CN112853277B - 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 - Google Patents
一种CuGa2-GaIn固-液双相导电薄膜的制备方法 Download PDFInfo
- Publication number
- CN112853277B CN112853277B CN202110044151.7A CN202110044151A CN112853277B CN 112853277 B CN112853277 B CN 112853277B CN 202110044151 A CN202110044151 A CN 202110044151A CN 112853277 B CN112853277 B CN 112853277B
- Authority
- CN
- China
- Prior art keywords
- phase
- coating machine
- vacuum coating
- chamber
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/26—Vacuum evaporation by resistance or inductive heating of the source
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明提供了一种CuGa2‑GaIn固‑液双相导电薄膜的制备方法,该方法创新性的通过以低成本Cu为固相活性点,Ga为两相活性层,经过真空热处理使得Cu与Ga反应生成固相CuGa2,同时Ga与上层In原子合金化,在Ga、In接触的上界面层生成液相GaIn合金,由于Cu只能与Ga发生金属间化学反应,从而避免Cu对液相GaIn合金的成核影响,该方法解决了固‑液双相薄膜精准组装的技术难题,并解决了当前Au‑Ga固‑液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,在柔性电子电极领域具有非常优异的应用前景。
Description
技术领域
本发明涉及先进电子材料技术领域,特别是一种CuGa2-GaIn固-液双相导电薄膜的制备方法。
背景技术
随着新材料技术的不断进步,电子器件已从第一代“刚性”升级为第二代“柔性”,并向第三代“可拉伸”发展。相对于刚性电子,柔性电子具备弯曲、折叠、扭曲形变下仍有高可靠的电信号传输特性,已应用于柔性显示、柔性储能、柔性电路等高科技领域,极大提升了我国电子产品在国际市场上的竞争力。然而,与柔性电子相比,可拉伸电子需要满足压缩、拉伸等改变材料体积形状条件下仍能保持稳定的电信号传输能力,在可穿戴医疗设备、可拉伸晶体管、可拉伸智能传感器、可拉伸能量存储器件等新兴前沿科技领域具有潜在的应用前景,是我国消费类电子产品的下一个技术革命窗口。
目前,科学家通过对刚性金属的微尺寸化,并采用与柔性高分子衬底相结合的技术路线,已实现了将高模量金属制备成可弯曲、扭曲、折叠等非拉伸形变导电元件。但是,上述技术仍无法实现导电元件的可拉伸,并已成为可拉伸电子领域亟待解决的技术问题。近年来,围绕刚性金属导电材料的可拉伸几何结构设计,如弹簧、褶皱、蛇形结构等,只能实现沿预设结构方向伸缩形变,导致该技术难于得到实际的应用。此外,用纳米材料(如碳纳米管、金属纳米线等)制备的高分子复合材料,虽然可以实现多轴方向的可拉伸性,但导电性比相同尺寸的金属要低得多,难于满足导电元件对高通量电信号的传输需求。
另外,科学家研制出兼具固体金属形貌稳定性和液体金属可拉伸性的Au-Ga固-液双相材料体系,然而,当该体系所处的环境温度低于Ga凝固温度(29.8℃),此时液相Ga由液态凝固为固体,此时固-液双相转变为固体结构,失去可拉伸性。可见,液相的凝固点高低将直接决定固-液双相导电薄膜的耐低温能力,并且以贵金属Au为固相活性点,高成本也是当前亟待解决的问题之一。研究证实:Ga与In、Sn通过熔融冶炼可以得到凝固点分别15.5℃的GaIn(75%Ga和25%In)。然而,由于GaIn高达624mN m-1,导致无法通过共混的方式获得低凝固点GaIn为液相固-液双相导电薄膜。因此,如何设计低凝固点Ga基合金为液相的固-液双相导电薄膜,有效提高低温可拉伸能力,是当前面临的关键技术难点和亟需解决的科学问题。
针对上述所述的Au-Ga固-液双相材料体系耐低温能力弱及贵金属Au为固相活性点高成本的问题,本发明公开了一种区别于传统的Au-Ga固-液双相材料体系的CuGa2-GaIn固-液双相导电薄膜的制备方法,该方法的特征在于采用通过In原子掺杂液相Ga有效降低液相的凝固温度,提高固-液薄膜的低温相稳定性;采用薄膜结构设计,以及精准化学反应与合金化,获得Cu取代昂贵的Au为固相活性点的低成本新型Cu基固-液双相导电薄膜。该技术解决当前Au-Ga固-液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,具有重大的创新性和经济价值。
发明内容
本发明要解决的技术问题在于提供一种CuGa2-GaIn固-液双相导电薄膜的制备方法。
为了解决上述问题,本发明提供了一种CuGa2-GaIn固-液双相导电薄膜的制备方法,包括以下制备步骤:
(1)采用柔性耐高温(在220-250℃下能稳定存在)聚合物薄膜为柔性衬底材料,如硅橡胶(PDMS)、聚酰亚胺(PI),并对薄膜采用等离子处理及其表面巯基化,待用。
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将铜(Cu)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(3)调控热蒸发槽的电流(A)将Cu原子均匀沉积在衬底上,获得Cu单层薄膜。
(4)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,将镓(Ga)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(5)将调控热蒸发槽的电流(A)将Ga原子均匀沉积在步骤(3)得到的薄膜上,获得Cu-Ga双层结构薄膜。
(6)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,铟(In)(纯度:99.9-99.9999%)放入到真空镀膜机的电阻蒸发槽中
(7)将调控热蒸发槽的电流(A)将In原子均匀沉积在步骤(5)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用。
(8)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(7)获得的Cu-Ga-In三层薄膜从真空镀膜机中取出。
(9)将步骤(10)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn导电薄膜。
(10)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25-30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出固-液双相CuGa2-GaIn导电薄膜,完成制备。
本发明的有益效果是:本发明所述一种CuGa2-GaIn固-液双相导电薄膜的制备方法,该方法创新性的在衬底上以低成本Cu为固相活性点,Ga为两相活性层,经过真空热处理使得 Cu与Ga反应生成固相CuGa2,同时Ga与上层In原子合金化,在Ga、In接触的上界面层生成液相GaIn合金,由于Cu只能与Ga发生金属间化学反应,从而避免Cu对液相GaIn合金的成核影响,解决固-液双相薄膜精准组装的科学技术问题,该方法解决了当前Au-Ga固- 液双相材料体系存在的耐低温能力弱及贵金属Au为固相活性点成本高的问题,可应用于可拉伸导电元器件中,具有非常优异的应用前景。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:
图1为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(3) Cu单层薄膜的结构示意图;
图2为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(5) Cu-Ga薄膜的结构示意图;
图3为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(7) 从真空镀膜机中取出的Cu-Ga-In三层薄膜的结构示意图;
图4为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(9) 在真空热处理炉中加热前的Cu-Ga-In三层薄膜的结构示意图;
图5为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(9) 在真空热处理炉中加热后的Cu-Ga-In三层薄膜的结构示意图;
图6为本发明一种CuGa2-GaIn固-液双相导电薄膜的制备方法其实施例1中制备步骤(10) 从真空热处理炉中取出,完成制备的CuGa2-GaIn固-液双相导电薄膜结构示意图。
具体实施方式
实施例1
一种CuGa2-GaIn固-液双相导电薄膜的制备方法,包括以下制备步骤:
(1)采用柔性耐高温(在220-250℃下能稳定存在)聚合物薄膜为柔性衬底材料,如硅橡胶(PDMS)、聚酰亚胺(PI),并对薄膜采用等离子处理及其表面巯基化,待用。
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将铜(Cu)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(3)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至4×10- 6mbar。
(4)调控热蒸发槽的电流(A)将Cu原子均匀沉积在衬底上,获得Cu单层薄膜。
(5)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,将镓(Ga)(纯度:99.9%-99.9999%)放入到真空镀膜机的电阻蒸发槽中。
(6)将调控热蒸发槽的电流(A)将Ga原子均匀沉积在步骤(4)得到的薄膜上,获得Cu-Ga薄膜。
(7)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同,打开真空镀膜机的室门,铟(In)(纯度:99.9-99.9999%)放入到真空镀膜机的电阻蒸发槽中
(8)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至4×10- 6mbar。
(9)将调控热蒸发槽的电流(A)将In原子均匀沉积在步骤(6)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用。
(10)向真空镀膜机的腔室内放入空气,带腔室气压升至与大气压相同时,将步骤(9) 获得的Cu-Ga-In三层薄膜从真空镀膜机中取出。
(11)将步骤(10)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn 导电薄膜。
(12)关闭真空热处理炉的加热装置,待真空热处理炉的温度降至25-30℃后,向真空热处理炉中充入空气,达到真空热处理炉中的气压与大气压相同时取出固-液双相CuGa2-GaIn导电薄膜,完成制备
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (1)
1.一种CuGa2-GaIn固-液双相导电薄膜的制备方法,其特征在于,包括以下制备步骤:
(1)采用在220-250℃下能稳定存在的柔性耐高温聚合物薄膜为柔性衬底材料,所述柔性衬底材料为硅橡胶(PDMS)或聚酰亚胺(PI),并对所述柔性衬底材料采用等离子处理及其表面巯基化,待用;
(2)将步骤(1)得到的柔性衬底材料通过去离子水清洗,并放入真空镀膜机的腔室内,将纯度为99.9%-99.9999%的铜(Cu)放入到真空镀膜机的电阻蒸发槽中;
(3)调控热蒸发槽的电流,将Cu原子均匀沉积在衬底上,获得Cu单层薄膜;
(4)向真空镀膜机的腔室内放入空气,待腔室气压升至与大气压相同,打开真空镀膜机的室门,将纯度为99.9%-99.9999%的镓(Ga)放入到真空镀膜机的电阻蒸发槽中;
(5)调控热蒸发槽的电流,将Ga原子均匀沉积在步骤(3)得到的薄膜上,获得Cu-Ga双层结构薄膜;
(6)向真空镀膜机的腔室内放入空气,待腔室气压升至与大气压相同,打开真空镀膜机的室门,将纯度为99.9% -99.9999%的铟(In)放入到真空镀膜机的电阻蒸发槽中;
(7)调控热蒸发槽的电流,将In原子均匀沉积在步骤(5)得到的Cu-Ga薄膜上,获得Cu-Ga-In三层薄膜,待用;
(8)向真空镀膜机的腔室内放入空气,待 腔室气压升至与大气压相同时,将步骤(7)获得的Cu-Ga-In三层薄膜从真空镀膜机中取出;
(9)将步骤(8)获得的Cu-Ga-In薄膜置于真空热处理炉中,抽真空并将热处理温度设置在120-250℃之间,加热时间为大于1小时,Ga、Cu原子接触的下界面层生成固相CuGa2,Ga、In接触的上界面层生成液相GaIn合金,形成固-液双相CuGa2-GaIn导电薄膜,关闭真空热处理炉后待温度降至20-30℃后取出,完成制备。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110044151.7A CN112853277B (zh) | 2021-01-13 | 2021-01-13 | 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110044151.7A CN112853277B (zh) | 2021-01-13 | 2021-01-13 | 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112853277A CN112853277A (zh) | 2021-05-28 |
CN112853277B true CN112853277B (zh) | 2022-06-14 |
Family
ID=76003468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110044151.7A Active CN112853277B (zh) | 2021-01-13 | 2021-01-13 | 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112853277B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3462462A1 (en) * | 2017-09-28 | 2019-04-03 | Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO | Patterned biphasic electrical conductor and methods for producing thereof |
-
2021
- 2021-01-13 CN CN202110044151.7A patent/CN112853277B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3462462A1 (en) * | 2017-09-28 | 2019-04-03 | Ecole Polytechnique Federale De Lausanne (EPFL) EPFL-TTO | Patterned biphasic electrical conductor and methods for producing thereof |
Non-Patent Citations (1)
Title |
---|
Transforming Bulk Metals into Metallic Nanostructures: A Liquid-Metal-Assisted Top-Down Dealloying Strategy with Sustainability;Zhenbin Wang 等;《ACS Sustainable Chem. Eng.》;20190703;第3274–3281页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112853277A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106835260B (zh) | 超大尺寸多层单晶石墨烯和大尺寸单晶铜镍合金的制备方法 | |
JP2001007360A (ja) | Ib−iiia−via族化合物半導体ベースの薄膜太陽電池素子およびその製造方法 | |
CN105177706A (zh) | 一种制备高质量柔性单晶硅纳米线的方法 | |
CN112531119B (zh) | 一种适用于柔性光电器件的柔性透明电极、电池及制备方法 | |
CN103482589B (zh) | 一种一维硒化锡纳米阵列、其制备方法和应用 | |
KR101712003B1 (ko) | 2d 적층형 복합구조 쌍안정성 비휘발성 메모리 소자 및 그 제작 방법 | |
CN104835872A (zh) | 柔性异质结薄膜太阳能电池及其制备方法 | |
CN103215548B (zh) | 一种金属纳米颗粒掺杂石墨烯的制备方法 | |
CN109824042B (zh) | 一种调控石墨烯电化学剥离的方法 | |
CN109148614A (zh) | 硅异质结太阳电池及其制备方法 | |
Tang et al. | Flexible perovskite solar cells: Materials and devices | |
TW201240123A (en) | Method of manufacturing transparent conductive film, and method of manufacturing thin-film solar cell | |
CN112853277B (zh) | 一种CuGa2-GaIn固-液双相导电薄膜的制备方法 | |
CN112458420B (zh) | 具有纳米棒阵列的碲化银-硫化银薄膜及其制法 | |
CN107369706A (zh) | 一种显示用电子器件铜合金电极及其制备方法 | |
CN108766630A (zh) | 一种基于金属纳米线的柔性传感器、及其制备方法 | |
CN112410729B (zh) | 一种超薄液态金属薄膜及制备方法和应用 | |
CN112670028B (zh) | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 | |
CN105390373A (zh) | 一种铜锑硫太阳能电池光吸收层薄膜的制备方法 | |
CN114203892A (zh) | 一种基于碲纳米线垂直结构的热电-压电器件及制作方法 | |
Liu et al. | Interfacial Engineering for Highly Stable and Stretchable Electrodes Enabled by Printing/Writing Surface‐Embedded Silver and Its Selective Alloying with Liquid Metals | |
CN112877647B (zh) | 一种耐低温可拉伸固-液双相CuGa2-GaInSn导电薄膜的制备方法 | |
CN110318035A (zh) | 合金化合物薄膜的分立式多热丝沉积方法及装置 | |
CN101280415A (zh) | 一种硅纳米线表面镀镍的方法 | |
CN113061837A (zh) | 一种高透明的p型碘化亚铜导电薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |