CN112846199A - 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法 - Google Patents

利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法 Download PDF

Info

Publication number
CN112846199A
CN112846199A CN202110025521.2A CN202110025521A CN112846199A CN 112846199 A CN112846199 A CN 112846199A CN 202110025521 A CN202110025521 A CN 202110025521A CN 112846199 A CN112846199 A CN 112846199A
Authority
CN
China
Prior art keywords
bismuth
heating
freezing
grinding
alkene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110025521.2A
Other languages
English (en)
Other versions
CN112846199B (zh
Inventor
袁鹏
申凤鸽
陈玉明
张应花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Medical University
Original Assignee
Xinxiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Medical University filed Critical Xinxiang Medical University
Priority to CN202110025521.2A priority Critical patent/CN112846199B/zh
Publication of CN112846199A publication Critical patent/CN112846199A/zh
Application granted granted Critical
Publication of CN112846199B publication Critical patent/CN112846199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/03Treatment under cryogenic or supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/17Treatment under specific physical conditions use of centrifugal or vortex forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种利用加热‑冷冻‑研磨‑超声制备超薄铋烯纳米片的方法,适用于制备少层铋烯纳米片。所述方法包括以下步骤:(1)取铋粉加入研钵,150‑180℃加热;(2)冷冻研钵中研磨;(3)重复步骤(1)和(2);(4)称取步骤(3)处理后的铋粉,加入乙醇,配制浓度为10mg/mL的混悬液;(5)探针超声30min,每超声3s,间歇3s,功率300W;(6)水浴超声300min,功率400‑600W;(7)5000rpm离心10min,收集上清液,即为铋烯纳米片分散液。本发明采用加热‑冷冻‑研磨‑超声法制备铋烯纳米片,制备方法简单,可以制备超薄铋烯纳米片。

Description

利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法
技术领域
本发明涉及二维纳米材料制备技术领域,具体涉及一种利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法。
背景技术
自从Novoselov等人在2004年成功使用胶带法从石墨中剥离石墨烯以来,石墨烯和石墨烯样二维纳米材料出现快速发展。近年来,二维纳米材料因其独特、优异的化学和物理性能,使其在储能和转化装置、催化、传感器、生物医学和环境保护等领域得到了广泛的应用。除石墨烯系列外,二硫化钼、二硫化钨、磷烯、砷烯、锑烯、铋烯等一系列二维纳米材料相继被发现和制备。由于金属铋储量丰富,在常温空气中稳定,并且毒性小,生物相容性强,因此二维材料铋烯有着广阔的应用前景,特别是在生物医学领域。
到目前为止,铋烯的制备方法主要是液相超声剥离法,及在有机溶剂中通过长时间的超声剥离获得。液相超声剥离法能制备出高晶体质量的铋烯纳米片,但是现有制备铋烯纳米片的方法中,超声时间过长,并且制备出的纳米片厚度较厚。
发明内容
鉴于现有技术中存在的问题,本发明目的在于克服现有技术的不足,提出一种基于加热-冷冻-研磨-超声制备超薄铋烯纳米片及其制备方法。
本发明的技术方案是利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法,采用加热-冷冻-研磨-超声制备,具体步骤如下:
(1)取铋粉加入研钵,150-180℃加热;
(2)冷冻研钵中铋粉,研磨;
(3)重复步骤(1)和(2);
(4)称取步骤(3)处理后的铋粉,加入乙醇,配制成混悬液;
(5)探针间歇超声;
(6)水浴超声;
(7)离心,收集上清液,即为铋烯纳米片分散液。
进一步,研钵中加入液氮作为冷冻剂。
进一步,加热-冷冻-研磨重复次数为5-10次。
进一步,混悬液的浓度为10mg/mL。
进一步,探针超声30min,每超声3s,间歇3s,功率为300W。
进一步,水浴超声300min,功率400-600W。
进一步,其特征在于,离心转速5000rpm,时间10min。
进一步,其特征在于,重复次数的增多,铋烯纳米片横向尺寸变小,厚度变薄
本发明的第二个技术方案是采用前述制备方法制得的铋烯纳米片,所述纳米片的横向尺寸在50nm以下,所述纳米片的厚度在2nm以下。
有益效果:
本发明制备铋烯纳米片的方法采用的是“自上而下”的策略,能制备出超薄纳米片,且操作简单。
附图说明
图1为实施例1(A)和实施例2(B)所制备的铋烯纳米片的的透射电子显微镜图片。
图2为实施例1(A)和实施例2(B)所制备的铋烯纳米片的原子原子力显微镜图片。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述。
实施例1
取5g铋粉加入研钵,在150-180℃温箱加热5min,然后在研钵中加入液氮研磨5min,重复加热-冷冻-研磨步骤5次。称取以上步骤处理后的铋粉1g,加入100mL乙醇,配制成浓度为10mg/mL的混悬液。探针超声30min,每超声3s,间歇3s,功率为300W。然后水浴超声300min,功率400W,最后室温5000rpm离心10min,收集上清液,即为铋烯纳米片分散液。
由图1A的透射电子显微镜图片可知,实施例1制得的铋烯纳米片横向尺寸为49.80±7.84nm,由图2A的原子力显微镜图像可知所制备的铋烯纳米片厚度约为1.91±0.30nm。
实施例2
取5g铋粉加入研钵,在150-180℃温箱加热5min,然后在研钵中加入液氮研磨5min,重复加热-冷冻-研磨步骤10次。称取以上步骤处理后的铋粉1g,加入100mL乙醇,配制成浓度为10mg/mL的混悬液。探针超声30min,每超声3s,间歇3s,功率为300W。然后水浴超声300min,功率400W,最后室温5000rpm离心10min,收集上清液,即为铋烯纳米片分散液。
由图1B的透射电子显微镜图片可知,实施例1制得的铋烯纳米片横向尺寸为26.80±5.39nm,由图2B的原子力显微镜图像可知所制备的铋烯纳米片厚度为1.52±0.29nm。
实施例1与实施例2的不同之处在于加热-冷冻-研磨重复的次数不同,从表征来看,随着重复次数的增多,铋烯纳米片横向尺寸变小,厚度变薄。本发明适用于制备超薄铋烯纳米片。

Claims (9)

1.利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法,其特征在于,采用加热-冷冻-研磨-超声制备,具体步骤如下:
(1)取铋粉加入研钵,150-180℃加热;
(2)冷冻研钵中铋粉,研磨;
(3)重复步骤(1)和(2);
(4)称取步骤(3)处理后的铋粉,加入乙醇,配制成混悬液;
(5)探针间歇超声;
(6)水浴超声;
(7)离心,收集上清液,即为铋烯纳米片分散液。
2.根据权利要求1所述的方法,其特征在于,研钵中加入液氮作为冷冻剂。
3.根据权利要求1所述的方法,其特征在于,加热-冷冻-研磨重复次数为5-10次。
4.根据权利要求1所述的方法,其特征在于,混悬液的浓度为10mg/mL。
5.根据权利要求1所述的方法,其特征在于,探针超声30min,每超声3s,间歇3s,功率为300W。
6.根据权利要求1所述的方法,其特征在于,水浴超声300min,功率400-600W。
7.根据权利要求1所述的方法,其特征在于,离心转速5000rpm,时间10min。
8.根据权利要求1所述的方法,其特征在于,重复次数的增多,铋烯纳米片横向尺寸变小,厚度变薄。
9.根据权利要求1-8中任一项所述的方法制得的铋烯纳米片,其特征在于,所述纳米片的横向尺寸在50nm以下,所述纳米片的厚度在2nm以下。
CN202110025521.2A 2021-01-08 2021-01-08 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法 Active CN112846199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110025521.2A CN112846199B (zh) 2021-01-08 2021-01-08 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110025521.2A CN112846199B (zh) 2021-01-08 2021-01-08 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法

Publications (2)

Publication Number Publication Date
CN112846199A true CN112846199A (zh) 2021-05-28
CN112846199B CN112846199B (zh) 2022-09-09

Family

ID=76005677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110025521.2A Active CN112846199B (zh) 2021-01-08 2021-01-08 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法

Country Status (1)

Country Link
CN (1) CN112846199B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147211A (zh) * 2021-12-07 2022-03-08 合肥工业大学 一种铜锡双金属烯纳米片及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386321A (zh) * 2011-10-19 2012-03-21 东华大学 一种纳米热电粉体材料的制备方法
US20120153240A1 (en) * 2010-12-20 2012-06-21 Aegis Technology, Inc Scalable nanostructured thermoelectric material with high zt
CN104070171A (zh) * 2014-06-12 2014-10-01 陕西斯瑞工业有限责任公司 一种超细铬粉的制备方法
CN106077677A (zh) * 2009-01-08 2016-11-09 通用电气公司 用冷冻研磨纳米粒状颗粒涂覆的方法
CN108145171A (zh) * 2017-12-26 2018-06-12 深圳大学 一种铋烯纳米片及其制备方法
CN108284220A (zh) * 2017-12-26 2018-07-17 深圳大学 一种铋烯纳米片及其制备方法
CN108515186A (zh) * 2018-05-15 2018-09-11 中国工程物理研究院化工材料研究所 表面活性剂辅助的铋烯、锑烯、黑磷的液相超声剥离方法
US20190284663A1 (en) * 2018-03-13 2019-09-19 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Preparation method and use of thickness-controllable bismuth nanosheet and bismuth alloy nanosheet
CN110982900A (zh) * 2019-12-13 2020-04-10 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
CN112091224A (zh) * 2020-11-11 2020-12-18 西安斯瑞先进铜合金科技有限公司 一种超低温研磨制备金属铬粉的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077677A (zh) * 2009-01-08 2016-11-09 通用电气公司 用冷冻研磨纳米粒状颗粒涂覆的方法
US20120153240A1 (en) * 2010-12-20 2012-06-21 Aegis Technology, Inc Scalable nanostructured thermoelectric material with high zt
CN102386321A (zh) * 2011-10-19 2012-03-21 东华大学 一种纳米热电粉体材料的制备方法
CN104070171A (zh) * 2014-06-12 2014-10-01 陕西斯瑞工业有限责任公司 一种超细铬粉的制备方法
CN108145171A (zh) * 2017-12-26 2018-06-12 深圳大学 一种铋烯纳米片及其制备方法
CN108284220A (zh) * 2017-12-26 2018-07-17 深圳大学 一种铋烯纳米片及其制备方法
WO2019128245A1 (zh) * 2017-12-26 2019-07-04 深圳大学 一种铋烯纳米片及其制备方法
US20190284663A1 (en) * 2018-03-13 2019-09-19 Changchun Institute Of Applied Chemistry Chinese Academy Of Sciences Preparation method and use of thickness-controllable bismuth nanosheet and bismuth alloy nanosheet
CN108515186A (zh) * 2018-05-15 2018-09-11 中国工程物理研究院化工材料研究所 表面活性剂辅助的铋烯、锑烯、黑磷的液相超声剥离方法
CN110982900A (zh) * 2019-12-13 2020-04-10 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
CN112091224A (zh) * 2020-11-11 2020-12-18 西安斯瑞先进铜合金科技有限公司 一种超低温研磨制备金属铬粉的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YUEMEI WANG等: "Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine", 《ADVANCED FUNCTIONAL MATERIALS》 *
佘媛媛等: "低温液相法制备硫化铋纳米材料的研究进展", 《广东化工》 *
李倩茹等: "超声合成法制备BiOCl纳米片及其表征研究", 《信息记录材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114147211A (zh) * 2021-12-07 2022-03-08 合肥工业大学 一种铜锡双金属烯纳米片及其制备方法
CN114147211B (zh) * 2021-12-07 2024-01-30 合肥工业大学 一种铜锡双金属烯纳米片及其制备方法

Also Published As

Publication number Publication date
CN112846199B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Muraliganth et al. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries
CN108698849B (zh) 通过在悬浮的非负载型石墨烯纳米片上生长氧化锌纳米棒或微米棒获得的石墨烯基复合纳米结构的生产
Zehtab Yazdi et al. Helical and dendritic unzipping of carbon nanotubes: a route to nitrogen-doped graphene nanoribbons
Yang et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application
Liu et al. Three-dimensional bicontinuous graphene monolith from polymer templates
Li et al. Electrochemically active MnO2/RGO nanocomposites using Mn powder as the reducing agent of GO and the MnO2 precursor
CN109136967B (zh) 一种用于海水制氢的二硫化钼/泡沫镍电催化复合电极及其溶剂回流制备方法
CN110234601A (zh) 高品质石墨烯和通过氧化石墨烯的微波还原生产其的方法
Zhu et al. Space-confined synthesis of three-dimensional boron/nitrogen-doped carbon nanotubes/carbon nanosheets line-in-wall hybrids and their electrochemical energy storage applications
CN104085881B (zh) 一种制备三维石墨烯的方法
Sun et al. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine
Huang et al. Preparation of novel carbon-based nanomaterial of graphene and its applications electrochemistry
CN106744894B (zh) 一种石墨烯粉体的制备方法
Hussainova et al. A few-layered graphene on alumina nanofibers for electrochemical energy conversion
CN113629245B (zh) 一种碳材料与过渡金属化合物的新型复合方法、复合材料及应用
CN108772079A (zh) 一种纳米黑磷/石墨烯复合材料的制备方法
CN112846199B (zh) 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法
CN105621406A (zh) 氮掺杂多孔石墨烯及其制备方法
CN105977049A (zh) 一种碳化钼/石墨烯纳米带复合材料的制备方法
Bonab et al. Assessment of the effect of electrophoretic deposition parameters on hydrogen storage performance of graphene oxide layer applied on nickel foam
CN114477252A (zh) 一种Al2O3纳米片的制备及其修饰方法
CN108899496A (zh) 石墨烯掺杂ws2制备方法及在锂/钠离子电池中的应用
CN110885079A (zh) 一种新型石墨烯—碳纳米管复合材料的制备方法
Jiang et al. A diatomite-derived N-doped carbon aerogel with 98% sulfur loading for the enhancement of Li–S battery performance
Li et al. Direct imaging of construction of carbon onions by curling few-layer graphene flakes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant