CN112853277B - 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 - Google Patents

一种CuGa2-GaIn固-液双相导电薄膜的制备方法 Download PDF

Info

Publication number
CN112853277B
CN112853277B CN202110044151.7A CN202110044151A CN112853277B CN 112853277 B CN112853277 B CN 112853277B CN 202110044151 A CN202110044151 A CN 202110044151A CN 112853277 B CN112853277 B CN 112853277B
Authority
CN
China
Prior art keywords
phase
coating machine
vacuum coating
chamber
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110044151.7A
Other languages
English (en)
Other versions
CN112853277A (zh
Inventor
巫运辉
吴文剑
李坤泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202110044151.7A priority Critical patent/CN112853277B/zh
Publication of CN112853277A publication Critical patent/CN112853277A/zh
Application granted granted Critical
Publication of CN112853277B publication Critical patent/CN112853277B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种CuGa2‑GaIn固‑液双相导电薄膜的制备方法,该方法创新性的通过以低成本Cu为固相活性点,Ga为两相活性层,经过真空热处理使得Cu与Ga反应生成固相CuGa2,同时Ga与上层In原子合金化,在Ga、In接触的上界面层生成液相GaIn合金,由于Cu只能与Ga发生金属间化学反应,从而避免Cu对液相GaIn合金的成核影响,该方法解决了固‑液双相薄膜精准组装的技术难题,并解决了当前Au‑Ga固‑液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,在柔性电子电极领域具有非常优异的应用前景。

Description

一种CuGa2-GaIn固-液双相导电薄膜的制备方法
技术领域
本发明涉及先进电子材料技术领域,特别是一种CuGa2-GaIn固-液双相导电薄膜的制备方法。
背景技术
随着新材料技术的不断进步,电子器件已从第一代“刚性”升级为第二代“柔性”,并向第三代“可拉伸”发展。相对于刚性电子,柔性电子具备弯曲、折叠、扭曲形变下仍有高可靠的电信号传输特性,已应用于柔性显示、柔性储能、柔性电路等高科技领域,极大提升了我国电子产品在国际市场上的竞争力。然而,与柔性电子相比,可拉伸电子需要满足压缩、拉伸等改变材料体积形状条件下仍能保持稳定的电信号传输能力,在可穿戴医疗设备、可拉伸晶体管、可拉伸智能传感器、可拉伸能量存储器件等新兴前沿科技领域具有潜在的应用前景,是我国消费类电子产品的下一个技术革命窗口。
目前,科学家通过对刚性金属的微尺寸化,并采用与柔性高分子衬底相结合的技术路线,已实现了将高模量金属制备成可弯曲、扭曲、折叠等非拉伸形变导电元件。但是,上述技术仍无法实现导电元件的可拉伸,并已成为可拉伸电子领域亟待解决的技术问题。近年来,围绕刚性金属导电材料的可拉伸几何结构设计,如弹簧、褶皱、蛇形结构等,只能实现沿预设结构方向伸缩形变,导致该技术难于得到实际的应用。此外,用纳米材料(如碳纳米管、金属纳米线等)制备的高分子复合材料,虽然可以实现多轴方向的可拉伸性,但导电性比相同尺寸的金属要低得多,难于满足导电元件对高通量电信号的传输需求。
另外,科学家研制出兼具固体金属形貌稳定性和液体金属可拉伸性的Au-Ga固-液双相材料体系,然而,当该体系所处的环境温度低于Ga凝固温度(29.8℃),此时液相Ga由液态凝固为固体,此时固-液双相转变为固体结构,失去可拉伸性。可见,液相的凝固点高低将直接决定固-液双相导电薄膜的耐低温能力,并且以贵金属Au为固相活性点,高成本也是当前亟待解决的问题之一。研究证实:Ga与In、Sn通过熔融冶炼可以得到凝固点分别15.5℃的GaIn(75%Ga和25%In)。然而,由于GaIn高达624mN m-1,导致无法通过共混的方式获得低凝固点GaIn为液相固-液双相导电薄膜。因此,如何设计低凝固点Ga基合金为液相的固-液双相导电薄膜,有效提高低温可拉伸能力,是当前面临的关键技术难点和亟需解决的科学问题。
针对上述所述的Au-Ga固-液双相材料体系耐低温能力弱及贵金属Au为固相活性点高成本的问题,本发明公开了一种区别于传统的Au-Ga固-液双相材料体系的CuGa2-GaIn固-液双相导电薄膜的制备方法,该方法的特征在于采用通过In原子掺杂液相Ga有效降低液相的凝固温度,提高固-液薄膜的低温相稳定性;采用薄膜结构设计,以及精准化学反应与合金化,获得Cu取代昂贵的Au为固相活性点的低成本新型Cu基固-液双相导电薄膜。该技术解决当前Au-Ga固-液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,具有重大的创新性和经济价值。
发明内容
本发明要解决的技术问题在于提供一种CuGa2-GaIn固-液双相导电薄膜的制备方法。
为了解决上述问题,本发明提供了一种CuGa2-GaIn固-液双相导电薄膜的制备方法,包括以下制备步骤:
(1)采用柔性耐高温(在220-250℃下能稳定存在)聚合物薄膜为柔性衬底材料,如硅橡胶(PDMS)、聚酰亚胺(PI),并对薄膜采用等离子处理及其表面巯基化,待用。
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将铜(Cu)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(3)调控热蒸发槽的电流(A)将Cu原子均匀沉积在衬底上,获得Cu单层薄膜。
(4)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,将镓(Ga)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(5)将调控热蒸发槽的电流(A)将Ga原子均匀沉积在步骤(3)得到的薄膜上,获得Cu-Ga双层结构薄膜。
(6)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,铟(In)(纯度:99.9-99.9999%)放入到真空镀膜机的电阻蒸发槽中
(7)将调控热蒸发槽的电流(A)将In原子均匀沉积在步骤(5)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用。
(8)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(7)获得的Cu-Ga-In三层薄膜从真空镀膜机中取出。
(9)将步骤(10)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn导电薄膜。
(10)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25-30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出固-液双相CuGa2-GaIn导电薄膜,完成制备。
本发明的有益效果是:本发明所述一种CuGa2-GaIn固-液双相导电薄膜的制备方法,该方法创新性的在衬底上以低成本Cu为固相活性点,Ga为两相活性层,经过真空热处理使得 Cu与Ga反应生成固相CuGa2,同时Ga与上层In原子合金化,在Ga、In接触的上界面层生成液相GaIn合金,由于Cu只能与Ga发生金属间化学反应,从而避免Cu对液相GaIn合金的成核影响,解决固-液双相薄膜精准组装的科学技术问题,该方法解决了当前Au-Ga固- 液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,可应用于可拉伸导电元器件中,具有非常优异的应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:
图1为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(3) Cu单层薄膜的结构示意图;
图2为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(5) Cu-Ga薄膜的结构示意图;
图3为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(7) 从真空镀膜机中取出的Cu-Ga-In三层薄膜的结构示意图;
图4为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(9) 在真空热处理炉中加热前的Cu-Ga-In三层薄膜的结构示意图;
图5为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(9) 在真空热处理炉中加热后的Cu-Ga-In三层薄膜的结构示意图;
图6为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(10) 从真空热处理炉中取出,完成制备的CuGa2-GaIn固-液双相导电薄膜结构示意图。
具体实施方式
实施例1
一种CuGa2-GaIn固-液双相导电薄膜的制备方法,包括以下制备步骤:
(1)采用柔性耐高温(在220-250℃下能稳定存在)聚合物薄膜为柔性衬底材料,如硅橡胶(PDMS)、聚酰亚胺(PI),并对薄膜采用等离子处理及其表面巯基化,待用。
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将铜(Cu)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(3)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至4×10- 6mbar。
(4)调控热蒸发槽的电流(A)将Cu原子均匀沉积在衬底上,获得Cu单层薄膜。
(5)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,将镓(Ga)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(6)将调控热蒸发槽的电流(A)将Ga原子均匀沉积在步骤(4)得到的薄膜上,获得Cu-Ga薄膜。
(7)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,铟(In)(纯度:99.9-99.9999%)放入到真空镀膜机的电阻蒸发槽中
(8)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至4×10- 6mbar。
(9)将调控热蒸发槽的电流(A)将In原子均匀沉积在步骤(6)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用。
(10)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(9) 获得的Cu-Ga-In三层薄膜从真空镀膜机中取出。
(11)将步骤(10)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn 导电薄膜。
(12)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25-30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出固-液双相CuGa2-GaIn导电薄膜,完成制备
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (1)

1.一种CuGa2-GaIn固-液双相导电薄膜的制备方法,其特征在于,包括以下制备步骤:
(1)采用在220-250℃下能稳定存在的柔性耐高温聚合物薄膜为柔性衬底材料,所述柔性衬底材料为硅橡胶(PDMS)或聚酰亚胺(PI),并对所述柔性衬底材料采用等离子处理及其表面巯基化,待用;
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将纯度为99.9%-99.9999%的铜(Cu)放入到真空镀膜机的电阻蒸发槽中;
(3)调控热蒸发槽的电流,将Cu原子均匀沉积在衬底上,获得Cu单层薄膜;
(4)向真空镀膜机的腔室内放入空气,待腔室气压升至与大气压相同,打开真空镀膜机的室门,将纯度为99.9%-99.9999%的镓(Ga)放入到真空镀膜机的电阻蒸发槽中;
(5)调控热蒸发槽的电流,将Ga原子均匀沉积在步骤(3)得到的薄膜上,获得Cu-Ga双层结构薄膜;
(6)向真空镀膜机的腔室内放入空气,待腔室气压升至与大气压相同,打开真空镀膜机的室门,将纯度为99.9% -99.9999%的铟(In)放入到真空镀膜机的电阻蒸发槽中;
(7)调控热蒸发槽的电流,将In原子均匀沉积在步骤(5)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用;
(8)向真空镀膜机的腔室内放入空气,待 腔室气压升至与大气压相同时,将步骤(7)获得的Cu-Ga-In三层薄膜从真空镀膜机中取出;
(9)将步骤(8)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn导电薄膜,关闭真空热处理炉后待温度降至20-30℃后取出,完成制备。
CN202110044151.7A 2021-01-13 2021-01-13 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 Active CN112853277B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110044151.7A CN112853277B (zh) 2021-01-13 2021-01-13 一种CuGa2-GaIn固-液双相导电薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110044151.7A CN112853277B (zh) 2021-01-13 2021-01-13 一种CuGa2-GaIn固-液双相导电薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN112853277A CN112853277A (zh) 2021-05-28
CN112853277B true CN112853277B (zh) 2022-06-14

Family

ID=76003468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110044151.7A Active CN112853277B (zh) 2021-01-13 2021-01-13 一种CuGa2-GaIn固-液双相导电薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112853277B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462462A1 (en) * 2017-09-28 2019-04-03 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Patterned biphasic electrical conductor and methods for producing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462462A1 (en) * 2017-09-28 2019-04-03 Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO Patterned biphasic electrical conductor and methods for producing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Transforming Bulk Metals into Metallic Nanostructures: A Liquid-Metal-Assisted Top-Down Dealloying Strategy with Sustainability;Zhenbin Wang 等;《ACS Sustainable Chem. Eng.》;20190703;第3274–3281页 *

Also Published As

Publication number Publication date
CN112853277A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN106835260B (zh) 超大尺寸多层单晶石墨烯和大尺寸单晶铜镍合金的制备方法
JP2001007360A (ja) Ib−iiia−via族化合物半導体ベースの薄膜太陽電池素子およびその製造方法
CN105177706A (zh) 一种制备高质量柔性单晶硅纳米线的方法
CN112531119B (zh) 一种适用于柔性光电器件的柔性透明电极、电池及制备方法
CN103482589B (zh) 一种一维硒化锡纳米阵列、其制备方法和应用
KR101712003B1 (ko) 2d 적층형 복합구조 쌍안정성 비휘발성 메모리 소자 및 그 제작 방법
CN104835872A (zh) 柔性异质结薄膜太阳能电池及其制备方法
CN103215548B (zh) 一种金属纳米颗粒掺杂石墨烯的制备方法
CN109824042B (zh) 一种调控石墨烯电化学剥离的方法
CN109148614A (zh) 硅异质结太阳电池及其制备方法
Tang et al. Flexible perovskite solar cells: Materials and devices
TW201240123A (en) Method of manufacturing transparent conductive film, and method of manufacturing thin-film solar cell
CN112853277B (zh) 一种CuGa2-GaIn固-液双相导电薄膜的制备方法
CN112458420B (zh) 具有纳米棒阵列的碲化银-硫化银薄膜及其制法
CN107369706A (zh) 一种显示用电子器件铜合金电极及其制备方法
CN108766630A (zh) 一种基于金属纳米线的柔性传感器、及其制备方法
CN112410729B (zh) 一种超薄液态金属薄膜及制备方法和应用
CN112670028B (zh) 一种基于原子组装法制备镓基铟锡导电薄膜的方法
CN105390373A (zh) 一种铜锑硫太阳能电池光吸收层薄膜的制备方法
CN114203892A (zh) 一种基于碲纳米线垂直结构的热电-压电器件及制作方法
Liu et al. Interfacial Engineering for Highly Stable and Stretchable Electrodes Enabled by Printing/Writing Surface‐Embedded Silver and Its Selective Alloying with Liquid Metals
CN112877647B (zh) 一种耐低温可拉伸固-液双相CuGa2-GaInSn导电薄膜的制备方法
CN110318035A (zh) 合金化合物薄膜的分立式多热丝沉积方法及装置
CN101280415A (zh) 一种硅纳米线表面镀镍的方法
CN113061837A (zh) 一种高透明的p型碘化亚铜导电薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant