CN103105011B - 适于中高温热利用的太阳能选择性吸收膜系及其制备方法 - Google Patents

适于中高温热利用的太阳能选择性吸收膜系及其制备方法 Download PDF

Info

Publication number
CN103105011B
CN103105011B CN201310040103.6A CN201310040103A CN103105011B CN 103105011 B CN103105011 B CN 103105011B CN 201310040103 A CN201310040103 A CN 201310040103A CN 103105011 B CN103105011 B CN 103105011B
Authority
CN
China
Prior art keywords
film
solar
oxygen
preparation
absorbing film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310040103.6A
Other languages
English (en)
Other versions
CN103105011A (zh
Inventor
陆卫
陈飞良
王少伟
俞立明
刘星星
简明
郭少令
陈效双
王晓芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tephys Optoelectronics Co ltd
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Tephys Optoelectronics Co ltd
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tephys Optoelectronics Co ltd, Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Tephys Optoelectronics Co ltd
Priority to CN201310040103.6A priority Critical patent/CN103105011B/zh
Publication of CN103105011A publication Critical patent/CN103105011A/zh
Application granted granted Critical
Publication of CN103105011B publication Critical patent/CN103105011B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

本发明公开了一种适于中高温热利用的太阳能选择性吸收膜系及其制备方法。该太阳能选择性吸收膜系自下而上依次包括镀制在金属基底上的红外高反射银薄膜、铜薄膜、钛铝氮氧薄膜、氧化锌锡锑薄膜以及二氧化硅薄膜。本发明的吸收膜系太阳能吸收率大于96%,发射率小于2%,具有超低发射率,光热转换效率高的特点,同时膜系中的氧化锌锡锑材料镀膜速率高,利于提高生产效率。该膜系可广泛应用于太阳能光热转换的集热器,适合于太阳能热利用在建筑一体化产品方面的应用,尤其适合于中高温太阳能热利用产品的广泛使用。本发明的吸收膜系可通过工业化磁控溅射制备方法在大面积基底上连续镀制,实现低成本大规模高效生产。

Description

适于中高温热利用的太阳能选择性吸收膜系及其制备方法
技术领域
本发明涉及太阳能集热器吸热膜、光热转化材料领域,具体是指一种适于中高温热利用的太阳能选择性吸收膜系及其制备方法。
技术背景
随着现代社会经济的高速发展,人类对能源的需求量越来越大。然而煤、石油、天然气等传统能源储备量不断减少、日益紧缺,造成价格的不断上涨,同时常规化石燃料造成的环境污染问题也愈加严重,这些都大大限制着社会的发展和人类生活质量的提高。能源问题已经成为当代世界的最突出的问题之一。因而寻求新的能源,特别是无污染的清洁能源已成为现在人们研究的热点。
太阳能是一种取之不尽用之不竭的清洁能源,而且资源量巨大,地球表面每年接收的太阳辐射能总量为1×1018kW·h,为世界年耗总能量的一万多倍。世界各国都已经把太阳能的利用作为新能源开发的重要一项,我国政府在《政府工作报告》也早已明确提出要积极发展新能源,其中太阳能的利用尤其占据着突出地位。然而由于太阳辐射到达地球上的能量密度小(每平方米约一千瓦),而且又是不连续的,这给大规模的开发利用带来一定困难。因此,为了广泛利用太阳能,不仅要解决技术上的问题,而且在经济上必须能同常规能源相竞争。
太阳能的利用主要有光热转化、光电转化、光化学转换这三种形式。相比于太阳能光伏产业和光化学转换的高昂成本与低的能量转换效率,太阳能热转化是一种能量转换效率和利用率高而且成本低廉、可在全社会广泛推广的太阳能利用方式。在太阳能热利用装置中,关键是要将太阳辐射能转换成热能,实现这种转换的器件称为太阳能集热器。
无论哪种形式和结构的太阳能集热器,都要有一个用来吸收太阳辐射的吸收部件,该部件吸收表面的热辐射性能对集热器的热性能起着重要的作用。表征吸收表面热辐射性能的物理量是吸收比和热发射比,前者表征吸收太阳辐射能的能力,后者表征自身温度下发射辐射能的能力。
众所周知,太阳辐射具有一个很宽的波段分布,但是其辐射能主要集中在可见光和近红外波段范围(0.3~2.5μm)。因此,为了提高太阳集热器的热效率,我们要求吸收部件表面在波长0.3~2.5μm的太阳光谱范围内具有较高的吸收比(通常用α表示)。而对于一个实际应用中的受热体,其热辐射能量集中在波长为3.0~30.0μm的红外光谱范围内,为了减少热损失,防止吸收的短波能量又以长波形式辐射掉,就要在热辐射波段内保持尽可能低的热发射比(通常用ε表示)。根据普朗克黑体辐射定律和基尔霍夫定律,处于热平衡时,任何物体对黑体辐射的吸收比等于同温度下该物体的发射率。因此,要使物体在热辐射波段内保持尽可能低的热发射比,即相当于使物体在热辐射波段内保持尽可能低的吸收率。概括起来,就是要使吸收表面在最大限度地吸收太阳辐射的同时,尽可能减小其辐射热损失,通俗地讲,就是要“进的多,出的少”。具有这种选择性吸收效果的表面的称为“太阳光谱选择性吸收表面”或“太阳光谱选择性吸收涂层”。显而易见,该涂层两个重要的性能参数α、ε对提高集热器的光热转换效率起着至关重要的作用。
但是,我国在近二三十年的太阳能热利用研究中,多数的研究成果仅限于中低温应用,如太阳能热水器、太阳能烘干机、太阳房等。而在中高温热利用选择性吸收膜方面的研究则较为滞后。低温应用中所使用的吸收膜在高温下集热性能及耐候性能会大大降低,尤其是其发射率会随着集热器工作温度的提高显著的增大,使得热损失大大增加,降低集热效率,空烧温度无法进一步提高,难以满足中高温热利用的需求。例如,目前我国广泛应用的真空管太阳能集热器膜系结构中,选择性涂层大多采用磁控溅射多层渐变Al-N-Al,该涂层靠多层吸收膜提高吸收能力,吸收率得到有效提升(吸收率能达到92%),但很容易引起发射率的升高,尤其是当温度较高时,发射率随温度急剧升高,而且膜层中金属成分容易在高温中扩散,造成膜层的老化和脱落,导致了集热器热效率的损耗和使用寿命的缩短。
