WO2019128245A1 - 一种铋烯纳米片及其制备方法 - Google Patents

一种铋烯纳米片及其制备方法 Download PDF

Info

Publication number
WO2019128245A1
WO2019128245A1 PCT/CN2018/099563 CN2018099563W WO2019128245A1 WO 2019128245 A1 WO2019128245 A1 WO 2019128245A1 CN 2018099563 W CN2018099563 W CN 2018099563W WO 2019128245 A1 WO2019128245 A1 WO 2019128245A1
Authority
WO
WIPO (PCT)
Prior art keywords
terpene
nanosheet
preparation
water bath
ultrasonic
Prior art date
Application number
PCT/CN2018/099563
Other languages
English (en)
French (fr)
Inventor
张晗
黄浩
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019128245A1 publication Critical patent/WO2019128245A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the field of two-dimensional materials, in particular to a terpene nanosheet and a preparation method thereof.
  • Two-dimensional materials refer to materials that can move freely (planar motion) on two non-nanoscales (1-100 nm), such as nanofilms.
  • black phosphorus (phosphene) phosphene
  • silene terpene
  • decene boron nitride
  • molybdenum disulfide molybdenum disulfide
  • Bismuthene is a two-dimensional material that is stripped from a bulk metal tantalum and has a graphene-like structure.
  • the terpene is a direct bandgap semiconductor with a 0.306 eV energy gap (the bottom of the conduction band and the top of the valence band are at the same position), and can be directly coupled with light, and has a wide absorption spectrum.
  • terpene due to its high biocompatibility and low biotoxicity, terpene has broad application potential in optics, electricity, biomedicine and other fields.
  • the two-dimensional terpene sheet structure is a potential biomedical base material in the fields of biopharmaceutical, photothermal, photodynamic therapy and the like.
  • a sheet of terpene material is prepared by a mechanical peeling method (such as a transparent tape tearing method), a chemical vapor deposition method, or the like.
  • the sheet-like terpene material prepared by the mechanical exfoliation method has a low yield, is not suitable for commercial production, and is cumbersome and time consuming to operate; and the amount of terpene prepared by chemical vapor deposition is small and difficult to repeat.
  • the present invention provides a terpene nanosheet and a preparation method thereof, which combines ultrasonication of a probe with ultrasonication of a water bath to achieve separation of tantalum powder by synergistic action, and obtains good monodispersity and size.
  • the method has the advantages of simple and easy operation, good reproducibility, high yield or yield of the terpene nanosheets, and easy realization of low-cost industrial production.
  • the present invention provides a method for preparing a terpene nanosheet, comprising the steps of:
  • the first ultrasonic liquid is placed in a closed container, and the reaction is heated at a temperature of 140-200 ° C for 12-24 hours;
  • reaction liquid After the reaction is completed, it is cooled to room temperature, and the obtained reaction liquid is subjected to a second water bath sonication to obtain a second ultrasonic liquid; wherein, the power of the second water bath ultrasonic is 400-600 W;
  • the organic solvent comprises N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, tetrahydrofuran, absolute ethanol, methanol, isopropanol, One or more of chloroform and dichloromethane, but is not limited thereto.
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • acetone tetrahydrofuran
  • absolute ethanol absolute ethanol
  • methanol methanol
  • isopropanol isopropanol
  • chloroform and dichloromethane is not limited thereto.
  • the surface energy of the organic solvent used matches the surface energy of the two-dimensional layered terpene material, and there is a certain interaction between the two to balance the energy required to remove the tantalum powder.
  • the tantalum powder has a particle size of no more than 75 ⁇ m.
  • the particle size of the tantalum powder does not exceed 50 ⁇ m.
  • the power of the first water bath ultrasound may be 400W, 450W, 500W, 550W, 580W or 600W.
  • the power of the first water bath ultrasound is 420-600W.
  • the second bath is sonicated for a period of from 1 to 6 hours. Further optional is 1-3 hours.
  • the power of the second water bath ultrasound may be 400W, 450W, 500W, 550W, 580W or 600W.
  • the power of the second water bath ultrasound is 420-600W.
  • the power or time of the second water bath ultrasound may be the same or different than the power or time of the first water bath ultrasound.
  • the first water bath ultrasound and the second water bath ultrasound are performed in an ice bath condition at a temperature not exceeding 10 °C. It is preferably 0 to 10 ° C, and more preferably 4 to 10 ° C.
  • the ice bath condition means that the container containing the solution to be ultrasonicated is placed in another container (such as a beaker, a test tube) containing ice cubes during the ultrasonic process.
  • the first water bath sonication is carried out at a temperature of 5-10 °C.
  • the second water bath sonication is carried out at a temperature of 5-10 °C.
  • the temperature of the heating reaction is 165-200 °C.
  • the heating reaction time is 19-24 hours.
  • the heating reaction time is 19-24 hours.
  • the closed vessel is a high pressure reactor (for example, a polytetrafluoroethylene reactor) or a three-necked flask.
  • stirring is also performed during the heating reaction, wherein the stirring speed is 1000-2500 rpm.
  • the ultra-low speed centrifugation has a centrifugation time of 15-30 min. For example, 12, 15, 20, 25 or 30 min.
  • the ultra low speed centrifugation speed is 2000-3000 rpm.
  • the ultra-low speed centrifugation has a centrifugation time of 15-30 min. For example, 12, 15, 20, 25 or 30 min.
  • the low speed centrifugation speed is 6000-7000 rpm.
  • the precipitate obtained after the low-speed centrifugation (i.e., the terpene nanosheet) can be redispersed into the second solvent to obtain a solution containing the terpene nanosheet.
  • the second solvent comprises N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, tetrahydrofuran, absolute ethanol, methanol and isopropanol. One or more of them.
  • the first water bath ultrasonic wave of the bismuth powder dispersion is preliminarily pulverized by the ultrasonic vacuolar effect to partially dissolve the cerium powder into the organic solvent; the next solvothermal reaction can be carried out by means of the organic solvent at a high temperature.
  • the critical state activity at high temperature further breaks up the initially pulverized cerium powder into a large amount of decene into a sheet structure, and dissolves it into an organic solvent in a large amount; the last second bath ultrasonic wave can be peeled off.
  • the terpene layered material is further broken into smaller particles to obtain a terpene nanosheet, and further ensure that it does not agglomerate for subsequent centrifugal purification treatment.
  • the method for preparing a terpene nanosheet provided by the first aspect of the invention, the liquid phase stripping method combining water bath ultrasonic and solvothermal method, synergistically effecting the stripping of the tantalum powder, obtaining the terpene products of different scales, and then passing Centrifugation to obtain the desired size of the terpene nanosheets.
  • the method is simple and easy to operate, and has high yield. Compared with the current mechanical stripping method and chemical vapor deposition method, the method has obvious advantages, and can obtain a monodisperse terpene nanosheet with controllable size, which is easy to realize low cost. Industrial production. This lays the foundation for the application of terpene nanosheets in the biomedical field.
  • the present invention also provides a terpene nanosheet prepared by the above preparation method.
  • the terpene nanosheet has a thickness of 20 nm or less, and the terpene nanosheet has a lateral dimension of 100 nm to 10 ⁇ m.
  • the lateral dimension refers to the length or width of the terpene nanosheet.
  • the terpene nanosheet has a lateral dimension of 200 nm to 10 ⁇ m.
  • it is 300 nm, 500 nm, 800 nm, 1 ⁇ m, 2 ⁇ m, 5 ⁇ m, 8 ⁇ m or 10 ⁇ m.
  • the terpene nanosheet has a lateral dimension of 500 nm to 10 ⁇ m.
  • the terpene nanosheets have a lateral dimension of from 1 ⁇ m to 10 ⁇ m.
  • the terpene nanosheets have a thickness of 0.3-20 nm.
  • the terpene nanosheet comprises a layer of terpene or a plurality of layers of monoterpenes repeatedly stacked vertically in a plane direction thereof.
  • the terpene nanosheets have a thickness of from 1 to 64 atomic layers. That is, it is formed by stacking 1-64 layers of monolayer terpenes. The thickness of the terpene nanosheet is
  • the thickness of the terpene nanosheets is from 0.3 to 15 nm.
  • the terpene nanosheets are formed by stacking 1 to 10 layers of terpenes.
  • the terpene nanosheets have a thickness of 0.3 to 3 nm.
  • the shape of the terpene nanosheets includes, but is not limited to, a square, a circle, a triangle, a polygon, and the like.
  • the terpene nanosheets provided by the invention have a relatively regular shape, uniform size, good dispersibility and less toxicity, and are convenient for use in the fields of preparation of optical, electrical, biological medicine (for example, preparation of photothermal therapeutic drugs, optical labeling drugs) and the like. .
  • SEM scanning electron microscope
  • AFM atomic force microscopy
  • FIG. 4 is a graph showing the ultraviolet-visible-near-infrared absorption spectrum of a terpene nanosheet prepared in an example of the present invention in an NMP solvent.
  • a method for preparing a terpene nanosheet comprising the steps of:
  • the obtained first ultrasonic liquid was transferred into a reaction vessel having a capacity of 150 mL (Shanghai Yushen Instrument Co., Ltd.), and heated to 140 ° C for 24 hours;
  • the second ultrasonic liquid was divided into 4 parts on average, transferred into a 50 mL centrifuge tube, centrifuged at 3000 rpm (5000 g centrifugal force) for 20 minutes using a Hercynian HR20MW centrifuge, and the resulting supernatant was separately transferred to 4 new ones.
  • centrifugation was further carried out at 7000 rpm (11667 g centrifugal force) for 20 minutes, and the intraduct precipitate was collected to obtain the desired terpene nanosheet (about 71.4 mg).
  • a method for preparing a terpene nanosheet comprising the steps of:
  • the obtained first ultrasonic liquid was transferred into a reaction vessel having a capacity of 150 mL (Shanghai Yushen Instrument Co., Ltd.), and heated to 140 ° C for 24 hours;
  • FIG. 1 is a scanning electron microscope (SEM) photograph of a terpene nanosheet prepared in accordance with an embodiment of the present invention.
  • SEM scanning electron microscope
  • FIG. 1 there are a large number of distinct flakes, i.e., terpene nanosheets.
  • a magnified layered structure can be seen in a magnified view, indicating that the desired terpene nanosheet can be stripped using the preparation method of the present invention.
  • the terpene nanosheet has a lateral dimension of 100 nm to 10 ⁇ m, and is repeatedly stacked by one or more layers of monoterpene in a plane perpendicular thereto to form a layered feather-like structure, and the thickness of the terpene nanosheet is formed.
  • terpene nanosheet is an analysis result of atomic force microscopy (AFM) of a terpene nanosheet prepared in an example of the present invention.
  • AFM atomic force microscopy
  • ⁇ Z thickness of 3-4 nm
  • the tantalum nanosheets are 10-13 germanium atomic layer thicknesses.
  • FIG 3 is a Raman graph of a terpene nanosheet prepared in accordance with an embodiment of the present invention.
  • the two characteristic peaks of 70 cm -1 and 97 cm -1 are more obvious, which indicates that the preparation method provided by the present invention can be peeled off to form ruthenium. Alkene nanosheets.
  • Figure 4 is a graph showing the ultraviolet-visible-near-infrared absorption spectrum of a terpene nanosheet prepared in an embodiment of the present invention in an NMP solvent. As can be seen from FIG. 4, the terpene nanosheets provided by the present invention exhibit significant absorption characteristics in the region of 300-1100 nm.
  • Example 1 To highlight the beneficial effects of the present invention, the present invention also sets forth the following comparative examples for Example 1:
  • Comparative Example 1 differs from Example 1 in that, in the step (2), only the probe is ultrasonicated for 24 hours using a ram cell disrupter;
  • Comparative Example 2 differs from Example 1 in that, in step (2), probe ultrasound is first performed using a ram cell disruptor, and then water bath ultrasound is performed;
  • Comparative Example 3 differs from Example 1 in that in step (2), water bath ultrasound is first performed, and probe-type ultrasound is performed, and secondary water bath ultrasound is performed after no probe-type ultrasound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

铋烯纳米片及其制备方法,通过将铋粉分散在有机溶剂中、第一次水浴超声、加热反应、第二次水浴超声、离心和收集沉淀得到铋烯纳米片。

Description

一种铋烯纳米片及其制备方法
本申请要求于2017年12月26日提交中国专利局、申请号为201711429956.3、发明名称为“一种铋烯纳米片及其制备方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及二维材料领域,特别是涉及一种铋烯纳米片及其制备方法。
背景技术
二维材料,是指电子仅可在两个维度的非纳米尺度(1-100nm)上自由运动(平面运动)的材料,如纳米薄膜。英国曼彻斯特大学两位科学家安德烈·盖姆和克斯特亚·诺沃消洛夫在2004年以胶带法第一次制得石墨烯。此后黑磷(磷烯)、硅烯、锗烯、锑烯、氮化硼、二硫化钼等一系列只有单原子层厚度的准二维材料相继被发现。
铋烯(Bismuthene)是一种由块体金属铋剥离而来的二维材料,具有类似石墨烯的结构。但铋烯为具0.306eV能隙的直接带隙半导体(导带底部和价带顶部在同一位置),可与光直接耦合,吸收光谱范围较广。此外,由于铋元素的生物相容性强,生物毒性小,故铋烯在光学、电学、生物医药学等方面有着广阔的应用潜力。而二维铋烯片层结构在生物载药、光热、光动力治疗等领域是一种潜在的生物医学基底材料。
目前,通过机械剥离法(如透明胶带撕分法)、化学气相沉积法等技术来制备片层铋烯材料。但是,机械剥离法制备的片状铋烯材料的产率较低,不适 合商业化生产,且操作繁琐、耗时长;而化学气相沉积法制备的铋烯的量较少,且不易重复。
发明内容
鉴于此,本发明提供了一种铋烯纳米片及其制备方法,该制备方法通过将探针超声和水浴超声相结合,通过协同作用以实现对铋粉的剥离,获得单分散性好、尺寸均一的铋烯纳米片。该方法的工艺简单易操作,重现性好、铋烯纳米片的产量或产率较高,易实现低成本产业化生产。
第一方面,本发明提供了一种铋烯纳米片的制备方法,包括以下步骤:
(1)将铋粉分散在有机溶剂中,得到分散液;其中,铋粉在分散液的浓度为0.5-10mg/mL;
(2)先对所述分散液进行第一次水浴超声,得到第一超声液;所述第一次水浴超声的功率为400-600W,时间为1-6小时;
将所述第一超声液置于密闭容器中,在温度为140-200℃下加热反应12-24小时;
反应完毕后,冷却至室温,对所得反应液进行第二次水浴超声,得到第二超声液;其中,所述第二次水浴超声的功率为400-600W;
(3)对所述第二超声液在2000-4000rpm下进行超低速离心,收集上清液,然后对所述上清液在5000-7000rpm下进行低速离心,收集沉淀,所得沉淀即为铋烯纳米片。
可选地,所述有机溶剂包括N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、丙酮、四氢呋喃、无水乙醇、甲醇、异丙醇、三氯甲烷和二氯甲烷中的一种或多种,但不限于此。所用有机溶剂的表面能与二维层 状铋烯材料的表面能相匹配,二者之间存在一定的相互作用平衡了剥离铋粉所需要的能量。
可选地,所述铋粉的粒径不超过75μm。例如55-70μm、1-50μm、2-45μm或1-4μm。进一步可选地,所述铋粉的粒径不超过50μm。
本发明实施例中,所述第一次水浴超声的功率可以为400W、450W、500W、550W、580W或600W。可选地,所述第一次水浴超声的功率为420-600W。
可选地,所述第二次水浴超声的时间为1-6小时。进一步可选为1-3小时。
其中,所述第二次水浴超声的功率可以为400W、450W、500W、550W、580W或600W。可选地,所述第二次水浴超声的功率为420-600W。所述第二次水浴超声的功率或时间可以与所述第一次水浴超声的功率或时间相同或不同。
可选地,所述第一次水浴超声、第二次水浴超声在温度不超过10℃的冰浴条件中进行。优选为0-10℃,进一步优选为4-10℃。所述冰浴条件,是指在超声过程中,将装有待超声的溶液的容器置于装有冰块的另一容器(如烧杯、试管)中。
进一步可选地,所述第一次水浴超声是在温度为5-10℃下进行。
进一步可选地,所述第二次水浴超声是在温度为5-10℃下进行。
可选地,步骤(2)中,所述加热反应的温度为165-200℃。例如为170、180、190或200℃。
可选地,步骤(2)中,所述加热反应的时间为19-24小时。例如为20、22或24小时。
可选地,步骤(2)中,所述密闭容器为高压反应釜(例如聚四氟乙烯反 应釜)或三口瓶。
进一步地,优选地,当所述密闭容器为三口瓶时,还在所述加热反应的过程中进行搅拌,其中,所述搅拌的速度为1000-2500转/分。
可选地,步骤(3)中,所述超低速离心的离心时间为15-30min。例如为12、15、20、25或30min。
可选地,所述超低速离心的转速为2000-3000rpm。
可选地,所述超低速离心的离心时间为15-30min。例如为12、15、20、25或30min。
可选地,所述低速离心的转速为6000-7000rpm。
所述低速离心后得到的沉淀(即铋烯纳米片)可以再分散到第二溶剂中,得到含铋烯纳米片的溶液。可选地,所述第二溶剂包括N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、丙酮、四氢呋喃、无水乙醇、甲醇和异丙醇中的一种或多种。
本发明中,对铋粉分散液的第一次水浴超声是通过超声空泡效应将铋粉初步打碎,使其部分溶入有机溶剂中;接下来的溶剂热反应,可借助高温下有机溶剂在高温下的临界态活性将初步打碎的铋粉进一步大量地打碎、剥离成片层结构的铋烯,使其大量溶入有机溶剂中;最后的第二次水浴超声可将剥离后的铋烯层状材料进一步打碎成更小的颗粒,得到铋烯纳米片,且进一步保证不会团聚,以便后续进行离心纯化处理。
本发明第一方面提供的铋烯纳米片的制备方法,将水浴超声和溶剂热法相结合的液相剥离法,通过协同作用以实现对铋粉的剥离,得到不同尺度的铋烯产品,再通过离心来获得所需大小的铋烯纳米片。此方法工艺简单易操作,产 率较高,相比目前的机械剥离法及化学气相沉积法等有明显的优势,可获得尺寸可控的单分散性好的铋烯纳米片,易实现低成本产业化生产。这为铋烯纳米片在生物医学领域中的应用奠定基础。
第二方面,本发明还提供了由上述制备方法制备得到的铋烯纳米片。所述铋烯纳米片的厚度在20nm以下,所述铋烯纳米片的横向尺寸为100nm~10μm。其中,横向尺寸是指铋烯纳米片的长度或宽度。
可选地,所述铋烯纳米片的横向尺寸为200nm~10μm。例如为300nm、500nm、800nm、1μm、2μm、5μm、8μm或10μm。
可选地,所述铋烯纳米片的横向尺寸为500nm~10μm。
可选地,所述铋烯纳米片的横向尺寸为1μm~10μm。
可选地,所述铋烯纳米片的厚度为0.3-20nm。
其中,所述铋烯纳米片包括一层铋烯或多层的单层铋烯在垂直其平面方向上重复堆叠而成。
可选地,所述铋烯纳米片为1~64个原子层厚度。即,由1-64层的单层铋烯堆叠而成。所述铋烯纳米片的厚度为
Figure PCTCN2018099563-appb-000001
进一步可选地,所述铋烯纳米片的厚度为0.3-15nm。
可选地,所述铋烯纳米片为1~10层的铋烯堆叠而成。所述铋烯纳米片的厚度为0.3-3nm。
可选地,所述铋烯纳米片的形状包括但不限于方形、圆形、三角形、多边形等形状。
本发明提供的铋烯纳米片的形状较为规整、尺寸较均一,分散性较好,毒性较小,便于用于制备光学、电学、生物医药(例如制备光热治疗药物、光学 标记药物)等领域。
本发明实施例的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
图1为本发明实施例制得的铋烯纳米片的扫描电子显微镜(SEM)照片;
图2为本发明实施例制得的铋烯纳米片的原子力显微镜(AFM)的分析结果;
图3为本发明实施例制得的铋烯纳米片的拉曼谱图;
图4为本发明实施例制得的铋烯纳米片在NMP溶剂中的紫外-可见-近红外吸收光谱图。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
下面分多个实施例对本发明实施例进行进一步的说明。本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
一种铋烯纳米片的制备方法,包括以下步骤:
(1)取一个250mL容量的蜀牛玻璃瓶,装入120mL的NMP溶剂,再加入120mg的200目(200粒/每平方英寸,也即粒径为0.074mm)铋粉,得到 铋粉初始浓度为1mg/mL(或称为1000ppm)的分散液;
(2)将(1)中玻璃瓶置入新芝超声波恒温清洗机SBL-22DT中,在10℃恒温下以最大功率(600W)的70%(即以420W的功率)进行第一次水浴超声3小时,得到第一超声液;
第一次水浴超声之后,将所得第一超声液移入容量为150mL的反应釜中(上海予申仪器有限公司),加热至140℃并保持24小时;
反应完毕后,冷却至室温,对反应釜内的所有物质都移入250mL蜀牛玻璃瓶,然后采用新芝超声波恒温清洗机SBL-22DT,在10℃恒温下以70%功率进行第二次水浴超声4小时,得到第二超声液;
(3)对所述第二超声液平均分为4份,移入50mL离心管,采用赫西HR20MW离心机在3000rpm转速下(5000g离心力)进行离心20分钟,将所得上清液分别移入4个新的50mL离心管中,再于7000rpm转速下(11667g离心力)进行离心20分钟,收集管内沉淀,即为所需的铋烯纳米片(约71.4mg)。
经计算可得,本发明实施例1中,所述铋烯纳米片的产率为71.4mg/120mg=59.5%。
实施例2
一种铋烯纳米片的制备方法,包括以下步骤:
(1)取一个500mL容量的蜀牛玻璃瓶,装入400mL的NMP溶剂,再加入200mg的300目铋粉,得到铋粉初始浓度为0.5mg/mL的分散液;
(2)将(1)中玻璃瓶置入新芝超声波恒温清洗机SBL-22DT中,在4℃恒温下以480W的功率进行第一次水浴超声2小时,得到第一超声液;
第一次水浴超声之后,将所得第一超声液移入容量为150mL的反应釜中 (上海予申仪器有限公司),加热至140℃并保持24小时;
反应完毕后,冷却至室温,对反应釜内的所有物质都移入250mL蜀牛玻璃瓶,采用新芝超声波恒温清洗机SBL-22DT,以450W的功率进行第二次水浴超声3小时,得到第二超声液;
(3)对所述第二超声液平均分为4份,移入50mL离心管,采用赫西HR20MW离心机在2000rpm转速下离心30分钟,将所得上清液分别移入4个新的50mL离心管中,再于6500rpm转速下离心25分钟,收集管内沉淀,即为所需的铋烯纳米片(产率为65%)。
图1为本发明实施例制得的铋烯纳米片的扫描电子显微镜(SEM)照片。从图1中可看出,图中存在大量明显的片状物质,即铋烯纳米片。放大看可见明显的层状结构,说明采用本发明的制备方法可以剥出所需的铋烯纳米片。所述铋烯纳米片的横向尺寸在100nm~10μm,由一层或多层的单层铋烯在垂直其平面方向上重复堆叠形成层状羽毛样结构,形成的所述铋烯纳米片的厚度为
Figure PCTCN2018099563-appb-000002
图2为本发明实施例制得的铋烯纳米片的原子力显微镜(AFM)的分析结果。图内存在大量厚度为3-4nm(ΔZ)的片状结构,说明本发明提供的制备方法可成功剥离形成铋烯纳米片,所述铋烯纳米片约由10-13层单层铋烯堆叠而成,即,所述铋烯纳米片为10-13个铋原子层厚度。
图3为本发明实施例制得的铋烯纳米片的拉曼曲线图。在1064nm的激发波长下,70cm -1和97cm -1(分别对应于Bi元素的E g和A 1g振动模)这两个特征峰都较为明显,这说明本发明提供的制备方法可剥离形成铋烯纳米片。
图4为本发明实施例制得的铋烯纳米片在NMP溶剂中的紫外-可见-近红 外吸收光谱图。由图4可见,本发明提供的铋烯纳米片在300-1100nm区域均表现出明显的吸收特性。
为突出本发明的有益效果,本发明还针对实施例1设置以下对比实施例:
对比例1与实施例1的区别在于:步骤(2)中,只采用比朗细胞破碎仪进行探头超声24小时;
对比例2与实施例1的区别在于:步骤(2)中,先采用比朗细胞破碎仪进行探头超声,再进行水浴超声;
对比例3与实施例1的区别在于:步骤(2)中,先进行水浴超声,再进行探头式超声,而没有再探头式超声之后再进行二次水浴超声。
结果发现:
对比例1制得的产品与实施例1的铋烯纳米片相比,其横向尺寸主要在1μm以上,铋烯纳米片的产率为62.5mg/120mg=52.8%。
对比例2制得的产品与实施例1相比,所述铋烯纳米片的产率为66.2mg/120mg=55.1%。也含有不少横向尺寸在1μm以上的纳米片。
对比例3制得的产品与实施例1相比,所述铋烯纳米片的产率为65.5mg/120mg=54.8%。且对比例3的产品在分散在有机溶剂中,静置6小时后会有微量团聚现象。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种铋烯纳米片的制备方法,其特征在于,包括以下步骤:
    (1)将铋粉分散在有机溶剂中,得到分散液;其中,铋粉在分散液的浓度为0.5-10mg/mL;
    (2)先对所述分散液进行第一次水浴超声,得到第一超声液;所述第一次水浴超声的功率为400-600W,时间为1-6小时;
    将所述第一超声液置于密闭容器中,在温度为140-200℃下加热反应12-24小时;
    反应完毕后,冷却至室温,对所得反应液进行第二次水浴超声,得到第二超声液;其中,所述第二次水浴超声的功率为400-600W;
    (3)对所述第二超声液在2000-4000rpm下进行超低速离心,收集上清液,然后对所述上清液在5000-7000rpm下进行低速离心,收集沉淀,所得沉淀即为铋烯纳米片。
  2. 如权利要求1所述的制备方法,其特征在于,所述铋粉的粒径不超过75μm。
  3. 如权利要求1所述的制备方法,其特征在于,所述有机溶剂包括N-甲基吡咯烷酮、二甲基甲酰胺、二甲基亚砜、丙酮、四氢呋喃、无水乙醇、甲醇、异丙醇、三氯甲烷和二氯甲烷中的一种或多种。
  4. 如权利要求1所述的制备方法,其特征在于,所述第一次水浴超声的功率为420-600W。
  5. 如权利要求1所述的制备方法,其特征在于,所述加热反应的温度为165-200℃;所述加热反应的时间为19-24小时。
  6. 如权利要求1所述的制备方法,其特征在于,所述第二次水浴超声的功率为420-600W;所述第二次水浴超声的时间为1-6小时。
  7. 如权利要求1所述的制备方法,其特征在于,所述第一次水浴超声和第二次水浴超声分别是在温度不超过10℃的条件中进行。
  8. 如权利要求1所述的制备方法,其特征在于,步骤(2)中,所述密闭容器为高压反应釜或三口瓶。
  9. 如权利要求8所述的制备方法,其特征在于,当所述密闭容器为三口瓶时,还在所述加热反应的过程中进行搅拌,其中,所述搅拌的速度为1000-2500转/分。
  10. 如权利要求1所述的制备方法,其特征在于,所述超低速离心的转速为2000-3000rpm;所述超低速离心的离心时间为15-30min。
  11. 如权利要求1所述的制备方法,其特征在于,所述低速离心的转速为6000-7000rpm。
  12. 一种如权利要求1-11任一项所述的铋烯纳米片,其特征在于,所述铋烯纳米片的厚度在20nm以下,所述铋烯纳米片的横向尺寸为100nm~10μm。
  13. 如权利要求12所述的铋烯纳米片,其特征在于,所述铋烯纳米片的横向尺寸为200nm~10μm。
  14. 如权利要求11所述的铋烯纳米片,其特征在于,所述铋烯纳米片的横向尺寸为500nm~10μm。
  15. 如权利要求11所述的铋烯纳米片,其特征在于,所述铋烯纳米片的横向尺寸为1μm~10μm。
  16. 如权利要求11所述的铋烯纳米片,其特征在于,所述铋烯纳米片包 括1-64层的单层铋烯堆叠而成。
  17. 如权利要求11所述的铋烯纳米片,其特征在于,所述铋烯纳米片的厚度为0.3-15nm。
  18. 如权利要求16所述的铋烯纳米片,其特征在于,所述铋烯纳米片由1-10层的单层铋烯堆叠而成,其厚度为0.3-3nm。
  19. 如权利要求11所述的铋烯纳米片,其特征在于,所述铋烯纳米片的形状包括方形、圆形、三角形和多边形中的一种或多种。
PCT/CN2018/099563 2017-12-26 2018-08-09 一种铋烯纳米片及其制备方法 WO2019128245A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711429956.3A CN108145171B (zh) 2017-12-26 2017-12-26 一种铋烯纳米片及其制备方法
CN201711429956.3 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019128245A1 true WO2019128245A1 (zh) 2019-07-04

Family

ID=62462951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099563 WO2019128245A1 (zh) 2017-12-26 2018-08-09 一种铋烯纳米片及其制备方法

Country Status (2)

Country Link
CN (1) CN108145171B (zh)
WO (1) WO2019128245A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112846199A (zh) * 2021-01-08 2021-05-28 新乡医学院 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法
WO2021114914A1 (zh) * 2019-12-13 2021-06-17 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
CN114672831A (zh) * 2022-04-29 2022-06-28 华中科技大学 一种原子级厚度的二维铋纳米片材料及其制备方法和应用
CN114939406A (zh) * 2022-03-24 2022-08-26 淮北师范大学 一种Bi2MoO6光催化剂及其制备方法和应用
CN116694089A (zh) * 2022-09-19 2023-09-05 广州贝奥吉因生物科技股份有限公司 一种用于抑制瘢痕的水凝胶及其制备方法和应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108580908B (zh) * 2017-12-26 2020-11-27 深圳大学 一种铋量子点及其制备方法
CN108145171B (zh) * 2017-12-26 2020-11-27 深圳大学 一种铋烯纳米片及其制备方法
CN112792350B (zh) * 2019-10-25 2022-04-19 中国科学院福建物质结构研究所 锑和/或铋纳米片、锑烯和/或铋烯及其制法和用途
CN111790904A (zh) * 2020-05-25 2020-10-20 南京理工大学 一种采用液相激光辐照法制备铋烯纳米片的方法
CN111653672B (zh) * 2020-06-15 2022-07-01 安徽大学 一种晶格匹配的异质结复合薄膜、制备方法及钙钛矿太阳能电池
CN113333736B (zh) * 2021-05-10 2023-07-14 武汉理工大学 一种基于微波剥离的锑烯及其制备方法
CN113817927B (zh) * 2021-10-09 2022-09-02 中南大学 一种高效制备砷烯纳米片的方法
CN114990358B (zh) * 2022-04-12 2023-02-03 中南大学 一种掺杂砷烯纳米片、及其制备方法和应用
CN116984623B (zh) * 2023-09-26 2024-02-09 之江实验室 一种基于分段式水热法的二维铋纳米晶体合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275628A (zh) * 2017-07-19 2017-10-20 华中科技大学 一种二维铋烯的制备方法及锂离子电池
CN108145171A (zh) * 2017-12-26 2018-06-12 深圳大学 一种铋烯纳米片及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125829A1 (en) * 2005-12-07 2007-06-07 Kimberly-Clark Worldwide, Inc. Bi-material ultrasonic horn with integral isolation member
CN103692763B (zh) * 2013-12-06 2015-09-02 深圳先进技术研究院 一种二维层状纳米材料的剥离方法
CN103771406B (zh) * 2014-01-22 2015-09-09 中国工程物理研究院化工材料研究所 石墨烯/四氧化三锰纳米复合材料的制备方法
CN104070178A (zh) * 2014-07-01 2014-10-01 扬州大学 一种粒径可控的单分散铋纳米粒子的制备方法
CN105600760B (zh) * 2015-12-25 2018-01-23 湖北中科墨磷科技有限公司 一种小尺寸黑磷片及其制备方法
CN107234244B (zh) * 2017-06-23 2019-10-18 南京理工大学 一种大产量锑烯量子点的超声液相剥离制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275628A (zh) * 2017-07-19 2017-10-20 华中科技大学 一种二维铋烯的制备方法及锂离子电池
CN108145171A (zh) * 2017-12-26 2018-06-12 深圳大学 一种铋烯纳米片及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU , L.: "All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation", ACS PHOTONICS, vol. 4, 24 October 2017 (2017-10-24), pages 2852 - 2861, XP055622401 *
LU , L.: "Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability", LASER PHOTONICS REV., vol. 12, no. 1, 26 September 2017 (2017-09-26), pages 1700221, XP055622396 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021114914A1 (zh) * 2019-12-13 2021-06-17 深圳瀚光科技有限公司 一种基于铋烯纳米片荧光淬灭的生物传感器、miRNA检测试剂盒及应用
CN112846199A (zh) * 2021-01-08 2021-05-28 新乡医学院 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法
CN112846199B (zh) * 2021-01-08 2022-09-09 新乡医学院 利用加热-冷冻-研磨-超声制备超薄铋烯纳米片的方法
CN114939406A (zh) * 2022-03-24 2022-08-26 淮北师范大学 一种Bi2MoO6光催化剂及其制备方法和应用
CN114939406B (zh) * 2022-03-24 2024-01-30 淮北师范大学 一种Bi2MoO6光催化剂及其制备方法和应用
CN114672831A (zh) * 2022-04-29 2022-06-28 华中科技大学 一种原子级厚度的二维铋纳米片材料及其制备方法和应用
CN114672831B (zh) * 2022-04-29 2023-05-09 华中科技大学 一种原子级厚度的二维铋纳米片材料及其制备方法和应用
CN116694089A (zh) * 2022-09-19 2023-09-05 广州贝奥吉因生物科技股份有限公司 一种用于抑制瘢痕的水凝胶及其制备方法和应用
CN116694089B (zh) * 2022-09-19 2024-03-26 广州贝奥吉因生物科技股份有限公司 一种用于抑制瘢痕的水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN108145171B (zh) 2020-11-27
CN108145171A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2019128245A1 (zh) 一种铋烯纳米片及其制备方法
WO2019128247A1 (zh) 一种铋烯纳米片及其制备方法
WO2019128246A1 (zh) 一种铋量子点及其制备方法
Li et al. Mechanisms of liquid-phase exfoliation for the production of graphene
Lotya et al. High-concentration, surfactant-stabilized graphene dispersions
Lavin-Lopez et al. Solvent-based exfoliation via sonication of graphitic materials for graphene manufacture
O’Neill et al. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size
US20190019597A1 (en) Utilizing Nanoscale Materials and Dispersants, Surfactants or Stabilizing Molecules, Methods of Making the Same, and the Products Produced Therefrom
Lotya et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions
Xu et al. Controlled multistep purification of single-walled carbon nanotubes
Rümmeli et al. On the graphitization nature of oxides for the formation of carbon nanostructures
JP6291027B2 (ja) 結合グラフェン及び導電性ナノフィラメントによる導電性透明フィルムの超音波スプレイコーティング
Ciesielski et al. Modifying the size of ultrasound-induced liquid-phase exfoliated graphene: from nanosheets to nanodots
US10304937B2 (en) Scalable process for producing exfoliated defect-free, non-oxidised 2-dimensional materials in large quantities
WO2019128244A1 (zh) 一种铋量子点的制备方法及铋量子点
Liu et al. Fast production of high-quality graphene via sequential liquid exfoliation
CN105439133B (zh) 一种负电性单层石墨烯的制备方法
KR101382016B1 (ko) 그래핀의 제조 방법
Ding et al. Efficient exfoliation of layered materials by waste liquor
Navik et al. Scalable production of high-quality exfoliated graphene using mechanical milling in conjugation with supercritical CO2
Li et al. Recent progress on the interfacial regulation and application of 2D antimonene-based van der Waals heterostructures
Furusawa et al. Surfactant-assisted isolation of small-diameter boron-nitride nanotubes for molding one-dimensional van der Waals heterostructures
Koutsioukis et al. Stable dispersion of graphene in water, promoted by high-yield, scalable exfoliation of graphite in natural aqueous extracts: the role of hydrophobic organic molecules
Wang et al. Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS2
Jirakittidul et al. Acid modified multiwalled carbon nanotubes condition by reflux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895352

Country of ref document: EP

Kind code of ref document: A1