CN112843085B - 一种治疗视神经疾病的复合物及其制备方法和用途 - Google Patents

一种治疗视神经疾病的复合物及其制备方法和用途 Download PDF

Info

Publication number
CN112843085B
CN112843085B CN202110293024.0A CN202110293024A CN112843085B CN 112843085 B CN112843085 B CN 112843085B CN 202110293024 A CN202110293024 A CN 202110293024A CN 112843085 B CN112843085 B CN 112843085B
Authority
CN
China
Prior art keywords
tfna
optic nerve
mir
mir22
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110293024.0A
Other languages
English (en)
Other versions
CN112843085A (zh
Inventor
林云锋
李佳杰
蔡潇潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jingrunze Gene Technology Co ltd
Original Assignee
Chengdu Jingrunze Gene Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jingrunze Gene Technology Co ltd filed Critical Chengdu Jingrunze Gene Technology Co ltd
Priority to CN202110293024.0A priority Critical patent/CN112843085B/zh
Publication of CN112843085A publication Critical patent/CN112843085A/zh
Priority to EP22770464.0A priority patent/EP4309659A1/en
Priority to JP2023544677A priority patent/JP2024504413A/ja
Priority to PCT/CN2022/080771 priority patent/WO2022194109A1/zh
Priority to US18/267,015 priority patent/US20240052347A1/en
Application granted granted Critical
Publication of CN112843085B publication Critical patent/CN112843085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/15Nucleic acids forming more than 2 strands, e.g. TFOs
    • C12N2310/151Nucleic acids forming more than 2 strands, e.g. TFOs more than 3 strands, e.g. tetrads, H-DNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供了一种治疗视神经疾病的复合物tFNA‑miR22,由DNA四面体和miR‑22按照1:(1~4)的摩尔比构成。本发明tFNA‑miR22能够有效抑制视网膜神经节细胞的凋亡,并促进脑源性神经因子(BDNF)的释放,进而对视网膜神经节细胞起到良好的保护作用。将tFNA‑miR22用于制备视神经保护类药物,将有助于青光眼在内的神经退行性视神经疾病的治疗,具有十分良好的应用前景。