因此,在中高温太阳能利用方面,关键是降低发射率。适合中高温太阳能热利用的光谱选择性吸收涂层(为方便起见,简称中高温吸收涂层)是指能耐受200℃及其以上高温,并能长期在与室温的变化范围内正常工作,保持较高的太阳能吸收率α和较低的发射率ε的选择性吸收涂层。从长远角度来看,中高温选择性吸收涂层的研究意味着更广阔的应用领域与需求,以太阳能空调技术为例,如果采用低聚焦的中高温集热器可以大大提高制冷系统的性能系数。因此,中高温太阳光谱选择性吸收涂层是当前太阳能热利用中的热点课题。研发一种新型的中高温太阳光谱选择性吸收膜系,在平板太阳能集热器、太阳能热发电、太阳能空调等领域有着迫切的需求和广泛的应用前景。
目前已经公开的TiNxOy吸收薄膜专利中发射率仍然较高。如专利公开号CN 1594644A所公开的TiNxOy薄膜中吸收率最大的只有94%,发射率最低的也高达7%,光热转换性能不佳;专利公开号CN 101793437A所公开的TiNO、TiAlNO多层涂层吸收率为93%,发射率4%;郭信章等人将以纯铝为靶材,制备AlNxOy薄膜后,再沉积薄层氧化铝作为减反射层。用该工艺制备的吸收膜,太阳能吸收率为95%,发射率达到9%。
而制备方法适合工业化生产的高吸收率、超低发射率的吸收膜会使吸热膜在建筑一体化太阳能热利用材料的商业化应用方面更具优势,尤其是太阳能空调等中高温太阳能热利用产品的应用方面更有前景。
发明内容
本发明公开了一种适于中高温热利用的太阳能选择性吸收膜系及其制备方法。旨在提供一种制备方法适合工业化生产,具有超低发射率,适合于太阳能热利用在建筑一体化产品的商业化应用,促进太阳能热水器、尤其是太阳能空调、太阳能发电等中高温太阳能热利用产品的广泛使用。
本专利的适于中高温热利用的太阳能选择性吸收膜系结构如附图1所示,膜系的结构为:在基底1上自下而上依次为银膜2,铜膜3、钛铝氮氧薄膜4、氧化锌锡锑薄膜5以及二氧化硅薄膜6,即:
基底/Ag/Cu/TiAlxNyOz/ZnSnSbOx/SiO2
其中:
所述的基底1是铜箔片、铝箔片、镍箔片、铬箔片或不锈钢箔片;
所述的银膜2厚度范围为100~200nm;
所述的铜膜3厚度范围为5nm~20nm;
所述的钛铝氮氧薄膜4TiAlxNyOz中,Ti、Al、N、O四种元素的原子比范围为Ti:Al:N:O=1:(0~1):(0.5~1):(1~2),厚度范围为50nm~150nm;
所述的氧化锌锡锑薄膜5厚度范围为40nm~150nm;
所述的二氧化硅薄膜6厚度范围为50nm~150nm。
本发明的吸收膜系以银薄膜作为红外高反射膜层,使用铜薄膜作为银膜的保护层,防止银膜在上层TiAlxNyOz镀膜过程中被氧化,也可在高温下阻隔外界环境对银的侵蚀,保持其红外高反射性能。银膜作为红外高反射膜可使膜系的发射率低于2%,相比于现有报道的吸收膜,具有超低的发射率,使得热损失大大降低,空烧温度可以进一步提高,从而满足中高温热利用的需求。这种超低发射率性能尤其适合于200℃及以上的中高温太阳能热利用,并能长期在与室温的变化范围内正常工作,保持较高的太阳能吸收率α和较低的发射率ε。从长远角度来看,适于中高温的选择性吸收涂层意味着更广阔的应用领域与需求,在平板太阳能集热器、太阳能热发电、太阳能空调等领域有着迫切的需求和广泛的应用前景。
本发明的吸收膜系以TiAlxNyOz薄膜作为吸收层,这种材料是一种性能稳定的固溶体陶瓷化合物,热稳定性很高,适于中高温太阳能热利用;以ZnSnSbOx和SiO2薄膜作为减反层、保护层。ZnSnSbOx和SiO2薄膜可以保护TiAlxNyOz薄膜在高温下不受外界环境的侵蚀,维持其成分组成的稳定性,提高膜系的耐候性和耐高温性,延长其使用寿命。同时,由于ZnSnSbOx和SiO2两种材料的折射率依次递减,因此具有很好的减反效果,大大提高了膜系的吸收率。
本发明的特点还在于膜系中使用的ZnSnSbOx膜层是一种具有导电性的材料,在中远红外波段有较高反射率,可以进一步增大膜系中远红外反射率,降低膜系的发射率。同时,由于具有导电性,利用磁控溅射镀制这种材料的镀膜速率要大大高于普通介质材料,有利于提高生产效率,降低生产成本。
本发明的适于中高温热利用的太阳能选择性吸收膜系可通过工业化磁控溅射制备方法在大面积金属基底上连续镀制。制备过程如下:
首先,使用银靶材,在金属基底上镀制一层银薄膜作为红外高反射膜,厚度范围为100nm~200nm。
其次,使用铜靶材,在银薄膜上镀制一层铜薄膜作为银的保护膜,厚度范围5nm~20nm。
然后,在铜膜上镀制一层TiAlxNyOz吸收膜层,厚度范围为50nm~150nm,太薄会降低吸收率,太厚又会增大发射率。所述的TiAlxNyOz薄膜的制备方法为磁控溅射镀膜,可以采用金属TiAl合金靶材,同时以氮气和氧气两种反应气体进行反应溅射,通过控制氩气、氮气和氧气的流量比或气压比控制TiAlxNyOz薄膜中各元素的组分比,通过控制氩气、氮气和氧气的流量比随时间变化制备组分渐变膜;也可以采用TiAlxNy陶瓷靶材,以氧气作为反应气体进行反应溅射,通过控制氩气和氧气的流量比或气压比控制TiAlxNyOz薄膜中各元素的组分比,通过控制氩气和氧气的流量比随时间变化制备组分渐变膜;还可以采用按预先设定的Ti、Al、N、O三种元素原子比烧结好的TiAlxNyOz陶瓷靶材,直接进行溅射镀膜。
再次,在TiAlxNyOz薄膜上镀制一层ZnSnSbOx薄膜,厚度范围为40nm~150nm,通过调节ZnSnSbOx薄膜的厚度可以降低反射、增加膜系吸收率。ZnSnSbOx薄膜的制备可以采用ZnSnSb合金靶材,以氧气作为反应气体进行反应溅射;可以采用以ZnO、SnO2、Sb2O3按所需比例烧制成的ZnSnSbOx陶瓷靶材直接进行溅射镀膜。
最后,在ZnSnSbOx薄膜上镀制一层SiO2薄膜,厚度范围为50nm~150nm,通过调节SiO2薄膜的厚度可以降低反射、增加膜系吸收率。SiO2薄膜的制备可以采用Si靶材,以氧气作为反应气体进行反应溅射;也可以采用SiO2陶瓷靶材直接进溅射镀膜。
本发明的吸收膜系有以下几个优点:
1、太阳能吸收率大于96%,发射率小于2%,有着很高的吸收率和超低的发射率,具有光热转换效率高的特点。这种超低发射率性能尤其适合太阳能空调、太阳能发电等中高温太阳能热利用产品的应用;
2、本发明的吸收膜系所用的ZnSnSbOx薄膜材料磁控溅射速率高,有利于提高生产效率,降低生产成本。
3、本发明的吸收膜系制备方法简单,且与大面积工业化生产完全兼容,可直接进行产业化。
附图说明
附图1为本发明的适于中高温热利用的太阳能选择性吸收膜系结构示意图,其中:
1为基底;
2为银薄膜;
3为铜薄膜;
4为钛铝氮氧薄膜;
5为氧化锌锡锑薄膜;
6为二氧化硅薄膜。
附图2为本发明的适于中高温热利用的太阳能选择性吸收膜系1的反射谱。
附图3为本发明的适于中高温热利用的太阳能选择性吸收膜系2的反射谱。
附图4为本发明的适于中高温热利用的太阳能选择性吸收膜系3的反射谱。
具体实施方式
为使本发明的内容、技术方案和优点更加清楚明白,以下结合具体实施例进一步阐述本发明,这些实施例仅用于说明本发明,而本发明不仅限于以下实施例。下面结合附图对本发明的具体实施方式作详细说明:
实施例1:
一种适于中高温热利用的太阳能选择性吸收膜系1及其制备方法。
此吸收膜系1的结构如附图1所示,各膜层厚度组成如下:
铜箔基底/银薄膜(100nm)/铜薄膜(20nm)/TiAlxNyOz薄膜(88nm)/ZnSnSbOx薄膜(60nm)/SiO2薄膜(86nm)。
该膜系反射谱附图2所示,按照国标GB/T6424-2007及GB/T 4271-2007测试该膜系的技术指标如下:
吸收率达到96.4%,发射率1.9%。
以本实施例所用磁控溅射设备的工艺参数为例,此吸收膜系的制备方法如下:
首先,以银靶材,在铜箔基底上镀制一层银薄膜,厚度100nm,溅射功率为1kW,氩气流量为50sccm;然后以铜靶材在银膜上镀制20nm的铜膜,溅射功率为1kW,氩气流量为80sccm;
其次,以TiAl合金为靶材,氩气为溅射气体,通入氮气、氧气作为反应气体制备组分渐变的TiAlxNyOz薄膜。通过控制氩气、氮气、氧气三种气体的流量比或气压比随时间变化制备组分渐变的TiAlxNyOz薄膜,通过控制反应溅射时间使薄膜厚度生长到88nm。溅射功率为1kW,中频频率30kHz,溅射过程中,氩气流量固定为35sccm,氮气流量从10sccm~5sccm逐渐递减,氧气流量从2sccm~5sccm逐渐递增;
再次,在TiAlxNyOz薄膜上以ZnSnSbOx陶瓷靶材进行溅射,镀制ZnSnSbOx薄膜。溅射功率为1kW,中频频率30kHz,氩气流量为50sccm,通过控制反应溅射时间使薄膜厚度生长到60nm;
最后,以Si为靶材,通入氧气作为反应气体制备SiO2薄膜。溅射功率为1kW,中频频率40kHz,氩气流量为200sccm,氧气流量20sccm,通过控制反应溅射时间使薄膜厚度生长到86nm。
实施例2:
一种适于中高温热利用的太阳能选择性吸收膜系2及其制备方法。
此吸收膜系2的结构如附图1所示,各膜层厚度组成如下:
Al箔基底/银薄膜(150nm)/铜薄膜(10nm)/TiAlxNyOz薄膜(40nm)/ZnSnSbOx薄膜(150nm)/SiO2薄膜(50nm)。
该膜系反射谱如附图3所示,按照国标GB/T6424-2007及GB/T 4271-2007测试该膜系的技术指标为:吸收率达到96.2%,发射率1.8%。
以本实施例所用磁控溅射设备的工艺参数为例,此吸收膜系的制备方法如下:
首先,以银靶材在铜箔基底上镀制一层银薄膜,厚度150nm,溅射功率为1kW,氩气流量为50sccm;然后以铜靶材在银膜上镀制10nm的铜膜,溅射功率为1kW,氩气流量为80sccm;
其次,采用按预先设定的Ti、Al、N、O四种元素原子比烧结好的TiAlxNyOz陶瓷为靶材,在铜膜上镀制一层TiAlxNyOz薄膜,厚度40nm。本实施例所用靶材中四种元素原子比为Ti:Al:N:O=1:0.05:0.8:1.2。溅射功率为1kW,中频频率30kHz,氩气流量为35sccm;
再次,在TiAlxNyOz薄膜上以ZnSnSb合金为靶材,以氧气为反应气体镀制ZnSnSbOx薄膜。溅射功率为1kW,中频频率30kHz,氩气流量为100sccm,氧气流量20sccm,通过控制反应溅射时间使薄膜厚度生长到150nm;
最后,采用SiO2陶瓷靶材在ZnSnSbOx薄膜上镀制一层SiO2薄膜。溅射功率1kW,中频频率100kHz,氩气流量200sccm,通过控制反应溅射时间使薄膜厚度生长到50nm。
实施例3:
一种适于中高温热利用的太阳能选择性吸收膜系3及其制备方法。
此吸收膜系3的结构如附图1所示,各膜层厚度组成如下:
不锈钢箔基底/银薄膜(200nm)/铜薄膜(5nm)/TiAlxNyOz薄膜(150nm)/ZnSnSbOx薄膜(40nm)/SiO2薄膜(150nm)。
该膜系反射谱如附图4所示,按照国标GB/T6424-2007及GB/T 4271-2007测试该膜系的技术指标为:吸收率达到97.2%,发射率2.0%。
此镀膜玻璃的制备方法如下:
首先,以银靶材在铜箔基底上镀制一层银薄膜,厚度200nm,溅射功率为1kW,氩气流量为50sccm;然后以铜靶材在银膜上镀制5nm的铜膜,溅射功率为1kW,氩气流量为80sccm;
其次,在铜薄膜上以TiAl0.1N陶瓷为靶材,以氧气作为反应气体进行反应溅射镀制多层TiAlxNyOz薄膜。通过控制氩气和氧气的流量比或气压比镀制各层成分不同的多层TiAlxNyOz薄膜。本实施例采用三层膜,溅射功率为1kW,中频频率40kHz,第一层TiAlxNyOz薄膜采用氩气流量30sccm,氧气流量3sccm,膜厚70nm;第二层TiAlxNyOz薄膜采用氩气流量35sccm,氧气流量4sccm,膜厚50nm;第三层TiAlxNyOz薄膜采用氩气流量40sccm,氧气流量6sccm,膜厚30nm;
最后,以Si为靶材,通入氧气作为反应气体制备SiO2薄膜。溅射功率为1kW,中频频率40kHz,氩气流量为200sccm,氧气流量20sccm,通过控制反应溅射时间使薄膜厚度生长到150nm。

Claims (2)

1.一种适于中高温热利用的太阳能选择性吸收膜系,其特征在于,膜系的结构为:在基底(1)上自下而上依次为银膜(2)、铜膜(3)、钛铝氮氧薄膜(4)、氧化锌锡锑薄膜(5)以及二氧化硅薄膜(6),
其中:
所述的基底(1)是铜箔片、铝箔片、镍箔片、铬箔片或不锈钢箔片;
所述的银膜(2)厚度范围为100~200nm;
所述的铜膜(3)厚度范围为5nm~20nm;
所述的钛铝氮氧薄膜(4)TiAlxNyOz中,Ti、Al、N、O四种元素的原子比范围为Ti:Al:N:O=1:(0~1):(0.5~1):(1~2),厚度范围为50nm~150nm;
所述的氧化锌锡锑薄膜(5)厚度范围为40nm~150nm;
所述的二氧化硅薄膜(6)厚度范围为50nm~150nm。
2.一种如权利要求1所述的适于中高温热利用的太阳能选择性吸收膜系的制备方法,其特征在于:
所述的银膜(2)的制备采用金属银靶材,以氩气作为溅射气体,进行磁控溅射镀膜;
所述的铜膜(3)的制备采用金属铜靶材进行溅射镀膜;
所述的钛铝氮氧薄膜(4)的制备方法为磁控溅射镀膜,采用金属TiAl合金靶材,同时以氮气和氧气两种反应气体进行反应溅射,通过控制氩气、氮气和氧气的流量比或气压比控制TiAlxNyOz薄膜中各元素的组分比;或采用TiAlxNy陶瓷靶材,以氧气作为反应气体进行反应溅射,通过控制氩气和氧气的流量比或气压比控制TiAlxNyOz薄膜中各元素的组分比;或采用按预先设定的Ti、Al、N、O四种元素原子比烧结好的TiAlxNyOz陶瓷靶材,直接进行溅射镀膜;
所述的氧化锌锡锑薄膜(5)的制备采用ZnSnSb合金靶材,以氧气作为反应气体进行反应溅射;或采用以ZnO、SnO2、Sb2O3按所需比例烧制成的ZnSnSbOx陶瓷靶材直接进行溅射镀膜;
所述的二氧化硅薄膜(6)的制备采用硅靶材,以氧气作为反应气体进行反应溅射;或采用SiO2陶瓷靶材直接进行溅射镀膜。
CN201310040103.6A 2013-01-31 2013-01-31 适于中高温热利用的太阳能选择性吸收膜系及其制备方法 Active CN103105011B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310040103.6A CN103105011B (zh) 2013-01-31 2013-01-31 适于中高温热利用的太阳能选择性吸收膜系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310040103.6A CN103105011B (zh) 2013-01-31 2013-01-31 适于中高温热利用的太阳能选择性吸收膜系及其制备方法

Publications (2)

Publication Number Publication Date
CN103105011A CN103105011A (zh) 2013-05-15
CN103105011B true CN103105011B (zh) 2015-05-13

Family

ID=48313072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310040103.6A Active CN103105011B (zh) 2013-01-31 2013-01-31 适于中高温热利用的太阳能选择性吸收膜系及其制备方法

Country Status (1)

Country Link
CN (1) CN103105011B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279779A (zh) * 2013-07-04 2015-01-14 北京有色金属研究总院 一种金属氮化物太阳光谱选择性吸收涂层
CN104911557A (zh) * 2015-07-06 2015-09-16 圣春新能源科技有限公司 一种中高温槽式集热铝基反射膜的制备方法
US11149987B2 (en) 2016-01-29 2021-10-19 Kabushiki Kaisha Toyota Jidoshokki Solar heat collector tube and production method thereof
JP6549491B2 (ja) * 2016-01-29 2019-07-24 株式会社豊田自動織機 太陽熱集熱管
US11009264B2 (en) * 2016-01-29 2021-05-18 Kabushiki Kaisha Toyota Jidoshokki Solar heat collector tube
CN108505002B (zh) * 2018-04-26 2020-07-28 常州龙腾光热科技股份有限公司 一种区域表面等离子体增强超薄复合吸收膜的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027050A1 (en) * 1999-10-14 2001-04-19 Glaverbel Glazing
CN101666557A (zh) * 2008-09-01 2010-03-10 北京有色金属研究总院 一种非真空太阳光谱选择性吸收膜层及其制备方法
CN101776778A (zh) * 2010-02-23 2010-07-14 常州龙腾太阳能热电设备有限公司 耐候银镜及其制备方法
CN101793437A (zh) * 2009-12-31 2010-08-04 沈阳百乐真空技术有限公司 多用途太阳光谱选择性吸收涂层及其制备方法
CN101805132A (zh) * 2010-03-26 2010-08-18 洛阳新晶润工程玻璃有限公司 一种用于提高可钢化低辐射镀膜玻璃耐高温的方法
CN102534497A (zh) * 2012-03-29 2012-07-04 德州金亨新能源有限公司 基于不锈钢材料的高温选择性吸收涂层及其制备方法
CN203249419U (zh) * 2013-01-31 2013-10-23 中国科学院上海技术物理研究所 一种适于中高温热利用的太阳能选择性吸收膜系

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027050A1 (en) * 1999-10-14 2001-04-19 Glaverbel Glazing
CN101666557A (zh) * 2008-09-01 2010-03-10 北京有色金属研究总院 一种非真空太阳光谱选择性吸收膜层及其制备方法
CN101793437A (zh) * 2009-12-31 2010-08-04 沈阳百乐真空技术有限公司 多用途太阳光谱选择性吸收涂层及其制备方法
CN101776778A (zh) * 2010-02-23 2010-07-14 常州龙腾太阳能热电设备有限公司 耐候银镜及其制备方法
CN101805132A (zh) * 2010-03-26 2010-08-18 洛阳新晶润工程玻璃有限公司 一种用于提高可钢化低辐射镀膜玻璃耐高温的方法
CN102534497A (zh) * 2012-03-29 2012-07-04 德州金亨新能源有限公司 基于不锈钢材料的高温选择性吸收涂层及其制备方法
CN203249419U (zh) * 2013-01-31 2013-10-23 中国科学院上海技术物理研究所 一种适于中高温热利用的太阳能选择性吸收膜系

Also Published As

Publication number Publication date
CN103105011A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
CN103105011B (zh) 适于中高温热利用的太阳能选择性吸收膜系及其制备方法
CN103017383B (zh) 一种颜色可调的太阳能选择性吸收膜系及其制备方法
CN101737982B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN101922816B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN103032978B (zh) 一种菲涅尔式太阳能热发电用选择性吸收涂层及其制备方法
CN107314559B (zh) 光热转换涂层及其制备方法
CN106884145B (zh) 一种太阳光谱选择性吸收涂层及其制备方法
CN103383155A (zh) Ti合金氮化物选择性吸收膜系及其制备方法
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN203132188U (zh) 一种颜色可调的太阳能选择性吸收膜系
CN101886848B (zh) 一种太阳光谱选择性吸收膜及其制备方法
CN103625032A (zh) 一种中高温太阳能光热选择性吸收涂层
CN103017384B (zh) 一种碳膜辅助的太阳能选择性吸收膜系及其制备方法
CN108917210A (zh) 一种自掺杂纳米复合光热转换涂层及其制备方法
CN103234293B (zh) 耐高温太阳能选择性吸收镀层及其制备方法
CN201463375U (zh) 一种太阳能集热管
CN203249419U (zh) 一种适于中高温热利用的太阳能选择性吸收膜系
CN104596138B (zh) 一种太阳能选择性吸收膜系
CN103032977A (zh) 一种中温太阳能选择性吸收涂层及其制备方法
CN202955903U (zh) 一种碳膜辅助的太阳能选择性吸收膜系
CN101182132B (zh) 低温太阳能选择性吸收涂层及其制备方法
CN202119152U (zh) 具有太阳能选择性吸收性能的涂层
CN102734961A (zh) 一种太阳能中高温选择性吸收涂层
CN105568238A (zh) 具有太阳能选择性吸收薄膜膜系的制备方法
CN201203292Y (zh) 一种太阳能集热管外管的干涉减反射涂层

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant