CN106077677A - 用冷冻研磨纳米粒状颗粒涂覆的方法 - Google Patents

用冷冻研磨纳米粒状颗粒涂覆的方法 Download PDF

Info

Publication number
CN106077677A
CN106077677A CN201610608432.XA CN201610608432A CN106077677A CN 106077677 A CN106077677 A CN 106077677A CN 201610608432 A CN201610608432 A CN 201610608432A CN 106077677 A CN106077677 A CN 106077677A
Authority
CN
China
Prior art keywords
mixture
substrate
oxide
freeze grinding
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610608432.XA
Other languages
English (en)
Other versions
CN106077677B (zh
Inventor
E·卡拉
K·阿南德
P·R·苏布拉马尼安
S·K·森迪
R·奥鲁甘地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN106077677A publication Critical patent/CN106077677A/zh
Application granted granted Critical
Publication of CN106077677B publication Critical patent/CN106077677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种用冷冻研磨纳米粒状颗粒涂覆基材的方法(200)包括形成包含镍、钴、铬、钨和钼的面心立方γ基质(202),向γ基质加入分散强化物质(204)以形成第一混合物,冷冻研磨第一混合物(206)以形成第二混合物,从而形成纳米粒状结构,并将第二混合物冷喷到基材上(212),以形成具有纳米粒状结构的涂层。

Description

用冷冻研磨纳米粒状颗粒涂覆的方法
本申请是申请日2010年1月8日,申请号201010005271.8,发明名称为“用冷冻研磨纳米粒状颗粒涂覆的方法”的发明专利申请的分案申请。
技术领域
本发明涉及冷喷技术,更具体地讲,涉及冷喷冷冻研磨纳米粒状颗粒。
背景技术
冷喷技术通常用于对元件提供表面处理。在需要施加涂料而不需要加热等影响要涂覆元件和涂料之间粘合时利用冷喷技术。使颗粒粘合到基材所用的热的缺乏保证纳米粒状颗粒原料或粉末形成具有纳米粒状结构的涂层或沉积物。纳米粒状沉积物可用作涂层,或者从基材除去,并用作自由成型材料。
发明内容
根据本发明的一个示例性实施方案,用冷冻研磨纳米粒状颗粒涂覆基材的方法包括形成包含镍、钴、铬、钨和钼的面心立方γ基质,向γ基质加入分散强化物质以形成第一混合物,冷冻研磨第一混合物以形成第二混合物,从而形成纳米粒状结构,并将第二混合物冷喷到基材上,以形成具有纳米粒状结构的涂层。
更具体而言,本发明涉及以下[1]-[20]。
[1].一种用冷冻研磨纳米粒状颗粒涂覆基材的方法,所述方法包括:
形成包含镍、钴、铬、钨和钼的面心立方γ基质;
向γ基质加入分散强化物质,以形成第一混合物;
冷冻研磨第一混合物,以形成第二混合物,第二混合物具有纳米粒状结构;并且
将第二混合物冷喷到基材上以形成涂层,涂层具有纳米粒状结构。
[2].[1]的方法,其中形成γ基质进一步包括加入铝和钛的至少一种。
[3].[1]的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少一种加入到γ基质。
[4].[3]的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少两种加入到γ基质。
[5].[1]的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬加入到γ基质。
[6].[1]的方法,所述方法进一步包括将碳加入到第一混合物。
[7].[1]的方法,所述方法进一步包括从基材除去涂层,所述涂层形成物体的最终形状。
[8].[7]的方法,所述方法进一步包括将物体的最终形状加工成涡轮机元件。
[9].[1]的方法,其中加入分散强化物质包括将γ基质热处理形成γ′沉淀,以形成第一混合物。
[10].[1]的方法,其中形成γ基质包括混合约30-50%镍、约10-30%钴、4-10%钼、4-10%钨和10-30%铬。
[11].[10]的方法,其中形成γ基质进一步包括约0-6%铼、约0-6%铌、约0-6%钽、约0-5%铝和约0-5%钛的至少一种。
[12].[1]的方法,其中冷冻研磨第一混合物包括在包含液化惰性气体的冷冻研磨介质化学物质中冷冻研磨第一混合物。
[13].[12]的方法,其中液化惰性气体包含氩、氮和混有约5%重量氧的氩的至少一种。
[14].一种用于涡轮机的产品,所述产品通过包括以下步骤的方法制备:
形成包含镍、钴、铬、钨和钼的面心立方γ基质;
向γ基质加入分散强化物质,以形成第一混合物;
冷冻研磨第一混合物,以形成第二混合物,第二混合物具有纳米粒状结构;并且
将第二混合物冷喷到基材上以形成涂层,涂层具有纳米粒状结构。
[15].[14]的方法制备的产品,其中形成γ基质进一步包括加入铝和钛的至少一种。
[16].[14]的方法制备的产品,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少一种加入到γ基质。
[17].[14]的方法制备的产品,其中加入分散强化物质包括将γ基质热处理形成γ′沉淀,以形成第一混合物。
[18].[14]的方法制备的产品,其中冷冻研磨第一混合物包括在包含液化惰性气体的冷冻研磨介质化学物质中冷冻研磨第一混合物。
[19].[14]的方法制备的产品,其中形成γ基质包括混合约30-50%镍、约10-30%钴、约4-10%钼、约4-10%钨和约10-30%铬。
[20].[14]的方法制备的产品,其中形成γ基质进一步包括约0-6%铼、约0-6%铌、约0-6%钽、约0-5%铝和约0-5%钛的至少一种。
附图说明
图1为显示根据本发明的示例性实施方案冷喷冷冻研磨纳米粒状物质的方法的流程图。
图解
具体实施方式
本发明的示例性实施方案涉及图1中所示的冷喷冷冻研磨纳米粒状物质的方法200。将冷冻研磨纳米粒状物质原料冷喷到基材以形成涂层或随后制品在不加热下完成。保持低温保证原料的结构性质保持基本不变。更具体地讲,原料的低温和高应用速度造成较低飞行中时间(in-flight time)和无飞行中氧化(in-flight oxidation),产生具有原料纳米粒状结构的涂层和/或制品。
最初如方框202中所示形成γ基质。γ或奥氏体基质包含多种成分,这些成分形成冷喷成涂层和/或最终制品的原料的基础。根据示例性实施方案,γ基质包含约30%重量至50%重量镍(Ni)、约10%重量至30%重量钴(Co)、约10%重量至30%重量铬(Cr)、约4%重量至10%重量钼(Mo)和钨(W)、约0%重量至6%重量铼(Re)、约0%重量至5%重量铝(Al)、约0%重量至5%重量钛(Ti)和约0%重量至6%重量铌(Nb)和钽(Ta)。
以上所列成分形成镍基面心立方(fcc)基质。镍基fcc结构提供固有的延性。另外,镍基结构提供对高温应用具有较低扩散系数的紧密堆积晶体结构。包含钴提供耐热腐蚀性,铬提供抗氧化性,钼、钨和铼提供固溶体强化,并增加抗蠕变强度,铝、钛、铌和钽提供形成内聚和有序沉淀作为强化剂的可能性。
除了上述强化剂外,将分散强化颗粒加入到γ基质,以形成第一或基础混合物,如方框204所示。更具体地讲,通过加入硬碳化物或氧化物相物质,如碳化钨(WC)、碳化铬(CrC)、氧化铝、氧化钇和/或氧化铪,可使γ基质强化。分散强化颗粒作为位错的强阻碍物(材料中塑性应变的载体),并使强度跨宽范围温度显著增加。另外或作为选择,通过使γ基质经过热处理过程形成跨宽范围温度提供增加强度的内聚和有序γ′(gamma-prime)(γ′)沉淀,形成第一混合物。强度增加由硬碳化物相分散体或氧化物相分散体、γ′的沉淀或其组合产生。
根据本发明的另一个示例性实施方案,将第一混合物冷冻研磨形成纳米粒状结构,如方框206所示。根据示例性实施方案的一个方面,冷冻研磨介质化学物质包括液化惰性气体,如氩(Ar)和/或氮(N),或气体混合物,如氩与约5%重量氧(O2)混合。在冷冻研磨期间加入分散剂成分(例如碳(C)),如方框208所示。固溶体中的碳致使沉淀强化碳化物,这可在本体或在晶粒间界中形成。更具体地讲,在冷冻研磨的同时控制冷冻研磨介质化学物质和碳的分散产生固有分散碳化物、氮化物、碳-氮化物、氧-碳-氮化物等。通过在冷冻研磨介质化学物质中加入少量氧,或者从第一混合物成分中存在的氧,可生成氧化物。在任何情况下,继续冷冻研磨,直到得到纳米粒状,并形成第二或原料混合物,如方框210所示。
根据本发明的另一个方面,通过在γ基质中γ′沉淀可形成第一混合物,然后冷冻研磨,以产生具有纳米粒状结构的第二混合物或原料。通过加入硬碳化物或氧化物相分散体,可得到另外强化。所加分散体可单独产生为纳米粒状或微米粒状,或者与第一混合物一起冷冻研磨。
一旦形成,就将原料冷喷到基材上,以形成最终形状(netshape),如方框212所示。冷喷包括迫使原料和气体通过喷嘴,根据所需应用,喷嘴表现会聚/发散喷嘴或非会聚/发散喷嘴形式。喷嘴使气体和原料加速到适用于输送到基材上的极高速度。气体迫使粉末以一般800m/s至900m/s的速度达到基材上。高速输送迫使粉末或涂料粘合到基材,并形成涂层。当然,应了解,根据所需粘合性质,输送速度可改变到低于800m/s和高于900m/s的水平。
一旦形成,就从基材除去涂层,如方框214所示,将最终形状加工成最终制品,如方框216所示。当然,应了解,可用纳米粒状结构材料作为涂层,或者可用涂层/基材作为自立材料,或者为自由形状用作或待制造用于工业元件或部件。通过用冷喷方法将纳米粒状结构原料引到基材,任何得到的制品自身具有具备所有相关物质性质的纳米粒状结构。根据本发明的一个方面,用上述方法制造用于涡轮机的产品,如桶(bucket)、叶片(blade)、机壳等。
一般而言,本书面说明用实例公开本发明,包括最佳方式,也用实例使本领域的技术人员能够实施本发明,包括制造和使用任何装置或系统并施行任何结合方法。本发明的可专利范围由权利要求限定,并且包括本领域的技术人员可想到的其他实例。这些其他实例旨在本发明的示例性实施方案的范围内,如果它们具有不有别于权利要求字面语言的结构元素,或者如果它们包括与权利要求字面语言无实质差异的相当结构元素。

Claims (20)

1.一种用冷冻研磨纳米粒状颗粒涂覆基材的方法,所述方法包括:
形成包含镍、钴、铬、钨和钼的面心立方γ基质;
向γ基质加入分散强化物质,以形成第一混合物;
冷冻研磨第一混合物,以形成具有固有分散的碳化物、氮化物、碳-氮化物、氧-碳-氮化物和氧化物的第二混合物,第二混合物具有纳米粒状结构;并且
将第二混合物以800m/s至900m/s的速度冷喷到基材上以形成涂层,涂层具有纳米粒状结构。
2.权利要求1的方法,其中形成γ基质进一步包括加入铝和钛的至少一种。
3.权利要求1的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少一种加入到γ基质。
4.权利要求3的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少两种加入到γ基质。
5.权利要求1的方法,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬加入到γ基质。
6.权利要求1的方法,所述方法进一步包括将碳加入到第一混合物。
7.权利要求1的方法,所述方法进一步包括从基材除去涂层,所述涂层形成物体的最终形状。
8.权利要求7的方法,所述方法进一步包括将物体的最终形状加工成涡轮机元件。
9.权利要求1的方法,其中加入分散强化物质包括将γ基质热处理形成γ'沉淀,以形成第一混合物。
10.权利要求1的方法,其中形成γ基质包括混合约30-50%镍、约10-30%钴、4-10%钼、4-10%钨和10-30%铬。
11.权利要求10的方法,其中形成γ基质进一步包括约0-6%铼、约0-6%铌、约0-6%钽、约0-5%铝和约0-5%钛的至少一种。
12.权利要求1的方法,其中冷冻研磨第一混合物包括在包含液化惰性气体的冷冻研磨介质化学物质中冷冻研磨第一混合物。
13.权利要求12的方法,其中液化惰性气体包含氩、氮和混有约5%重量氧的氩的至少一种。
14.一种用于涡轮机的产品,所述产品通过包括以下步骤的方法制备:
形成包含镍、钴、铬、钨和钼的面心立方γ基质;
向γ基质加入分散强化物质,以形成第一混合物;
冷冻研磨第一混合物,以形成具有固有分散的碳化物、氮化物、碳-氮化物、氧-碳-氮化物和氧化物的第二混合物,第二混合物具有纳米粒状结构;并且
将第二混合物以800m/s至900m/s的速度冷喷到基材上以形成涂层,涂层具有纳米粒状结构。
15.权利要求14的方法制备的产品,其中形成γ基质进一步包括加入铝和钛的至少一种。
16.权利要求14的方法制备的产品,其中加入分散强化物质包括将氧化铝、氧化钇、氧化锆、氧化铪、碳化钨和碳化铬的至少一种加入到γ基质。
17.权利要求14的方法制备的产品,其中加入分散强化物质包括将γ基质热处理形成γ'沉淀,以形成第一混合物。
18.权利要求14的方法制备的产品,其中冷冻研磨第一混合物包括在包含液化惰性气体的冷冻研磨介质化学物质中冷冻研磨第一混合物。
19.权利要求14的方法制备的产品,其中形成γ基质包括混合约30-50%镍、约10-30%钴、约4-10%钼、约4-10%钨和约10-30%铬。
20.权利要求14的方法制备的产品,其中形成γ基质进一步包括约0-6%铼、约0-6%铌、约0-6%钽、约0-5%铝和约0-5%钛的至少一种。
CN201610608432.XA 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法 Active CN106077677B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/350517 2009-01-08
US12/350,517 US8268237B2 (en) 2009-01-08 2009-01-08 Method of coating with cryo-milled nano-grained particles
CN201010005271A CN101851721A (zh) 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201010005271A Division CN101851721A (zh) 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法

Publications (2)

Publication Number Publication Date
CN106077677A true CN106077677A (zh) 2016-11-09
CN106077677B CN106077677B (zh) 2021-07-23

Family

ID=42173931

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610608432.XA Active CN106077677B (zh) 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法
CN201010005271A Pending CN101851721A (zh) 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201010005271A Pending CN101851721A (zh) 2009-01-08 2010-01-08 用冷冻研磨纳米粒状颗粒涂覆的方法

Country Status (3)

Country Link
US (1) US8268237B2 (zh)
EP (1) EP2206568B1 (zh)
CN (2) CN106077677B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923694A (zh) * 2019-12-09 2020-03-27 江西省科学院应用物理研究所 一种Cu-Fe原位合金箔材及其制备方法
CN110923693A (zh) * 2019-12-09 2020-03-27 江西省科学院应用物理研究所 一种冷喷涂工艺制备Cu-Fe合金的方法
CN111593226A (zh) * 2020-06-16 2020-08-28 江西省科学院应用物理研究所 一种石墨烯/铜复合材料及其制备方法
CN112846199A (zh) * 2021-01-08 2021-05-28 新乡医学院 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117144A1 (en) * 2005-05-05 2006-11-09 H.C. Starck Gmbh Method for coating a substrate surface and coated product
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
JP5377319B2 (ja) * 2006-11-07 2013-12-25 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 基材のコーティング方法及びコーティング製品
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
KR101739576B1 (ko) 2011-10-28 2017-05-25 삼성전자주식회사 반도체 나노결정-고분자 미분 복합체, 이의 제조방법 및 이를 포함하는 광전자 소자
US9598774B2 (en) * 2011-12-16 2017-03-21 General Electric Corporation Cold spray of nickel-base alloys
CN104070171B (zh) * 2014-06-12 2016-03-16 陕西斯瑞工业有限责任公司 一种超细铬粉的制备方法
CN104070172B (zh) * 2014-06-23 2016-05-18 陕西斯瑞工业有限责任公司 一种球形铬粉的制备方法
CN104233159A (zh) * 2014-09-12 2014-12-24 芜湖鼎瀚再制造技术有限公司 一种锻造模具的再制造工艺
CN104388878A (zh) * 2014-10-30 2015-03-04 安徽鼎恒再制造产业技术研究院有限公司 一种Ni60B-ZrO2-Mo纳米涂层及其制备方法
US10519552B2 (en) 2016-12-22 2019-12-31 United Technologies Corporation Deposited material structure with integrated component
US10907256B2 (en) 2016-12-22 2021-02-02 Raytheon Technologies Corporation Reinforcement of a deposited structure forming a metal matrix composite
US20180178331A1 (en) * 2016-12-22 2018-06-28 United Technologies Corporation Reinforcement of a deposited metallic structure using reinforcing particles
US10363634B2 (en) 2016-12-22 2019-07-30 United Technologies Corporation Deposited structure with integral cooling enhancement features
US10648084B2 (en) 2016-12-22 2020-05-12 United Technologies Corporation Material deposition to form a sheet structure
US10563310B2 (en) 2016-12-22 2020-02-18 United Technologies Corporation Multi-wall deposited thin sheet structure
CN109174388A (zh) * 2018-10-31 2019-01-11 江苏华兴电气科技有限公司 一种铅酸蓄电池极板用铅粉制备装置
US20210106729A1 (en) * 2019-10-14 2021-04-15 Abbott Cardiovascular Systems, Inc. Methods for manufacturing radiopaque intraluminal stents comprising cobalt-based alloys with supersaturated tungsten content
CN113695572B (zh) * 2021-08-30 2022-03-11 广东工业大学 一种石墨烯基高熵合金材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864093A (en) * 1972-11-17 1975-02-04 Union Carbide Corp High-temperature, wear-resistant coating
US5316866A (en) * 1991-09-09 1994-05-31 General Electric Company Strengthened protective coatings for superalloys
US20070289490A1 (en) * 2004-10-05 2007-12-20 Rene Jabado Material Composition For Producing A Coating For A Component Made From A Metallic Base Material, And Coated Metallic Component

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692501A (en) * 1971-03-26 1972-09-19 Gen Electric Diffusion bonded superalloy article
US3769689A (en) * 1972-01-12 1973-11-06 Nasa Method of making pressure-tight seal for super alloy
US4124737A (en) * 1976-12-30 1978-11-07 Union Carbide Corporation High temperature wear resistant coating composition
US4528247A (en) * 1983-06-01 1985-07-09 Gte Products Corporation Strip of nickel-iron brazing alloys containing carbon and process
US4630692A (en) * 1984-07-23 1986-12-23 Cdp, Ltd. Consolidation of a drilling element from separate metallic components
GB2227190B (en) * 1989-01-24 1992-12-16 Refurbished Turbine Components Turbine blade repair
DE3918380A1 (de) * 1989-06-06 1990-12-20 Starck Hermann C Fa Hochtemperatur-verbund-werkstoff, verfahren zu seiner herstellung sowie dessen verwendung
DE69016433T2 (de) * 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
US5181728A (en) * 1991-09-23 1993-01-26 General Electric Company Trenched brush seal
US6186508B1 (en) * 1996-11-27 2001-02-13 United Technologies Corporation Wear resistant coating for brush seal applications
KR20010031460A (ko) * 1997-10-27 2001-04-16 랭크 크리스토퍼 제이 복수의 단결정 주물 초합금 세그먼트들로 만들어진터빈블레이드
US6244599B1 (en) * 1999-04-28 2001-06-12 Flowserve Management Company Floating brush seal
US6491208B2 (en) * 2000-12-05 2002-12-10 Siemens Westinghouse Power Corporation Cold spray repair process
DE60040297D1 (de) 2000-12-18 2008-10-30 Alstom Technology Ltd Verfahren zur Behandlung einer Haftschicht auf einem Bauteil
US6908288B2 (en) * 2001-10-31 2005-06-21 General Electric Company Repair of advanced gas turbine blades
GB0201666D0 (en) * 2002-01-25 2002-03-13 Cross Mfg 1938 Company Ltd A brush seal element
US6968990B2 (en) * 2003-01-23 2005-11-29 General Electric Company Fabrication and utilization of metallic powder prepared without melting
US7344675B2 (en) * 2003-03-12 2008-03-18 The Boeing Company Method for preparing nanostructured metal alloys having increased nitride content
US7543764B2 (en) 2003-03-28 2009-06-09 United Technologies Corporation Cold spray nozzle design
US7165712B2 (en) * 2003-10-23 2007-01-23 Siemens Power Generation, Inc. Transient liquid phase bonding to cold-worked surfaces
WO2005079209A2 (en) * 2003-11-26 2005-09-01 The Regents Of The University Of California Nanocrystalline material layers using cold spray
GB0327552D0 (en) * 2003-11-27 2003-12-31 Rolls Royce Plc A method of fabricating or repairing an assembly
US6827969B1 (en) * 2003-12-12 2004-12-07 General Electric Company Field repairable high temperature smooth wear coating
US20050133121A1 (en) * 2003-12-22 2005-06-23 General Electric Company Metallic alloy nanocomposite for high-temperature structural components and methods of making
US20100327535A1 (en) * 2004-03-16 2010-12-30 General Electric Company Fiber seal for ceramic matrix composite components
US6905728B1 (en) * 2004-03-22 2005-06-14 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components
US7316057B2 (en) * 2004-10-08 2008-01-08 Siemens Power Generation, Inc. Method of manufacturing a rotating apparatus disk
US7150091B2 (en) * 2004-11-09 2006-12-19 General Electric Company Powder coating for generator stator bar end fitting and method for applying the powder coating
JP3784404B1 (ja) * 2004-11-24 2006-06-14 株式会社神戸製鋼所 溶射ノズル装置およびそれを用いた溶射装置
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
US7393559B2 (en) * 2005-02-01 2008-07-01 The Regents Of The University Of California Methods for production of FGM net shaped body for various applications
US20070116890A1 (en) * 2005-11-21 2007-05-24 Honeywell International, Inc. Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
EP1806429B1 (de) 2006-01-10 2008-07-09 Siemens Aktiengesellschaft Kaltspritzanlage und Kaltspritzverfahren mit moduliertem Gasstrom
JP5147037B2 (ja) * 2006-04-14 2013-02-20 三菱マテリアル株式会社 ガスタービン燃焼器用Ni基耐熱合金
US20080099538A1 (en) * 2006-10-27 2008-05-01 United Technologies Corporation & Pratt & Whitney Canada Corp. Braze pre-placement using cold spray deposition
US8618440B2 (en) * 2007-01-04 2013-12-31 Siemens Energy, Inc. Sprayed weld strip for improved weldability
EP1952915A1 (en) * 2007-01-23 2008-08-06 General Electric Company Nanostructured superalloy structural components and methods of making
US8147982B2 (en) 2007-12-19 2012-04-03 United Technologies Corporation Porous protective coating for turbine engine components
US20090256010A1 (en) * 2008-04-14 2009-10-15 Honeywell International Inc. Cold gas-dynamic spray nozzle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864093A (en) * 1972-11-17 1975-02-04 Union Carbide Corp High-temperature, wear-resistant coating
US5316866A (en) * 1991-09-09 1994-05-31 General Electric Company Strengthened protective coatings for superalloys
US20070289490A1 (en) * 2004-10-05 2007-12-20 Rene Jabado Material Composition For Producing A Coating For A Component Made From A Metallic Base Material, And Coated Metallic Component

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
关乐丁等: "冷气动力喷涂技术制备涂层的研究进展", 《材料导报》 *
朱屯等: "《国外纳米材料技术进展与应用》", 30 June 2002, 化学工业出版社 *
苏贤涌等: "冷喷涂技术的研究进展", 《表面技术》 *
陈振华: "《现代粉末冶金技术》", 30 September 2007, 化学工业出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923694A (zh) * 2019-12-09 2020-03-27 江西省科学院应用物理研究所 一种Cu-Fe原位合金箔材及其制备方法
CN110923693A (zh) * 2019-12-09 2020-03-27 江西省科学院应用物理研究所 一种冷喷涂工艺制备Cu-Fe合金的方法
CN110923693B (zh) * 2019-12-09 2022-04-05 江西省科学院应用物理研究所 一种冷喷涂工艺制备Cu-Fe合金的方法
CN111593226A (zh) * 2020-06-16 2020-08-28 江西省科学院应用物理研究所 一种石墨烯/铜复合材料及其制备方法
CN112846199A (zh) * 2021-01-08 2021-05-28 新乡医学院 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法

Also Published As

Publication number Publication date
EP2206568B1 (en) 2020-07-22
EP2206568A3 (en) 2017-05-03
CN106077677B (zh) 2021-07-23
CN101851721A (zh) 2010-10-06
EP2206568A2 (en) 2010-07-14
US8268237B2 (en) 2012-09-18
US20100172789A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
CN106077677A (zh) 用冷冻研磨纳米粒状颗粒涂覆的方法
JP6093168B2 (ja) ニッケル基合金のコールドスプレー
US10428406B2 (en) Wear resistant and corrosion resistant cobalt-based alloy powders and applications thereof
CN103781929B (zh) 金属陶瓷粉末
Jiang et al. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control
CN102439184B (zh) 用于阀座垫板的镍基合金
CN102822256B (zh) 可磨耗组合物及其制造方法
US8551395B2 (en) Slurry-based manufacture of thin wall metal components
JP6904690B2 (ja) 被覆物品及び製造方法
TW200700567A (en) Method of preparing metal matrix composite and coating layer and bulk prepared by using the same
CN109396453B (zh) 一种弥散强化铝青铜球形粉的制备方法
CN106825988B (zh) 一种等离子弧堆焊用耐高温腐蚀及磨损钴基粉末
JP2013139634A (ja) コールドスプレープロセスによるボンドコートの施工並びに物品
WO2010115649A2 (en) Superalloy component and slurry composition
US20070098913A1 (en) Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals
JP2007291523A (ja) 溶射により形成されるコーティング及びその形成の方法
EP2339045B1 (en) Wear resistant device and process therefor
NO321957B1 (no) Beleggingspulver og fremgangsmate for fremstilling av dette
JP2009522443A (ja) 保護コーティングを製造するための合金組成物、その使用、適用方法、及び該組成物でコーティングされた超合金物品
Guisbiers et al. Effects of shape on the phase stability of nanoparticles
WO2019084446A1 (en) SYSTEMS AND METHODS OF ADDITIVE MANUFACTURE AND PRODUCTS MANUFACTURED THEREFROM
CN107429368A (zh) 耐腐蚀制品及其制造方法
Tao et al. Microhardness variation in heat-treated conventional and nanostructured NiCrC coatings prepared by HVAF spraying
US9561556B2 (en) Process for producing intermetallic wear-resistant layer for titanium materials
CN104768898A (zh) 立方氮化硼烧结体及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231227

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York State, USA

Patentee before: General Electric Co.

TR01 Transfer of patent right