CN112851690B - 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法 - Google Patents

低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法 Download PDF

Info

Publication number
CN112851690B
CN112851690B CN202011590486.0A CN202011590486A CN112851690B CN 112851690 B CN112851690 B CN 112851690B CN 202011590486 A CN202011590486 A CN 202011590486A CN 112851690 B CN112851690 B CN 112851690B
Authority
CN
China
Prior art keywords
organic solvent
self
solution
polymer
nanofiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011590486.0A
Other languages
English (en)
Other versions
CN112851690A (zh
Inventor
张亚涛
金业豪
朱军勇
王景
单美霞
董冠英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202011590486.0A priority Critical patent/CN112851690B/zh
Publication of CN112851690A publication Critical patent/CN112851690A/zh
Application granted granted Critical
Publication of CN112851690B publication Critical patent/CN112851690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/22Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于膜技术领域,特别涉及一种低分子量自具微孔聚合物及其制备方法与利用其进行界面聚合制备超薄有机溶剂纳滤膜的方法及获得的产品。本发明将含肟基的自具微孔聚合物当作界面聚合反应单体,发挥了自具微孔聚合物扭曲且刚性骨架结构的优势,在薄膜内构建了高度互连通道。该膜在极性有机溶剂(醇类和酮类)和非极性溶剂(烷烃类和芳香族类)中能保持稳定且较高的渗透性。

Description

低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜 及其制备方法
技术领域
本发明属于膜技术领域,特别涉及一种低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法。
背景技术
在食品,制药及石油等化工行业中,有机溶剂作为原料、溶剂或者清洁剂在生产过程中被大量使用,因此对有机溶剂的分离及回收处理是必不可少的。相对于传统分离技术,如蒸馏、吸收和萃取等,膜分离工艺具有分离效率高、能耗低和操作简单等优势,逐渐成为与传统分离技术相结合或者完全替代的方法用于有机溶剂的分离回收。但是目前商业上已有的OSN膜大多由致密聚苯并咪唑(PBI)、聚酰亚胺(PI)和聚丙烯腈(PAN)等材料提供的表皮层以及传统界面聚合形成的聚酰胺薄膜制备而成来实现分离。这些自由体积小、致密的结构使得膜具有一定的有机溶剂通量限制。低渗透性增加了OSN过程的成本,降低了工作效率。
发明内容
本发明以获得高渗透性的有机溶剂纳滤膜为目标,提供一种低分子量的功能化的自具微孔聚合物AOPIM-1及其制备方法,并进一步利用低分子量的功能化的自具微孔聚合物通过界面聚合制备超薄有机溶剂纳滤膜,从而解决目前膜分离中有机溶剂渗透率低的问题。
为实现上述发明目的,本发明采取以下技术方案:
一种低分子量的自具微孔聚合物AOPIM-1,其结构式为:
Figure BDA0002868858900000011
其中n为聚合度,n的取值为3~7。
所述低分子量的自具微孔聚合物AOPIM-1的制备方法,可以用下述反应式表示:
1)
Figure BDA0002868858900000021
2)
Figure BDA0002868858900000022
优选地,所述低分子量的功能化的自具微孔聚合物AOPIM-1的制备方法如下:
1)先将TFTPN和TTSBI在保护气氛下溶于DMAC中,完全溶解后再加入K2CO3混合,得到的混合液于25~60℃下反应10~30min;反应液缓慢倒入甲醇溶液中,过滤沉淀,所得沉淀经过量的去离子水洗涤后于80~120℃下真空干燥6~12h,得到荧光黄色固体即为PIM-1;
其中,TFTPN、TTSBI和K2CO3的物质的量比为1:1:3~3.5,溶剂DMAC的用量按照每克TFTPN采用10ml计。甲醇溶液的浓度无特别限制,体积为DMAC的7倍以上。
2)将步骤1)得到的PIM-1在保护气氛下溶于四氢呋喃中,加入羟胺溶液混合,于65℃~75℃油浴条件下回流反应8~20h;之后反应液倒入乙醇水溶液中,所得沉淀物经过滤洗涤即得所述低分子量自具微孔聚合物AOPIM-1。
该步骤中,PIM-1、四氢呋喃和羟胺溶液的用量比为:mPIM-1:vTHF:v羟胺=1g:50~60ml:10ml,羟胺溶液的用量以质量浓度50%计。该步骤中,乙醇水溶液优选乙醇和水的体积比为1:1。采用乙醇和水的混合液的优势在于:沉淀物析出为粉末状,便于清洗和回收。其浓度无特别限制,体积为四氢呋喃体积的7倍以上。
本发明进一步提供了一种利用上述低分子量自具微孔聚合物进行界面聚合制备超薄有机溶剂纳滤膜的方法,以所述低分子量自具微孔聚合物AOPIM-1与含酰氯化合物反应即可。
所述的制备超薄有机溶剂纳滤膜的方法,包括以下步骤:
1)将AOPIM-1加水制得水相溶液,AOPIM-1的质量体积浓度为0.1~1.5%,优选0.2%;
2)将含酰氯化合物与有机溶剂混合得油相溶液,含酰氯化合物的质量体积浓度为0.02%~0.2%,优选0.05%;
3)油相溶液与水相溶液反应,在水油界面处形成自支撑薄膜;
4)将得到的自支撑薄膜转移到多孔载体上,热处理后获得超薄有机溶剂纳滤膜。
优选地,步骤1)中,所述水为去离子水。
优选地,步骤2)中,所述有机溶剂为正己烷。所述含酰氯化合物选自对苯二甲酰氯、间苯二甲酰氯和均苯三甲酰氯中的一种或者两种以上的混合物。
优选地,步骤3)中,反应时间为0.5~10min,更优选为3min。
优选地,步骤4)中,所述多孔载体选自有机商业超滤膜或无机载体,所述有机商业超滤膜为聚丙烯腈超滤膜或聚酰亚胺超滤膜;所述无机载体为多孔氧化铝膜;热处理的温度为60~80℃,热处理时间为2~5min。
本发明提供的AOPIM-1是一种扭曲且刚性的界面聚合单体,利用刚性且扭曲的单体界面聚合形成高孔隙率的有机溶剂纳滤薄膜是提高有机溶剂渗透性的有效方法。
自具微孔聚合物主要的组成元素为C、H、O、N。其链段结构为扭曲单元和平面单元以共价键连接而成。本发明提供的AOPIM-1的PIMs链段上含有大量的-NH2,其提供了和含酰氯的化合物反应的可能。本发明所采用的制膜方法为界面聚合,本发明所制得的有机溶剂纳滤膜的分离层厚度为25~100nm,其厚度受到反应单体的浓度大小、比例以及反应时间的影响。
与现有技术相比,本发明的技术效果在于:
1)本发明通过设计合成低分子量的自具微孔聚合物AOPIM-1,使其能够在水溶液中具有很好的分散性,合成方程式如图1所示;
2)首次将自具微孔聚合物AOPIM-1作为界面聚合的反应单体,与含酰氯的化合物在水油自由界面上形成一层薄膜。具体合成步骤如图2所示,同时该薄膜可以自由转移到多孔载体上或者支架上;
3)将界面形成的薄膜转移到聚丙烯腈超滤膜上,如图3所示,由于低分子量的自具微孔聚合物的长链结构,在界面聚合中形成大面积、具有褶皱形貌的薄膜;
4)结合自具微孔聚合物的扭曲且刚性的链状结构,在膜中形成高度互链的孔隙,极大的提高了溶剂的渗透能力;
5)本发明获得的超薄有机溶剂纳滤膜,对极性溶剂(醇类和酮类等)、非极性溶剂(烷烃类和芳香族类)均有较高的渗透性。
附图说明
图1是本发明中自具微孔聚合物AOPIM-1的制备路径;
图2为界面聚合示意图和自支撑薄膜在支架上的光学照片;
图3为界面处形成的自支撑膜转移到商业超滤膜后的照片和扫描电镜图;其中a为低倍数下复合膜的表面形貌;b为分离层的表面形貌区域放大图;c为支撑层表面形貌区域放大图;d.为复合膜的实物照片;
图4为自支撑薄膜在多种有机溶剂下长时间稳定性的测试图。
具体实施方式
下面结合具体实施方式对本发明做进一步说明。
实施例1
一种低分子量的功能化的自具微孔聚合物AOPIM-1,其结构式为:
Figure BDA0002868858900000041
其中,n为聚合度,n的取值为3~7。
所述低分子量的功能化的自具微孔聚合物AOPIM-1的制备方法,包括以下步骤:
1)
Figure BDA0002868858900000042
2)
Figure BDA0002868858900000051
具体的,步骤1)中,自具微孔聚合物PIM-1的制备方法为:
A)将TFTPN和TTSBI溶于装有一定量的DMAC的三颈烧瓶中,随后在N2氛围下用机械搅拌器搅拌溶解;TFTPN和TTSBI与DMAC的用量分别为3g、5.106g、30ml;
B)将K2CO3加入步骤A)得到的反应液中,然后将该混合物转移在60℃油浴锅中,反应10min;K2CO3的加入量为6.21g;
C)将步骤B)得到的混合物缓慢倒入甲醇溶液中,过滤收集生成的沉淀,用过量的去离子水洗涤,得到产物,并在真空中120℃过夜干燥,得到荧光黄色固体自具微孔聚合物,称量为7.2g。根据GPC测试,PIM-1重均分子量为4927g/mol,多分散指数P=2.8。
步骤2)中,低分子量含肟基的自具微孔聚合物AOPIM-1的制备方法为在步骤1)的基础上进行以下步骤:
D)将步骤C)得到的产物全部溶入装有430ml四氢呋喃的三颈烧瓶中,随后在N2氛围下用磁力搅拌溶解;
E)将72ml的羟胺溶液(浓度为50wt.%水溶液)逐滴加入步骤D)的混合物溶液中,然后将反应液转移到65℃的油浴锅中回流8~12h;
F)将步骤E)得到的反应液倒入乙醇和水等体积的混合液中,得到沉淀物,然后过滤洗涤,得低分子量的功能化的自具微孔聚合物。
实施例2
一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,本实施例中所述纳滤膜由实施例1中制得的低分子量自具微孔聚合物AOPIM-1通过与含酰氯化合物反应得到。含酰氯化合物为均苯三甲酰氯(TMC)。
其制备方法,包括以下步骤:
1)将肟基功能化的自具微孔聚合物AOPIM-1加去离子水混合得水相溶液;其中,AOPIM-1的体积浓度为0.2%(g/ml)(此处是指100ml去离子水中含有200mgAOPIM-1,下同);
2)将含酰氯化合物(TMC)与正己烷混合得油相溶液;其中,TMC的体积浓度为0.05%(g/ml);
3)将步骤2)的油相溶液浇铸在步骤1)的水相溶液反应3min,在水油界面处形成自支撑薄膜,控制水相和油相体积比为1:1;
4)将步骤3)得到的自支撑薄膜转移到多孔载体聚丙烯腈超滤膜上,70℃热处理3min即得超薄有机溶剂纳滤膜。
实施例3
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤3)中,反应1min,其余同实施例2。
实施例4
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤3)中,反应5min,其余同实施例2。
实施例5
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤1)中,AOPIM-1的加入质量(g)为水相溶液体积(ml)的0.1%,其余同实施例2。
实施例6
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤1)中,AOPIM-1的加入质量(g)为水相溶液体积(ml)的0.3%,其余同实施例2。
实施例7
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤4)中,70℃热处理2min,其余同实施例2。
实施例8
本实施例中的一种低分子量自具微孔聚合物用于界面聚合制备超薄有机溶剂纳滤膜,与实施例2不同之处在于:步骤4)中,70℃热处理4min,其余同实施例2。
对比例1
本对比例提供一种PIP-TMC膜,其制备方法同实施例2,与实施例2不同之处在于:采用哌嗪(PIP)替代肟基功能化的自具微孔聚合物AOPIM-1,其他皆同实施例2。
性能测试
1、对实施例2的膜进行电镜测试,结果如图3所示,同时,图3还给出了自支撑膜转移至商业超滤膜的照片。
2、稳定性测试:测定所述有机溶剂纳滤膜在有机溶剂中的稳定性测试。具体的,将水油界面处形成的自支撑膜转移至装有不同溶剂(水、丙酮、甲醇、甲苯、正己烷)的容器中。经过14天的长时间浸泡后,情况如图4所示。
可以看出:经过14天长时间浸泡,自支撑膜在极性质子性溶剂(水和甲醇)、极性非质子性溶剂(丙酮)、非极性溶剂(正己烷)和芳香族溶剂(甲苯)中都能保持结构完整,表明薄膜在广泛的溶剂中具有优良的稳定性。
3、染料截留测试:将四种不同分子量的染料刚果红(Mw:696Da)、直接红(Mw:813Da)、活性黑(Mw:992Da)、玫瑰红(Mw:1017Da)溶入乙醇溶液中,浓度为20ppm。截留率是用紫外分光光度计测试膜截留前后的染料在乙醇中的吸光度来计算。
渗透测试:将膜用于有机溶剂渗透时,先采用0.4~0.6MPa的压力压膜,压膜时间为30~120min。目的在于减少实验误差,以获得稳定准确的实验结果。待溶剂渗透性稳定后,在操作压力为0.4MPa进行测试。
渗透测试采用的装置为死端压滤装置,有效过滤面积为3.14cm2
将膜放入测试装置中,在室温和0.4MPa条件下,利用甲醇、乙醇、正己烷、甲苯、四氢呋喃等纯溶剂在死端装置中进行溶剂渗透性测试。