Description

一种治疗视神经疾病的复合物及其制备方法和用途
技术领域
本发明属于生物医药领域,具体涉及一种治疗视神经疾病的复合物及其制备方法和用途。
背景技术
青光眼是一组威胁和损害视神经及其视觉通路而导致视觉功能障碍的疾病,是世界首位的不可逆性致盲眼病。原发性开角型青光眼是一种以进行性视网膜神经节细胞(Retinal ganglion cells,RGCs)及其轴突受损为特征,具有特征性的视神经萎缩和视野缺损的一种特殊类型的视神经疾病。青光眼往往发病隐蔽,进展较为缓慢,早期一般无明显症状,视野逐渐缩小直至失明。我国现有近2100万青光眼患者,这将可能产生近630万盲人及超过1000万的视觉残障人士。
目前青光眼的主要治疗方法是通过药物或手术降低眼压以减缓对视神经的损害。然而单纯降低眼压并不能完全有效地阻止或逆转视网膜神经节细胞死亡所引起的视神经损害。部分青光眼患者眼压得到控制后,视网膜神经节细胞的损害仍然持续进展,如不采取有效的治疗,视力可能完全丧失。
视神经保护是近年来眼科学研究中的前沿热点,也是青光眼治疗方面的难点,目前临床常用的前列腺素类药物、β-受体阻滞剂类药物、肾上素能激动剂类药物、碳酸酐酶抑制剂类药物以及毛果芸香碱在内的缩瞳剂均为降眼压药物,而神经保护类的治疗药物匮乏。
DNA四面体(tetrahedral DNA,tFNA),又称四面体骨架核酸(tetrahedralframework nucleic acids,tFNAs)、四面体DNA纳米结构,是一种由4条单链DNA通过变性和复性,进而链间碱基互补配对形成的一种四面体结构,它易于合成,生物相容性高,通常用作某些药物的载体。中国专利CN109806275A公开了DNA四面体促进神经干细胞增殖、分化和/或迁移的用途,但没有公开DNA四面体对视神经保护的作用。
miR-22是研究最频繁的microRNAs之一,其参与了心脏重构、细胞周期调控、增殖、分化等多种生物学过程,并具有多种抗神经退行性变及抗肿瘤作用,包括抑制神经元凋亡和参与脑源性神经因子(BDNF)相关信号通路的调控,并可抑制多种肿瘤细胞的增殖、侵袭、迁移。Romano等人公开了miR-22是一种预测青光眼的靶基因,但是,miR-22作为治疗青光眼的靶基因的用途未见公开(Romano GL,Platania CB,Forte S,Salomone S,Drago F,Bucolo C.MicroRNA target prediction in glaucoma.Prog Brain Res.2015;220:217-40.)。
综上所述,目前仍尚未见DNA四面体或miR-22被用于治疗青光眼的相关报道,更没有将二者复合使用作为视神经保护药物,治疗青光眼的有关报道。为了攻克青光眼治疗的难点,亟需进一步开发能够有效治疗视神经疾病的神经保护类药物。
发明内容
本发明的目的在于提供一种治疗视神经疾病的药物。
本发明提供了一种治疗视神经疾病的复合物,它由DNA四面体和miR-22按照1:(1~4)的摩尔比构成。
进一步地,上述DNA四面体由4条单链DNA经碱基互补配对形成;所述4条单链DNA的序列分别一对一地选自SEQ ID NO.1~4的所述序列;miR-22的序列为SEQ ID NO.5所述序列。
进一步地,上述miR-22通过化学键连接在构成DNA四面体结构的4条单链DNA中的1~4条单链DNA上。
更进一步地,上述miR-22和所述单链DNA之间还含有连接序列,所述连接序列为核苷酸序列,优选为脱氧核糖核苷酸序列,更优选为-TTTTT-。
本发明还提供了一种上述复合物的制备方法,它是将DNA四面体的4条单链DNA置于足以使其变性的温度下维持10min以上,再将温度降低到2~8℃维持20min以上;所述4条单链DNA的其中1条连接有miR-22。
进一步地,它是将DNA四面体的4条单链置于95℃下维持10min,再将温度降低到4℃维持20min。
本发明还提供了上述的复合物在制备治疗视神经疾病的药物中的用途。
进一步地,上述治疗视神经疾病的药物是视神经保护的药物;优选地,为减缓视网膜神经节细胞损伤,和/或减少视网膜神经节细胞凋亡,和/或促进视网膜神经节细胞存活的药物;更优选为促进BDNF释放的药物。
进一步地,上述视神经保护的药物是治疗青光眼的药物;优选地,所述治疗青光眼的药物是治疗原发性开角型青光眼的药物。
本发明还提供了一种治疗视神经疾病的药物,它是以上述的复合物为活性成分,加上药学上可接受的辅料制备而成的药物。
实验结果表明,本发明DNA四面体和miR-22的复合物tFNA-miR22能够有效抑制由N-甲基-D-天冬氨酸(NMDA)引起的视网膜神经节细胞的凋亡,并促进脑源性神经因子(BDNF)的释放,进而对视网膜神经节细胞起到良好的保护作用。将tFNA-miR22用于制备视神经保护类药物,将有助于青光眼在内的神经退行性视神经疾病的治疗,具有十分良好的应用前景。
本发明所述-TTTTT-序列即连续5个胸腺嘧啶脱氧核苷酸序列。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为DNA四面体与miR-22的合成示意图;
图2为毛细管电泳检测结果;
图3为tFNA-miR22、DNA四面体及其单链的PAGE电泳检测(1:S1,2:S2,3:S3,4:S3-miR22,5:S4,6:tFNA,7:tFNA-miR22)结果;
图4为DNA四面体透射电镜(a)、原子力显微镜(b)检测图和DNA四面体的Zeta电位及粒径检测结果(c-d);
图5为tFNA-miR22透射电镜(a)、原子力显微镜(b)检测图tFNA-miR22的Zeta电位及粒径检测结果(c-d);
图6是NMDA体内、外模拟视神经损伤建模结果以及不同浓度tFNA-miR22对NMDA处理的视网膜神经节细胞的细胞活性检测结果:A-B:不同浓度NMDA刺激细胞1h后,更换完全培养基继续培养3、6、12、24h后的CCK-8活性检测及药物抑制率;C:tFNA-miR22的生物安全性检测;D:不同浓度tFNA-miR22、DNA四面体及单链miR-22处理24h经4nM NMDA处理后的CCK-8活性检测;E:普通光镜下经上述处理后各组细胞形态。A~D的数据为平均值±标准差(每组样本量≥3)。
图7是体内模型建立示意图。
图8是苏木精伊红染色结果。
图9是视网膜铺片免疫荧光染色结果图片及数据分析,数据为平均值±标准差(每组样本量≥3)。
图10是流式细胞仪检测3、6、12、24h内tFNA-miR22、单链miR-22(Cy5荧光标记)的入胞率结果。
图11是免疫荧光检测6h tFNA-miR22、单链miR-22(Cy5荧光标记)的摄入结果;
图12是流式细胞仪检测62.5nM tFNA-miR22、DNA四面体及单链mi-R22对细胞周期的影响结果及数据分析,统计数据为平均值±标准差(每组样本量≥3)
图13是流式细胞仪检测各组细胞凋亡情况及数据统计分析结果,统计数据为平均值±标准差(每组样本量≥3);
图14是(A)蛋白印迹实验检测凋亡相关蛋白的表达结果;(B)对抗凋亡蛋白Bcl-2的统计分析;(C)对凋亡蛋白Bax的统计分析;(D)对凋亡蛋白Caspase-3的统计分析;
图15是抗凋亡蛋白Bcl-2免疫荧光染色及统计分析
图16是凋亡蛋白Bax免疫荧光染色及统计分析
图17是凋亡蛋白Caspase-3免疫荧光染色及统计分析。
图18是TrkB-CREB-BDNF信号通路的相关检测:A:Western blot分析TrkB/BDNF蛋白表达水平(GAPDH为内参);B:TrkB蛋白相对表达量;C:BDNF蛋白相对表达量;D:Ntrk2基因表达量;E:BDNF基因表达量。
图19是(A)Western blot分析ERK1/2-CREB蛋白表达;(B)ERK1/2及磷酸化ERK1/2蛋白相对表达量;(C)CREB及磷酸化CREB蛋白相对表达量;
图20是免疫荧光检测tFNA-miR22选择性激活TrkB的表达及统计分析;
图21是免疫荧光检测BDNF表达及统计分析;
图22是免疫荧光检测p-ERK1/2表达及统计分析;
图23是免疫荧光检测p-CREB表达及统计分析;
图24是免疫组织化学染色TrkB蛋白和BDNF蛋白的表达结果。
具体实施方式
本发明所用原料与设备均为已知产品,通过购买市售产品所得。
实施例1、tFNA与miR-22的复合物(tFNA-miR22)的合成
1.合成
将四条DNA单链(S1、S2、S3-miR22、S4)溶解于TM Buffer(10mM Tris-HCl,50MmMgCl2,pH=8.0)中,四条DNA单链的终浓度为1000nM,充分混合,迅速加热至95℃保持10分钟,之后迅速降温至4℃并维持20分钟以上,即可得到tFNA-miR22。
四条单链的序列(5’→3’)如下:
S1:
ATTTATCACCCGCCATAGTAGACGTATCACCAGGCAGTTGAGACGAACATTCCTAAGTCTGAA
(SEQ ID NO.1)
S2:
ACATGCGAGGGTCCAATACCGACGATTACAGCTTGCTACACGATTCAGACTTAGGAATGTTCG
(SEQ ID NO.2)
S3-miR22-3p:
AAGCUGCCAGUUGAAGAACUGU-TTTTT-ACTACTATGGCGGGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATCC
S4:
ACGGTATTGGACCCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCG
(SEQ ID NO.4)
其中S1的5’端可选地连接一个Cy5荧光标记基团用于tFNA-22的示踪。
2.鉴定
使用毛细管电泳、PAGE电泳检测DNA单链与合成得到的tFNA-miR22;使用透射电镜检测tFNA与tFNA-miR22的外形;使用动态光散射检测tFNA与tFNA-miR22的zeta电位及粒径。
3.鉴定结果
如图1~3所示,电泳结果显示,tFNA-miR22的条带分子量显著高于单链DNA以及DNA四面体,表明单链DNA组装在一起。
如图4~5所示,透射电镜检测发现了四面体结构的颗粒,动态光散色检测到的tFNA zeta电位为5.6,粒径为17.96nm;tFNA-miR22的zeta电位为8.23mV,粒径为17.18nm,表明tFNA-miR22合成成功且稳定。
以下将以实验例的方式对本发明的有益效果进一步介绍,实验例中涉及的tFNA均以实施例1的方法制备得到。
实验例1、损伤的视网膜神经节细胞对tFNA-miR22的摄取
1、实验方法
1.1测试最佳造模浓度(体外模拟视神经节细胞损伤)
RGC-5细胞(一种小鼠视网膜神经节细胞)分组培养于96孔板中,每孔1*104个细胞。各组分别加入不同浓度的N-甲基-D-天冬氨酸(NMDA)处理1h后,换完全培养基继续培养24h,再用CCK-8实验检测细胞活性,发现4mM NMDA的药物抑制率为40%左右,因此选择4mM作为最佳造模浓度(如图6:A-B)。
1.2测试最佳抗细胞损伤药物浓度(细胞增殖实验)
将RGC-5细胞分组培养于96孔板中,每孔1*104个细胞。向除空白组外的各实验组分别加入4nM NMDA处理1h后,分别加入于实施例1制备得到的含有0nM、62.5nM、125nM和250nM的tFNA以及tFNA-miR22的培养液,以及以上miR-22单链继续培养24h,取样用CCK-8实验检测细胞活性,发现62.5nM tFNA无明显促增殖作用,而该浓度下tFNA-miR22能显著促进RGC-5的细胞增殖,而且,tFNA-miR22处理后的细胞存活率相比于NMDA对照组的存活率的增殖比率甚至高于单独使用miR22、tFNA时相比于NMDA对照组的细胞存活率的增殖比率之和。说明miR22、tFNA结合为tFNA-miR22后,二者起到了协同增效促进NMDA损伤的神经节细胞增殖的作用。促进因此选择62.5nM作为该实验最佳药物治疗浓度(如图6:D)。
1.3损伤细胞对材料的摄入实验
将经4mM NMDA处理1h后的RGC-5细胞分组,分别暴露于带有Cy5标记的单链miR-22(62.5nM)及tFNA-miR22(62.5nM)中处理3h、6h、12h、24h与损伤组(即未经tFNA及tFNA-miR22处理)对比。将所有组别均使用磷酸缓冲液洗涤3次,使用及流式细胞仪检测,发现在tFNA-miR22的荧光强度在6h到达峰值(如图11)。因此选取经前述方法处理6h的RGC-5细胞制备细胞爬片,使用免疫荧光染色观察单链miR-22及tFNA-miR22的摄入情况。
2.结果
如图10-11所示,细胞流式结果显示在24h内,tFNA-miR22的荧光强度在6h即可到达峰值至55.3%,并随处理时间的增加逐渐降低至40.4%;而单链miR-22的荧光强度随处理时间缓慢增加,24h才达峰值33.5%。图11免疫荧光染色结果显示,6h时tFNA-miR22广泛聚集于RGC-5的胞质与核周,而单链miR-22则主要粘附与细胞膜表面。
上述结果表明tFNA-miR22能更迅速有效地被受损的RGC-5细胞摄入,而未与tFNA结合的miR-22则很难被RGC-5细胞摄入。
试验例2、tFNA-miR22抑制NMDA引起的细胞损伤
1.实验方法
使用4mM NMDA处理RGC-5细胞1h后,再用62.5nM的单链miR-22、tFNA及tFNA-miR22处理RGC-5细胞24h,进行如下检测:
1)相差显微镜观察细胞形态;
2)流式细胞仪检测细胞周期
3)流式细胞仪检测细胞凋亡率;
4)使用免疫荧光及Western blot检测Bax、caspase-3、Bcl-2的表达;
2.结果
1)图6C所示,证实tFNA-miR22无明显细胞毒性,说明tFNA-miR22具有很好的生物安全性
2)图6E所示,tFNA-miR22较tFNA、单链miR-22能明显保护视网膜神经节细胞外形改变;
3)图12所示,tFNA-miR22较tFNA、单链miR-22能明显通过调节细胞有丝分裂,促进细胞自我更新;其中,可以明显看出,NMDA处理后的细胞有丝分裂受到影响,NMDA组相比于对照组,处于G2-M期的细胞百分比显著降低,而用单独的tFNA、miR22处理后,处于G2-M期的细胞甚至进一步有所降低。然而,tFNA-miR22处理后,细胞处于G2-M期的百分比显著升高,甚至与未使用NMDA干扰的对照组相当,可见,tFNA和miR-22结合后起到了与单独使用时相反的效果,二者能够彼此协同显著促进细胞有丝分裂和自我更新。
4)图13~17所示,tFNA-miR22较tFNA、单链miR-22能抑制NMDA引起的细胞凋亡,即tFNA-miR22较tFNA、单链miR-22可减少NMDA导致的凋亡蛋白caspase-3及Bax的表达水平升高,减少NMDA导致的抗凋亡蛋白BCL-2表达水平下降。
上述结果表明,tFNA-miR22具有很好的生物安全性,而且对视网膜神经节细胞具有保护作用,tFNA-miR22可调节细胞的有丝分裂促进细胞自我更新,并可以通过增加抑凋亡蛋白BCL-2的表达,减少促凋亡蛋白caspase-3和Bax的表达,从而减轻NMDA造成的细胞损伤,以进一步起到保护细胞的作用,并且效果显著优于单独的tFNA和单链miR-22。
试验例3、tFNA-miR22对TrkB/BDNF信号通路的影响
1.实验方法
使用实验例2的方法处理RGC-5细胞,并做如下检测:
1)使用Western blot及免疫荧光检测BDNF、Trkb蛋白;
2)使用RT-PCR检测BDNF、Ntrk2的表达量;
3)使用Western blot及免疫荧光检测ERK1/2、p-ERK1/2、CREB、p-CREB蛋白。
2.结果
1)Western blot检测如图18A-C所示,tFNA-miR22处理后的细胞BDNF及TrkB水平显著提高;实时荧光定量PCR结果如图18D-E所示,tFNA-miR22处理后,细胞中Ntrk2及BDNF的基因表达较其余组别显著增加。
2)Western blot检测如图19所示,tFNA-miR22处理后,ERK及CREB的总蛋白均有一定增加,同时可促进ERK1/2及CREB的磷酸化;
3)免疫荧光检测以上所述蛋白结果如图20~23所示,结果与Western blot检测结果一致。
本实验例的目的是进一步确认tFNA-miR22产生视神经保护作用的影响机制。
脑源性生长因子(BDNF)是一种强大的神经保护剂,尤其是对视网膜神经节细胞而言,BDNF是青光眼的关键神经营养因子之一。BDNF可通过与其受体TrkB结合,激活涉及细胞外信号调节激酶(ERK),它导致cAMP反应元件结合蛋白(CREB)的磷酸化,从而诱导与神经元存活相关的各种基因的转录,发挥促细胞存活作用。
上述实验结果表明,tFNA-miR22选择性激活TrkB,并通过激活下游信号通路(ERK-CREB),促进BDNF的释放以减缓细胞损伤,促进细胞存活。
试验例4、tFNA-miR22治疗NMDA-诱导视神经损伤模型小鼠实验
1.实验方法:
NMDA-诱导视神经损伤模型建立
1)实验动物选择及分组:实验对象为6周龄健康雄性C57BL/6J小鼠,体重18-20g。经检查无明显歪颈,角膜透明,虹膜血管清晰,瞳孔等大等圆,对光反射灵敏。采用随机数字表法将实验动物随机分为ABCDE五组,分别为空白对照组、NMDA损伤组、单纯tFANs治疗组(62.5nM)、单纯miR-22治疗组、tFNA-miR22治疗组(62.5nM)
2)分组处理:小鼠全身麻醉满意后,每组均取双眼为实验眼,眼表用10%碘酊消毒。在手术显微镜下,于颞侧角巩膜缘1mm处用32G针头刺穿,再用10μL微量注射器将总体积2μL药物注入玻璃体腔内。A组:无手术操作的正常小鼠;B组:注入2μL的用生理盐水配制的终浓度为20μM的NMDA;C组:注入1μL的NMDA(20μM)+1μL的tFNAs(62.5nM);D组:注入1μL的NMDA(20μM)+1μL的miR-22(62.5nM);E组:注入1μL 20μM的NMDA+1μL 62.5nM的tFNAs-miR22。手术后于结膜囊内涂红霉素眼膏,于术后7天处死动物摘除眼球并保留一段视神经,进行如下形态学检测:
A)视网膜HE染色观察视网膜组织学变化;
B)全视网膜铺片免疫荧光染色:RGCs计数;
C)视网膜常规切片免疫组化IHC染色,观察BDNF Tkrb的表达。
2.结果
1)HE染色结果如图8所示:tFNAs-miR22处理后,视网膜厚度明显增加,神经节细胞数明显增加;
2)铺片免疫荧光染色结果如图9所示:tFNAs-miR22处理后,神经节细胞数明显增加,并具有统计学意义;其中,tFNA-miR22处理后的神经节节细胞数相比于NMDA对照组显著增加,而单独使用tFNA处理、单独使用miR22处理则与NMDA处理后的神经节节细胞的数量相比几乎没有变化。
3)IHC染色结果如图24所示:tFNAs-miR22处理后视网膜内BDNF及Tkrb的表达显著增加;
由此可知,tFNA-miR22组与其他组相比,视神经节细胞的存活率显著增加,表明本发明的复合物tFNA-miR22具有视神经保护的作用,可用于青光眼在内的神经退行性视神经疾病治疗,而且,效果显著优于单独使用tFNA、miR-22。说明二者发挥了协同增效的作用。
综上,本发明提供了一种可用于治疗青光眼在内的神经退行性视神经疾病的神经保护类药物,它含有以DNA四面体和miR-22按照1:(1~4)的摩尔比构成的tFNA-miR22。tFNA-miR22不但能够有效地被受损的RGC-5细胞摄入,而且能够有效抑制视网膜神经节细胞的凋亡,并促进脑源性神经因子(BDNF)的释放,进而对视网膜神经节细胞起到良好的保护作用。
SEQUENCE LISTING
<110> 四川大学
<120> 一种治疗视神经疾病的复合物及其制备方法和用途
<130> GYKH1118-2021P0112554CC
<160> 5
<170> PatentIn version 3.5
<210> 1
<211> 63
<212> DNA
<213> 人工序列
<400> 1
atttatcacc cgccatagta gacgtatcac caggcagttg agacgaacat tcctaagtct 60
gaa 63
<210> 2
<211> 63
<212> DNA
<213> 人工序列
<400> 2
acatgcgagg gtccaatacc gacgattaca gcttgctaca cgattcagac ttaggaatgt 60
tcg 63
<210> 3
<211> 63
<212> DNA
<213> 人工序列
<400> 3
actactatgg cgggtgataa aacgtgtagc aagctgtaat cgacgggaag agcatgccca 60
tcc 63
<210> 4
<211> 63
<212> DNA
<213> 人工序列
<400> 4
acggtattgg accctcgcat gactcaactg cctggtgata cgaggatggg catgctcttc 60
ccg 63
<210> 5
<211> 22
<212> RNA
<213> miRNA-22
<400> 5
aagcugccag uugaagaacu gu 22

Claims (12)

1.一种治疗视神经损伤的复合物,其特征在于,它由DNA四面体和miR-22按照1:(1~4)的摩尔比构成;
所述DNA四面体由4条单链DNA经碱基互补配对形成;所述4条单链DNA的序列分别一对一地选自SEQ ID NO.1~4的所述序列;miR-22的序列为SEQ ID NO.5所述序列;
所述miR-22通过化学键连接在构成DNA四面体结构的4条单链DNA中的1~4条单链DNA上。
2.如权利要求1所述的复合物,其特征在于,所述miR-22和所述单链DNA之间还含有连接序列,所述连接序列为核苷酸序列。
3.如权利要求2所述的复合物,其特征在于,所述连接序列为脱氧核糖核苷酸序列。
4.如权利要求3所述的复合物,其特征在于,所述脱氧核糖核苷酸序列为-TTTTT-。
5.权利要求1~4任一项所述复合物的制备方法,其特征在于,它是将DNA四面体的4条单链DNA置于足以使其变性的温度下维持10min以上,再将温度降低到2~8℃维持20min以上;
所述4条单链DNA的其中1条上连接有miR-22。
6.如权利要求5所述的制备方法,其特征在于,它是将DNA四面体的4条单链置于95℃下维持10min,再将温度降低到4℃维持20min。
7.权利要求1~4任一项所述的复合物在制备治疗视神经损伤的药物中的用途。
8.如权利要求7所述的用途,其特征在于,所述治疗视神经损伤的药物是视神经保护的药物。
9.如权利要求8所述的用途,其特征在于,所述视神经保护药物为减缓视网膜神经节细胞损伤,和/或减少视网膜神经节细胞凋亡,和/或促进视网膜神经节细胞存活的药物。
10.如权利要求9所述的用途,其特征在于,所述视神经保护药物为促进BDNF释放的药物。
11.如权利要求7或8所述的用途,其特征在于,所述治疗视神经损伤的药物是治疗青光眼中的视神经损伤的药物。
12.一种治疗视神经损伤的药物,其特征在于,它是以权利要求1~4任一项所述的复合物为活性成分,加上药学上可接受的辅料制备而成的药物。
CN202110293024.0A 2021-03-18 2021-03-18 一种治疗视神经疾病的复合物及其制备方法和用途 Active CN112843085B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202110293024.0A CN112843085B (zh) 2021-03-18 2021-03-18 一种治疗视神经疾病的复合物及其制备方法和用途
EP22770464.0A EP4309659A1 (en) 2021-03-18 2022-03-14 Complex for treating optic nerve disease, and preparation method therefor and use thereof
JP2023544677A JP2024504413A (ja) 2021-03-18 2022-03-14 視神経疾患治療用複合体、その調製方法およびその使用
PCT/CN2022/080771 WO2022194109A1 (zh) 2021-03-18 2022-03-14 一种治疗视神经疾病的复合物及其制备方法和用途
US18/267,015 US20240052347A1 (en) 2021-03-18 2022-03-14 Complex for treating optic nerve disease, and preparation method therefor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110293024.0A CN112843085B (zh) 2021-03-18 2021-03-18 一种治疗视神经疾病的复合物及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN112843085A CN112843085A (zh) 2021-05-28
CN112843085B true CN112843085B (zh) 2022-07-12

Family

ID=75993516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110293024.0A Active CN112843085B (zh) 2021-03-18 2021-03-18 一种治疗视神经疾病的复合物及其制备方法和用途

Country Status (5)

Country Link
US (1) US20240052347A1 (zh)
EP (1) EP4309659A1 (zh)
JP (1) JP2024504413A (zh)
CN (1) CN112843085B (zh)
WO (1) WO2022194109A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983972B (zh) * 2022-05-17 2023-04-21 华南理工大学 水凝胶包被miRNA-200s纳米微粒缓释系统在制备视神经炎疾病类药物中的应用
CN115006423B (zh) * 2022-06-28 2023-07-18 四川大学 四面体框架核酸在制备预防和/或治疗脑外伤后遗症的药物中的用途
CN115068496B (zh) * 2022-06-29 2023-07-07 四川大学 Dna四面体框架核酸和香蒲新苷的复合物及其制备治疗急性肾损伤的药物的用途
CN115969988A (zh) * 2022-09-01 2023-04-18 成都景润泽基因科技有限公司 一种治疗新生血管性视网膜疾病的dna四面体药物复合物及其制备方法和用途
CN116459270A (zh) * 2023-03-24 2023-07-21 中山大学中山眼科中心 一种药物组合物及其在制备防治眼部新生血管性疾病药物中的应用
CN117695301A (zh) * 2023-12-08 2024-03-15 哈尔滨医科大学附属第一医院 基于框架核酸的miRNA-21递送系统及其在角膜上皮损伤修复中的应用
CN117717566A (zh) * 2024-02-08 2024-03-19 天津医科大学眼科医院 miR22或miR22高表达MSC的外泌体miR22-Exos在治疗眼疾病药物中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2776565A1 (en) * 2011-11-08 2014-09-17 Quark Pharmaceuticals, Inc. Methods and compositions for treating diseases, disorders or injury of the nervous system
CN103789838B (zh) * 2014-02-20 2017-07-14 南京纳鑫新材料有限公司 一种晶硅制绒添加剂的制备方法及其应用
US20190046576A1 (en) * 2016-02-12 2019-02-14 Cell Care Therapeutics Adipose tissue derived mesenchymal stromal cell conditioned media and methods of making and using the same
TW201920654A (zh) * 2017-06-05 2019-06-01 加州大學董事會 用來治療視網膜疾病的組合物及其製造與使用方法
CN109806275B (zh) 2017-11-22 2021-04-23 成都腾达树纳米生物科技有限公司 Dna四面体在促神经修复药物制备中的用途
CN112007044B (zh) * 2019-09-10 2021-11-12 四川大学 一种预防视网膜神经节细胞氧化应激和湿性黄斑病变的药物

Also Published As

Publication number Publication date
EP4309659A1 (en) 2024-01-24
WO2022194109A1 (zh) 2022-09-22
US20240052347A1 (en) 2024-02-15
CN112843085A (zh) 2021-05-28
JP2024504413A (ja) 2024-01-31

Similar Documents

Publication Publication Date Title
CN112843085B (zh) 一种治疗视神经疾病的复合物及其制备方法和用途
Vedunova et al. TrkB-mediated neuroprotective and antihypoxic properties of brain-derived neurotrophic factor
CN112007044B (zh) 一种预防视网膜神经节细胞氧化应激和湿性黄斑病变的药物
Di Nardo et al. The physiology of homeoprotein transduction
Willmann et al. Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats
JP7178055B2 (ja) 視神経保護用組成物
Yadav et al. Bio-tactics for neuroprotection of retinal ganglion cells in the treatment of glaucoma
KR20190120197A (ko) 치료 및 신경보호 펩티드
Wang et al. Effects of JIP3 on epileptic seizures: evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures
Yin et al. Zinc oxide nanoparticles ameliorate collagen lattice contraction in human tenon fibroblasts
CA3063851C (en) Treatment of glaucoma
Yang et al. Retinal protection by sustained nanoparticle delivery of oncostatin M and ciliary neurotrophic factor into rodent models of retinal degeneration
Shao et al. Wogonin inhibits inflammation and apoptosis through STAT3 signal pathway to promote the recovery of spinal cord injury
CN106714821A (zh) Jnk信号转导途径的细胞穿透肽抑制剂用于治疗多种疾病的新用途
CN102218051A (zh) 丙戊酸钠在制备治疗或改善青光眼视神经病变的药物中的用途
JP7436067B2 (ja) ナノ低分子ペプチドfg及びその眼底血管疾患の治療用薬物又は予防用薬物の調製への使用
WO2024045251A1 (zh) 一种治疗新生血管性视网膜疾病的小干扰rna及其dna四面体复合物
KR102632692B1 (ko) 3차원 스페로이드형 세포 응집체 유래 세포외소포를 포함하는 신경 재생 촉진 조성물
CN112641796B (zh) 一种缺血性脑卒中的神经保护药物
Zhao et al. A novel neuroinflammation-responsive hydrogel based on mimicking naked mole rat brain microenvironment retards neurovascular dysfunction and cognitive decline in Alzheimer’s disease
CN104546692B (zh) 重组牛碱性成纤维细胞生长因子眼用凝胶
Trofimova Molecular Mechanisms of Retina Pathology and Ways of Its Correction
Kim et al. Effective protection of photoreceptors using an inflammation-responsive hydrogel to attenuate outer retinal degeneration
Wu et al. Lithium Chloride Exerts Anti-Inflammatory and Neuroprotective Effects by Inhibiting Microglial Activation in LPS-Induced Retinal Injury
RU2496454C2 (ru) ПРИМЕНЕНИЕ НОВЫХ ОЛИГОПЕПТИДНЫХ ФРАГМЕНТОВ БЕЛКА S100b В КАЧЕСТВЕ СТИМУЛЯТОРОВ И МОДУЛЯТОРОВ РЕГЕНЕРАТОРНЫХ ПРОЦЕССОВ В РОГОВИЦЕ ГЛАЗА

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220422

Address after: 610095 No. 8, 6 / F, building 2, No. 1480, north section of Tianfu Avenue, high tech Zone, Chengdu, Sichuan

Applicant after: Chengdu jingrunze Gene Technology Co.,Ltd.

Address before: 610000 No. 24 south part of Wuhou District first ring road, Chengdu, Sichuan.

Applicant before: SICHUAN University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant