓷层;再以质量分数为20%的HF溶液为腐蚀剂,使Mo/Si/SiO2金属陶瓷层表面形成大量均匀的微纳米级孔隙;再通过超音速喷涂技术将Mo沉积在Mo/Si/SiO2金属陶瓷层表面,使Mo渗入到Mo/Si/SiO2金属陶瓷层的微纳米级孔隙中;最后在其表面覆盖一层Al2O3减反层来增加可见光的吸收、减少红外辐射。该Mo/Si/SiO2太阳能选择性吸收涂层材料结构简单,兼具生产成本和施工便利性等优势,提高了涂层的高温稳定性,有利于太阳能清洁能源利用的发展。

Description

Mo/Si/SiO2太阳能选择性吸收涂层的制备方法
技术领域
本发明涉及太阳能利用技术领域,具体涉及一种Mo/Si/SiO2太阳能选择性吸收涂层的制备方法。
背景技术
太阳能选择性吸收涂层在低温范围内应用,其相关技术比较成熟,用于平板式和真空管太阳能热水器;相对而言,中高温太阳能选择性吸收涂层材料的研究尚处于起步阶段,用于太阳能热发电。太阳能热发电是太阳能转换的核心技术之一,具有广阔的市场发展前景;太阳能选择性吸收涂层是提高太阳能热发电集热器工作效率的关键材料。中高温太阳能选择性吸收涂层的应用能极大地推动太阳能光热技术在不同工业领域的应用。
随着高温太阳能选择吸收涂层在高温光-热-电领域的深入应用,流动介质的温度升高可以显著提高发电效率,随之而来的是要求选择性吸收涂层的使用温度越来越高,对满足高温(大于500℃)条件下太阳能选择性吸收涂层的研究越来越迫切。由于目前光热发电成本较高,急需开发性价比较高的新材料、新工艺和新技术。与相对成熟的低温吸收涂层技术相比,研发中高温选择性吸收涂层面临着更大的挑战,如材料在高温下的氧化、循环使用后光学性能下降、高温下膜层开裂脱落等问题。本发明研制出一种高温环境下使用的太阳能选择性吸收涂层,利用简单,能工业化的工艺制备出符合吸收率大于0.90,发射率小于0.10的太阳能稳定选择性吸收涂层,耐高温氧化、耐候、耐大气盐雾及酸雨腐蚀。
金属陶瓷层作为中高温太阳能吸收涂层材料,以其“在可见光波段高的吸收率和红外光波段低的发射率”这一特性而备受关注。Cu,Au,Ni,Mo,Cr,Co,Pt,W和SiO2,Al2O3,MgO等一大批金属-绝缘体复合材料被广泛应用于太阳能选择性吸收涂层。吸收层的设计经历了从单一组分吸收层到多层渐变吸收层再到双吸收层涂层的发展。经涂层结构优化后,其选择性吸收性能和耐候性能有所改进,涂层吸收率一般在0.8左右,发射率一般在0.2左右。
随着太阳能选择性吸收涂层在高温领域应用的渗入研究,很多新工艺(如射频溅射和磁控溅射等)制备的涂层,在吸收率和发射率方面得到了大幅度优化:20世纪80年代采用射频溅射工艺制备高温太阳能选择性吸收涂层,金属陶瓷层主要以Al2O3陶瓷介质作为基体,过渡性金属作为填充相,主要有Ni-Al2O3、Co-Al2O3、Pt-Al2O3、Mo-Al2O3等;20世纪90年代以来,在AlN-Al的基础上,又研制出了M(金属)-AlN的金属陶瓷选择性吸收涂层,先采用直流溅射沉积AlN介质为基体的金属陶瓷选择性吸收涂层,再采用共溅法将W、不锈钢等金属粒子注入陶瓷基体,增大了溅射速度,其吸收率>0.91、发射率<0.12,且在500℃条件下稳定,适用于中高温的太阳能集热塔,是目前报道最有前景的太阳能吸收材料。上述先进工艺涂层采用射频或溅射镀膜技术,虽其光学性能与热稳定性均良好,但对工件的形状要求较高且成本很高,不适宜大规模的工业化应用。
综合国内外太阳能选择性吸收涂层的研究现状,太阳能选择性吸收涂层目前面临以下几个问题:涂层的生产设备昂贵,原料成本偏高;涂层结构复杂、涂层制备工艺不完善;某些原料、某些工艺对环境有一定的污染;涂层性能在特殊工况下有较大幅度的衰减。对于金属陶瓷系涂层而言,金属陶瓷层中金属组分的氧化带来的吸收性能衰减问题。解决这些问题,需要对材料、结构以及制备工艺进行更深入、系统地研究和分析,引入新兴的纳米级金属陶瓷复合材料、涂层表面微不平化、多层复合结构等涂层技术,有望制备出性能优异的中高温太阳能选择性吸收涂层。
发明内容
本发明将太阳能高效吸收材料与微纳米材料相结合,通过优化微纳米孔的结构,较大地提高了太阳能的吸收与转换效率:以Cu板作为基体材料;先以等离子喷涂技术在Cu基体表面制备一层超薄Mo/Si/SiO2金属陶瓷层;再以质量分数为20%的HF溶液为腐蚀剂,使Mo/Si/SiO2金属陶瓷层表面形成大量均匀的微纳米级孔隙;再通过超音速喷涂技术将Mo沉积在Mo/Si/SiO2金属陶瓷层表面,使Mo渗入到Mo/Si/SiO2金属陶瓷层的微纳米级孔隙中;最后在其表面覆盖一层减反层来增加光的吸收、减少红外辐射。该Mo/Si/SiO2太阳能选择性吸收涂层材料结构简单,兼具生产成本和施工便利性等优势,提高了涂层的高温稳定性,有利于太阳能清洁能源利用的发展。
本发明提供一种Mo/Si/SiO2太阳能选择性吸收涂层的制备方法,主要包括以下几个步骤:
(1)Cu基体表面预处理:包括对基体表面打磨以及采用丙酮对基体表面除油,用去离子水清洗干净放入烘箱中干燥备用;喷涂前再对基体表面进行喷砂处理,以达基片表面均匀粗化的目的。
(2)Mo/Si/SiO2复合粉末的制备:以Mo、Si和SiO2为主要原料,采用喷雾造粒设备先制备出球形团聚体Mo/Si/SiO2复合粉末;
(3)Mo/Si/SiO2金属陶瓷层的制备:取粒径为60-80μm的Mo/Si/SiO2复合粉末,采用等离子喷涂设备在Cu基体表面喷涂一层20-30μm的Mo/Si/SiO2金属陶瓷层;
(4)Mo/Si/SiO2金属陶瓷层的腐蚀:将喷涂有Mo/Si/SiO2金属陶瓷层的Cu基体浸泡在预先配置好的腐蚀剂中5-10分钟;
(5)Mo金属层的制备:取粒径60-80μm的金属Mo粉末,采用超音速喷涂设备,在腐蚀后的金属陶瓷层表面制备一层20-30μm的Mo金属层。
(6)减反层的制备:采用溶胶凝胶法在金属层表面制备10-20μm的Al2O3层。
本发明原理如下:
本发明制备的Mo/Si/SiO2太阳能选择性吸收涂层,其结构如图1所示。其中Mo与Cu的导热系数较大,Mo+Mo/Si/SiO2层与Cu基体之间的热膨胀系数匹配,有利于Mo+Mo/Si/SiO2层与基体之间的热传导;Mo/Si/SiO2层中的Si/SiO2在中高温下表现出很强的抗氧化性、高温性能稳定,Si/SiO2组分作为增强剂,有利于提高本发明复合涂层的耐高温和耐候性能,有利于提高本发明复合涂层的抗衰减能力和抗老化能力,有利于提高涂层结合强度;
Mo/Si/SiO2层中加入的Si/SiO2组分还可以起到如下几个方面的作用:
①金属Mo颗粒镶嵌在陶瓷Si/SiO2基体中,类似于“枣糕模型”,有利于微观上可见光的无衰减吸收:当不同波长的入射光投射到涂层,其内部原子获得或失去能量,这个变化就通过电子的运动表现出来;若某物将能量(例如,热量)传递给一个原子时,电子就会暂时跃迁到一个更高(离原子核更远)的轨道上,电子会将多余的能量以光子(有时是可见光子)的形式释放出来;电子的跃迁能决定了吸收截止位置,从而实现较为理想的选择性吸收。
②金属Mo颗粒镶嵌在陶瓷Si/SiO2基体中,能够限制Mo颗粒长大从而使得Mo颗粒的尺寸保持在微纳米范围内,从而使得金属Mo颗粒发挥最佳的共振吸收效果。
③常规工艺Mo组分的氧化及碳化物烧损现象严重,使得涂层中的Mo、WC组分部分或表面形成Mo2O3或WO3,且氧含量不可控,致使涂层选择性吸收性能不稳定,重现性差;此工艺先制取球形团聚体粉末,Si/SiO2包覆Mo组分,以阻止Mo在喷涂过程中过度氧化,最大程度的确保金属Mo的光谱吸收性能的充分发挥。
④Mo、Si、SiO2制备的球形团聚体Mo/Si/SiO2复合粉末,采用等离子喷涂技术在Cu基体表面制备Mo/Si/SiO2层的过程中,金属层中的Mo和金属陶瓷层中的Mo具有良好的匹配性和相容性,Mo的自熔性作用有利于Mo渗入到金属陶瓷层中,可以降低Mo/Si/SiO2层与Cu基体之间以及Mo/Si/SiO2层内的孔隙率,从而孔隙率的降低带来稳定的吸收率和发射率,孔隙率的降低也为后续耐候性提供了保证。
本发明采用的是纳米级颗粒(SiO2、Si)和微米级颗粒(Mo),因颗粒的质量太小,在等离子喷涂过程中动量不足,受空气的阻力很难沉积到基体表面,故不能直接采用热喷涂制备涂层。解决的方法是将微细的原料制备成具有一定尺寸能够直接用于热喷涂的二次团聚成球状粉末,并且要保证各原料的物相、粒度等基本不发生变化。本发明采用喷雾造粒设备先制备球形团聚体粉末,SiO2还可以覆盖Mo组分以阻止Mo的氧化,其球形团聚体粉末见图2。结合等离子喷涂和超音速喷涂工艺特点:所制备的涂层不受基体材料大小和形状的限制、也不受工作环境的限制(尤其适宜于涂层产品的大面积现场修复),且生产成本低,通过该工艺能够实现,在任意尺寸、任意形状和任意操作环境下的基体表面制备涂层。
本发明通过Mo、Si以及SiO2组分不同的相对含量设计,来改变涂层的光谱选择性吸收性能。先制备Mo/Si/SiO2复合粉末,将多种相结构、多种粒度的粉末制备成团聚型的粉体材料,容易实现原料粉末粒度的调整与控制;再采用等离子喷涂技术在Cu表面制备Mo/Si/SiO2金属陶瓷层。
本发明采用质量分数为20%的HF溶液为腐蚀剂,将喷涂有Mo/Si/SiO2金属陶瓷层的基体直接浸泡在预先配制好的腐蚀剂中5-10分钟,即能在扫描电镜(SEM)下观察到大量微纳米级孔隙的存在。20%的HF溶液作为优选的腐蚀剂,能够快速腐蚀Mo/Si/SiO2金属陶瓷层,且对Cu基体带来尽可能小的影响,所形成的均匀微纳米级孔隙如图3。
为了有效降低涂层的发射率,在Mo/Si/SiO2金属陶瓷层表面又利用溶胶-凝胶法制备Al2O3膜,进一步提高涂层的短波吸收率和降低长波发射率。这层Al2O3膜主要起减反作用和保护作用:封闭的Al2O3溶胶对底涂层的浸润后再经过高温固化,可起到类同真空管式屏蔽保护作用,不仅保护Mo/Si/SiO2微孔还可调控涂层的表面形貌;另由于是对微孔涂层表面进行浸润后高温固化融合在一起,可抵御高温下的热循环破坏。本发明制备的Al2O3减反膜样品在600℃条件下稳定,耐腐蚀性能好,涂层表面整体SEM形貌如图4。
本发明与现有技术相比,具有以下有益效果:
1.本发明方法制备的Mo/Si/SiO2太阳能选择性吸收涂层,吸收率稳定在0.90~0.94范围内、发射率稳定在0.06~0.10内,兼具良好的耐高温和耐候性能,在600℃环境下材料的氧化、循环使用后光学性能下降幅度较小,在高温应用上推广有较大的优势。
2.本发明方法,设计的涂层结构简单,生产成本低、生产效率高,涂层不受基体材料尺寸、形状和操作环境的限制,尤其适宜于涂层产品的大面积现场修复。
3.本发明方法,金属Mo颗粒镶嵌在陶瓷Si/SiO2基体中,类似于“枣糕模型”,电子的跃迁能决定了吸收截止位置,从而实现较为理想的选择性吸收。
4.本发明方法,Si/SiO2包覆Mo组分,以阻止Mo在喷涂过程中过度氧化,最大程度的确保金属Mo的光谱吸收性能的充分发挥。
附图说明
图1为Mo/Si/SiO2金属陶瓷层结构示意图。
图2为Mo/Si/SiO2球形团聚体复合粉末SEM图。
图3为经稀HF腐蚀后的Mo/Si/SiO2层表面SEM图。
图4为Mo+Mo/Si/SiO2层的表面SEM图。
图5为实施例1、2、3制备的复合Mo/Si/SiO2涂层的反射曲线。
图6为实施例1制备的热震前后的复合Mo/Si/SiO2涂层的反射曲线对比图。
具体实施方式
为了更好地理解本发明,下面结合具体的实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
本发明实施例采用岛津UV3600型UV-Vis-NIR分光光度计和Tensor27型BRUKER红外光谱仪,分别测定涂层表面在0.3~2.5μm和2.5~25μm光谱区的积分球全反射率ρs(λ),利用如下积分公式计算其在各自光谱区的吸收率和发射率:
其中α为吸收率,ε293K为温度为293K时的发射率,λ为入射的不同单色光波长,ρs(λ)为单色光反射率,Es(λ)为单色光太阳辐射强度,Eb(293K)为温度为293K时的黑体辐射强度。
实施例一
(1)Cu基体表面经打磨以及丙酮对表面的除油处理,用去离子水清洗干净放入烘箱中干燥备用;喷涂前再对基体表面进行喷砂处理,以达基片表面均匀粗化的目的。
(2)采用喷雾造粒工艺制备球形团聚体粉末:以10kg的复合粉末为例,Mo使用量为5kg,Si使用量为1kg,SiO2使用量为4kg;将所有原料混合、以水作为分散剂,先配成稳定的液体料浆;将料浆送入造粒塔,液料送料速率设定为500g·min-1,雾化盘转速设定为10000r·min-1,进风口温度设定为150℃、出风口设定为60℃,造粒完毕后筛取60-80μm的团聚粉末待用;
(3)取上述粉末,采用APS-3000型等离子喷涂设备制备一层20-30μm的Mo/Si/SiO2金属陶瓷层,Ar流量设置为30L·min-1,N2流量设置为40L·min-1,H2流量设置为20L·min-1,电流为500A、电压为80V,喷距设置为90mm,送粉量设置为30g·min-1
(4)将覆盖有Mo/Si/SiO2金属陶瓷层的基体材料,直接浸泡在预先配制好的质量分数为20%的HF腐蚀剂中5分钟,晾干后待用;
(5)取粒径60-80μm的金属Mo粉末,采用ZB-2000型超音速喷涂设备,在腐蚀后的Mo/Si/SiO2金属陶瓷层的表面再制备一层20-30μm的Mo金属层;
(6)以异丙醇铝为前驱体,先制备出Al2O3溶胶,在步骤(5)涂层表面再涂覆及热处理制备一层10-20μm的Al2O3减反层,得到Mo/Si/SiO2太阳能选择性吸收涂层。
经测量分析计算,上述中高温非真空太阳能选择性吸收涂层材料的反射曲线如图5中曲线(一),其吸收率为0.94,发射率0.06。
另,将整个涂层试样块置于马弗炉中,升温至550℃再保温15分钟,取出试样块空冷至室温,然后将冷却后的试样块又放入550℃的马弗炉中,保温15分钟后再取出空冷;重复操作100次后,再评价涂层的抗热震性能。经过100次热震后,观察试样Mo/Si/SiO2太阳能选择性吸收涂层结构完整,表面无明显变化;对热震前后实施例(一)的试样光学性能进行分析比较(反射曲线如图6),热震前α=0.94、ξ=0.06,热震后α=0.92、ξ=0.08,其涂层的性能几乎无衰减,该复合Mo/Si/SiO2涂层加强了高温稳定性能。
实施例二
(1)Cu基体表面经打磨以及丙酮对表面的除油处理,用去离子水清洗干净放入烘箱中干燥备用;喷涂前再对基体表面进行喷砂处理,以达基片表面均匀粗化的目的。
(2)采用喷雾造粒工艺制备球形团聚体粉末:以10kg的复合粉末为例,Mo使用量为4kg,Si使用量为1kg,SiO2使用量为5kg;将所有原料混合、以水作为分散剂,先配成稳定的液体料浆;将料浆送入造粒塔,液料送料速率设定为500g·min-1,雾化盘转速设定为10000r·min-1,进风口温度设定为150℃、出风口设定为60℃,造粒完毕后筛取60-80μm的团聚粉末待用;
(3)取上述粉末,采用APS-3000型等离子喷涂设备制备一层20-30μm的Mo/Si/SiO2金属陶瓷层,Ar流量设置为30L·min-1,N2流量设置为40L·min-1,H2流量设置为20L·min-1,电流为500A、电压为80V,喷距设置为90mm,送粉量设置为30g·min-1
(4)将覆盖有Mo/Si/SiO2金属陶瓷层的基体材料,直接浸泡在预先配制好的质量分数为20%的HF腐蚀剂中5分钟,晾干后待用;
(5)取粒径60-80μm的金属Mo粉末,采用ZB-2000型超音速喷涂设备,在腐蚀后的Mo/Si/SiO2金属陶瓷层的表面再制备一层20-30μm的Mo金属层;
(6)以异丙醇铝为前驱体,先制备出Al2O3溶胶,在步骤(5)涂层表面再涂覆及热处理制备一层10-20μm的Al2O3减反层,得到Mo/Si/SiO2太阳能选择性吸收涂层。
经测量分析计算,上述中高温非真空太阳能选择性吸收涂层材料的反射曲线如图5中曲线(二),其吸收率为0.93,发射率为0.07。
实施例三
(1)Cu基体表面经打磨以及丙酮对表面的除油处理,用去离子水清洗干净放入烘箱中干燥备用;喷涂前再对基体表面进行喷砂处理,以达基片表面均匀粗化的目的。
(2)采用喷雾造粒工艺制备球形团聚体粉末:以10kg的复合粉末为例,Mo使用量为3kg,Si使用量为1kg,SiO2使用量为6kg;将所有原料混合、以水作为分散剂,先配成稳定的液体料浆;将料浆送入造粒塔,液料送料速率设定为500g·min-1,雾化盘转速设定为10000r·min-1,进风口温度设定为150℃、出风口设定为60℃,造粒完毕后筛取60-80μm的团聚粉末待用;
(3)取上述粉末,采用APS-3000型等离子喷涂设备制备一层20-30μm的Mo/Si/SiO2金属陶瓷层,Ar流量设置为30L·min-1,N2流量设置为40L·min-1,H2流量设置为20L·min-1,电流为500A、电压为80V,喷距设置为90mm,送粉量设置为30g·min-1
(4)将覆盖有Mo/Si/SiO2金属陶瓷层的基体材料,直接浸泡在预先配制好的质量分数为20%的HF腐蚀剂中5分钟,晾干后待用;
(5)取粒径60-80μm的金属Mo粉末,采用ZB-2000型超音速喷涂设备,在腐蚀后的Mo/Si/SiO2金属陶瓷层的表面再制备一层20-30μm的Mo金属层;
(6)以异丙醇铝为前驱体,先制备出Al2O3溶胶,在步骤(5)涂层表面再涂覆及热处理制备一层10-20μm的Al2O3减反层,得到Mo/Si/SiO2太阳能选择性吸收涂层。
经测量分析计算,上述中高温非真空太阳能选择性吸收涂层材料的反射曲线如图5中曲线(三),其吸收率为0.92,发射率为0.08。

Claims (4)

1.一种Mo/Si/SiO2太阳能选择性吸收涂层的制备方法,其特征在于,包括以下步骤:
步骤1,Mo/Si/SiO2复合粉末的制备:以Mo、Si和SiO2为主要原料,采用喷雾造粒设备先制备出球形团聚体Mo/Si/SiO2复合粉末;
步骤2,Mo/Si/SiO2金属陶瓷层的制备:取粒径为60-80μm的Mo/Si/SiO2复合粉末,采用等离子喷涂设备在Cu基体表面喷涂一层20-30μm的Mo/Si/SiO2金属陶瓷层;
步骤3,Mo/Si/SiO2金属陶瓷层的腐蚀:将喷涂有Mo/Si/SiO2金属陶瓷层的Cu基体浸泡在预先配置好的腐蚀剂中5-10分钟;
步骤4,Mo金属层的制备:取粒径60-80μm的金属Mo粉末,采用超音速喷涂设备,在腐蚀后的金属陶瓷层表面制备一层20-30μm的Mo金属层;
步骤5,减反层的制备:采用溶胶凝胶法在金属层表面制备10-20μm的Al2O3层。
2.根据权利要求1所述的Mo/Si/SiO2太阳能选择性吸收涂层的制备方法,其特征在于:
步骤1中的球形团聚体Mo/Si/SiO2复合粉末,其成分按质量份数计:Si为1份,Mo为3-5份,SiO2为4-6份。
3.根据权利要求1所述的Mo/Si/SiO2太阳能选择性吸收涂层的制备方法,其特征在于:
步骤3中的腐蚀剂为质量分数为20%的HF溶液。
4.根据权利要求1-3中任一项所述的Mo/Si/SiO2太阳能选择性吸收涂层的制备方法,其特征在于:
步骤2中的采用表面经打磨、除油、去离子水清洗以及干燥处理的Cu基体,在喷涂Mo/Si/SiO2金属陶瓷层前再对Cu基体表面进行喷砂处理。
CN201710893020.XA 2017-09-27 2017-09-27 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法 Expired - Fee Related CN107699848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710893020.XA CN107699848B (zh) 2017-09-27 2017-09-27 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710893020.XA CN107699848B (zh) 2017-09-27 2017-09-27 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法

Publications (2)

Publication Number Publication Date
CN107699848A true CN107699848A (zh) 2018-02-16
CN107699848B CN107699848B (zh) 2019-08-02

Family

ID=61175114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710893020.XA Expired - Fee Related CN107699848B (zh) 2017-09-27 2017-09-27 Mo/Si/SiO2太阳能选择性吸收涂层的制备方法

Country Status (1)

Country Link
CN (1) CN107699848B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842152A (zh) * 2018-09-18 2018-11-20 上海工程技术大学 一种耐磨MoSiCu激光熔覆层材料及其制备方法
CN110721881A (zh) * 2019-11-04 2020-01-24 中国人民解放军国防科技大学 一种高温雷达与红外兼容隐身涂层现场修复方法
CN112853292A (zh) * 2021-01-06 2021-05-28 湖北工业大学 太阳能选择性吸收涂层的制备方法及涂层
CN115448727A (zh) * 2022-09-13 2022-12-09 苏州科技大学 一种球形碳氮化钛陶瓷粉末的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363888A (en) * 1976-11-18 1978-06-07 Seiko Epson Corp Solar battery
CN201373612Y (zh) * 2009-02-17 2009-12-30 东莞市康达机电工程有限公司 太阳能高温选择性吸收膜
WO2010054231A1 (en) * 2008-11-06 2010-05-14 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Laterally varying ii-vi alloys and uses thereof
CN203687419U (zh) * 2013-10-31 2014-07-02 武汉瑞干科技开发有限公司 一种非真空太阳能集热管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363888A (en) * 1976-11-18 1978-06-07 Seiko Epson Corp Solar battery
WO2010054231A1 (en) * 2008-11-06 2010-05-14 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Laterally varying ii-vi alloys and uses thereof
CN201373612Y (zh) * 2009-02-17 2009-12-30 东莞市康达机电工程有限公司 太阳能高温选择性吸收膜
CN203687419U (zh) * 2013-10-31 2014-07-02 武汉瑞干科技开发有限公司 一种非真空太阳能集热管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108842152A (zh) * 2018-09-18 2018-11-20 上海工程技术大学 一种耐磨MoSiCu激光熔覆层材料及其制备方法
CN110721881A (zh) * 2019-11-04 2020-01-24 中国人民解放军国防科技大学 一种高温雷达与红外兼容隐身涂层现场修复方法
CN110721881B (zh) * 2019-11-04 2021-10-15 中国人民解放军国防科技大学 一种高温雷达与红外兼容隐身涂层现场修复方法
CN112853292A (zh) * 2021-01-06 2021-05-28 湖北工业大学 太阳能选择性吸收涂层的制备方法及涂层
CN115448727A (zh) * 2022-09-13 2022-12-09 苏州科技大学 一种球形碳氮化钛陶瓷粉末的制备方法

Also Published As

Publication number Publication date
CN107699848B (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
CN107699848B (zh) Mo/Si/SiO2太阳能选择性吸收涂层的制备方法
CN101962770B (zh) 中高温太阳能选择性吸收涂层及其制备方法
CN103880426B (zh) 一种宽频带碳化硅耐高温吸波涂层及制备方法
CN102286243A (zh) 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN103014591B (zh) 红外辐射非晶涂层的制备方法
CN103469207A (zh) 一种抗高温氧化耐腐蚀的玻璃陶瓷复合涂层及其制备工艺
CN110841889A (zh) 中温太阳能吸收涂层及其制备方法
CN107523827A (zh) 一种中高温太阳选择性吸收复合涂层及其制备方法
CN112043135A (zh) 一种多级红外辐射茶座
CN111636045A (zh) 一种2-8GHz频段用双损耗三层吸波涂层及其制备方法
CN105347822B (zh) 一种抗高温腐蚀高发射率陶瓷涂料及制备方法
CN109554707A (zh) 一种超极限铝合金及其制备方法
CN109650882A (zh) 一种纤维内衬用复合涂料及其制备方法
CN113135775A (zh) 超高温电磁散射与红外辐射兼容抑制的隐身材料及制备方法
CN105779926B (zh) 制备用于大气环境下高温太阳能选择性吸收涂层的新工艺
CN107806714B (zh) Co/WC基太阳能选择性吸收涂层的制备方法
CN103694877B (zh) 纳米纤维太阳能能量高效吸收复合膜及其制备和喷涂方法
CN102964886B (zh) 一种高选择性太阳能吸热纳米膜层的配方及该膜层的制备方法
CN107367080A (zh) 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN105860611B (zh) 一种红外辐射涂料及其制备方法
CN105970146B (zh) 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器
CN106086882A (zh) 一种碳化钛‑碳化钨紫色太阳能选择性吸收涂层及其制备方法
CN106958005A (zh) 一种耐高温金属陶瓷太阳光谱选择性吸收涂层及制备方法
CN104697210B (zh) 一种原位自生长的太阳光谱选择性吸收膜及其制备方法
CN202573165U (zh) NiCr系平板太阳能光谱选择性吸收涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190802