本发明实施例2的膜对甲醇、乙醇、正己烷、甲苯、四氢呋喃的渗透性分别达到了31、15、27、7和9Lm-2h-1bar-1,其对染料刚果红、直接红、活性黑和玫瑰红的截留率分别为92%、95%、94.6%和95.2%。实施例3和4,探究了反应时间对膜渗透选择性能的影响,所制膜对甲醇的渗透性分别达到了49和17.65L m-2h-1bar-1,对玫瑰红的截留率分别为89%和96%。表明反应时间从1min延长到5min,渗透性降低,玫瑰红截留率提高。实施例5和6,探究了反应单体AOPIM-1浓度对膜渗透选择性的影响,所制膜对甲醇的渗透性分别达到了34.3和29.6L m-2h-1bar-1,对玫瑰红的截留率分别为94%和95%。表明AOPIM-1质量体积浓度的从1%到3%对膜渗透选择性影响不是很明显。实施例7和8,探究了热交联时间对膜渗透选择性的影响,所制膜对甲醇的渗透性分别达到了34.7和23.3L m-2h-1bar-1,对玫瑰红的截留率分别为92%和95%。表明热交联时间从2min增加至4min,膜的渗透性有所降低,截留率提升。
对比例1中PIP-TMC膜对甲醇的渗透性为2.1L m-2h-1bar-1,乙醇、正己烷、甲苯、四氢呋喃几乎无渗透性。可见,本发明的AOPIM-TMC膜具有较高的渗透性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种低分子量自具微孔聚合物,其特征在于,其结构式为:
Figure DEST_PATH_FDA0002868858890000011
其中,n为聚合度;
所述聚合物通过下述步骤获得:
1)先将四氟对苯二腈TFTPN和5,5',6,6'螺旋双茚满TTSBI在保护气氛下溶于二甲基乙酰胺DMAC中,完全溶解后再加入K2CO3混合,得到的混合液于25℃~60℃下反应10~30min;反应液倒入甲醇溶液中,所得沉淀清洗后经80℃~120℃真空干燥6~12h得PIM-1;
2)将步骤1)得到的PIM-1在保护气氛下溶于四氢呋喃中,加入羟胺溶液混合,于65℃~75℃油浴条件下回流反应8~20h;之后反应液倒入乙醇水溶液中,所得沉淀物经清洗即得所述低分子量自具微孔聚合物。
2.权利要求1所述低分子量自具微孔聚合物的制备方法,其特征在于,包括以下步骤:
1)先将四氟对苯二腈TFTPN和5,5',6,6'螺旋双茚满TTSBI在保护气氛下溶于二甲基乙酰胺DMAC中,完全溶解后再加入K2CO3混合,得到的混合液于25℃~60℃下反应10~30min;反应液倒入甲醇溶液中,所得沉淀清洗后经80℃~120℃真空干燥6~12h得PIM-1;
2)将步骤1)得到的PIM-1在保护气氛下溶于四氢呋喃中,加入羟胺溶液混合,于65℃~75℃油浴条件下回流反应8~20h;之后反应液倒入乙醇水溶液中,所得沉淀物经清洗即得所述低分子量自具微孔聚合物。
3.如权利要求2所述低分子量自具微孔聚合物的制备方法,其特征在于,步骤1)中,TFTPN、TTSBI和 K2CO3的物质的量比为1:1:3~3.5,溶剂DMAC的用量按照每克TFTPN采用10ml计;步骤2)中,PIM-1、四氢呋喃和羟胺溶液的用量比为:mPIM-1:vTHF:v羟胺 =1g:50~60ml:10ml。
4.一种利用权利要求1所述低分子量自具微孔聚合物进行界面聚合制备超薄有机溶剂纳滤膜的方法,其特征在于,以所述低分子量自具微孔聚合物与含酰氯化合物反应获得,所述含酰氯化合物选自对苯二甲酰氯、间苯二甲酰氯和均苯三甲酰氯中的一种或者两种以上的混合物。
5.如权利要求4所述的制备超薄有机溶剂纳滤膜的方法,其特征在于,包括以下步骤:
1)将低分子量自具微孔聚合物加水制得水相溶液,低分子量自具微孔聚合物的质量体积浓度为0.1%~1.5%;
2)将含酰氯化合物与有机溶剂混合得油相溶液,含酰氯化合物的质量体积浓度为0.02%~0.2%;
3)油相溶液与水相溶液反应,在水油界面处形成自支撑薄膜;
4)将得到的自支撑薄膜转移到多孔载体上,热处理后获得超薄有机溶剂纳滤膜。
6.如权利要求5所述的制备超薄有机溶剂纳滤膜的方法,其特征在于,步骤1)中所述水为去离子水,步骤2)中所述有机溶剂为正己烷。
7.如权利要求5所述的制备超薄有机溶剂纳滤膜的方法,其特征在于,步骤3)中,反应时间为0.5~10min。
8.如权利要求5所述的制备超薄有机溶剂纳滤膜的方法,其特征在于,步骤4)中,热处理的温度为60~80℃,热处理时间为2~5min。
9.权利要求4-8任一所述方法获得的超薄有机溶剂纳滤膜。
CN202011590486.0A 2020-12-29 2020-12-29 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法 Active CN112851690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011590486.0A CN112851690B (zh) 2020-12-29 2020-12-29 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011590486.0A CN112851690B (zh) 2020-12-29 2020-12-29 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112851690A CN112851690A (zh) 2021-05-28
CN112851690B true CN112851690B (zh) 2021-12-31

Family

ID=75998087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011590486.0A Active CN112851690B (zh) 2020-12-29 2020-12-29 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112851690B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070022B (zh) * 2021-03-22 2023-02-17 齐齐哈尔大学 一种可批量循环式超薄膜展开制备装置
CN113578068B (zh) * 2021-08-19 2024-04-09 郑州大学 新型C2NxO1-x/PIM-1混合基质膜及其制备方法和应用
CN114149580B (zh) * 2022-01-12 2022-09-16 吉林大学 一种刚性扭曲微孔聚合物-磺化聚醚砜多孔复合膜及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076194A (ko) * 2012-12-12 2014-06-20 한국과학기술원 아미독심 미소공성 고분자 및 그 제조방법
WO2019006045A1 (en) * 2017-06-27 2019-01-03 Georgia Tech Research Corporation COMPOSITIONS AND METHODS FOR MEMBRANE SEPARATION OF ACIDIC GAS FROM HYDROCARBON GAS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140076194A (ko) * 2012-12-12 2014-06-20 한국과학기술원 아미독심 미소공성 고분자 및 그 제조방법
WO2019006045A1 (en) * 2017-06-27 2019-01-03 Georgia Tech Research Corporation COMPOSITIONS AND METHODS FOR MEMBRANE SEPARATION OF ACIDIC GAS FROM HYDROCARBON GAS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Effects of functionalization on the nanofiltration performance of PIM-1: Molecular simulation investigation;Qisong Xu,等;《Journal of Membrane Science》;20190807;第591卷;第1-9页 *
Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups;Jie Gao,等;《Chemical Engineering Journal》;20180724;第353卷;第689-698页 *
高性能自具微孔聚合物气体分离膜的设计与性能研究;沈钦;《郑州大学硕士学位论文》;20190815;第31,32,35页 *

Also Published As

Publication number Publication date
CN112851690A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN112851690B (zh) 低分子量自具微孔聚合物、制备方法与超薄有机溶剂纳滤膜及其制备方法
Pusch et al. Synthetic membranes—preparation, structure, and application
Kim et al. Preparation, characterization and performance of poly (aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination
KR101434770B1 (ko) 다공성 실리콘 성형체의 제조 방법
Mansourpanah et al. Changing the performance and morphology of polyethersulfone/polyimide blend nanofiltration membranes using trimethylamine
Mohamed et al. Structure–property relationships for novel wholly aromatic polyamide–hydrazides containing various proportions of para-phenylene and meta-phenylene units III. Preparation and properties of semi-permeable membranes for water desalination by reverse osmosis separation performance
KR20030032652A (ko) 실리콘이 함유된 내유기용매성 폴리아미드 나노복합막과이의 제조방법
Nagase et al. Syntheses of siloxane-grafted aromatic polymers and the application to pervaporation membrane
Mao et al. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation
CN105642137B (zh) 一种反渗透膜、制备方法及其应用
Vatanpour et al. Polybenzoxazines in fabrication of separation membranes: A review
US4728431A (en) Pervaporation method for separating liquids in mixture
CN105636678A (zh) 用于膜蒸馏的热重排聚(苯并*唑-酰亚胺)共聚物分离膜及其制造方法
Wang et al. Highly porous ultrathin polyamide membranes for fast separation of small molecules from organic solvents
US20130206694A1 (en) Membrane for water purification
CN113461912B (zh) 多环芳族骨架聚合物及其制备方法和应用
JPS643134B2 (zh)
CN102174199A (zh) 含侧基的聚醚砜及其制备方法和在气体分离膜中的应用
CN114642975B (zh) 一种金属-有机骨架混合基质膜及其制备方法及应用
Chen et al. Highly stable polysulfone solvent resistant nanofiltration membranes with internal cross-linking networks
CN109925897B (zh) 一种磺酸基官能化改性的芳香族桥架有机硅杂化膜的制备方法及应用
US20130327701A1 (en) Separation membrane and water treatment device including a separation membrane
JP5155255B2 (ja) シロキサン官能性環状オレフィン(共)重合体の非対称膜及びその製造方法
Guan et al. Construction of dual-functional membrane with novel structured β-cyclodextrin hybridization for simultaneous oily wastewater separation and hazardous aromatics removal
Reid et al. Enhanced gas selectivity in thin film composite membranes of poly (3-(2-acetoxyethyl) thiophene)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant