CN112830784B - 一种玻璃碳体材料及其制备方法 - Google Patents

一种玻璃碳体材料及其制备方法 Download PDF

Info

Publication number
CN112830784B
CN112830784B CN202110077209.8A CN202110077209A CN112830784B CN 112830784 B CN112830784 B CN 112830784B CN 202110077209 A CN202110077209 A CN 202110077209A CN 112830784 B CN112830784 B CN 112830784B
Authority
CN
China
Prior art keywords
glassy carbon
carbon material
diamond
temperature
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110077209.8A
Other languages
English (en)
Other versions
CN112830784A (zh
Inventor
张壮飞
范静哲
沈维霞
房超
张跃文
王倩倩
陈良超
万彪
贾晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202110077209.8A priority Critical patent/CN112830784B/zh
Publication of CN112830784A publication Critical patent/CN112830784A/zh
Application granted granted Critical
Publication of CN112830784B publication Critical patent/CN112830784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于无机非金属材料领域,涉及一种玻璃碳体材料及其制备方法,具体是以纳米金刚石为前驱物,经真空放电等离子烧结得到所述玻璃碳体材料。本发明提供的玻璃碳体材料的制备方法,采用单一纳米金刚石材料作为前驱物,即可简单、快速、高效地制备得到玻璃碳体材料。

Description

一种玻璃碳体材料及其制备方法
技术领域
本发明属于无机非金属材料领域,涉及一种玻璃碳体材料及其制备方法。
背景技术
玻璃碳是一种非晶、无定形碳材料,具有优异的性能,如导电性好、化学稳定性高、热膨胀系数小,质地坚硬、气密性好等,在电化学电极和半导体加工领域应用极为广泛。
传统玻璃碳是将有机树脂类材料经过真空惰性气体高温热处理后制备得到的,此过程较为复杂、周期长,其核心本质为sp2成键形态的不定形碳(非晶碳材料),同时树脂材料本身存在碳、氢、氮、氧等,经处理后体系内还会残留氮、氢、氧等,对玻璃碳的电学和机械性能有一定影响。
发明内容
本发明提供一种玻璃碳体材料的制备方法,采用单一纳米金刚石材料作为前驱物,即可简单、快速、高效地制备得到玻璃碳体材料。
本发明提供的玻璃碳体材料的制备方法,是以纳米金刚石为前驱物,经真空等离子烧结后制得所述玻璃碳体材料。
优选地,所述放电等离子烧结是在真空条件下,先控制压力为30MPa,以100℃/min升温速率升温至800℃,保温2min;再将压力升高至50-100MPa,以100℃/min升温速率升温至1400℃,保温5-10min。
优选地,所述纳米金刚石的粒径为5-50nm。
优选地,所述真空是真空度低于10Pa。
优选地,所述纳米金刚石在等离子烧结前依次经酸洗、碱洗、去离子水洗涤,再进行真空干燥处理。
本发明还提供一种上述任一方法制备得到的玻璃碳体材料。
对比现有技术,本发明的有益效果为:
1、利用sp3成键状态的纯无机材料纳米金刚石为前驱物,经真空放电等离子体烧结过程时,纳米金刚石sp3成键状态的碳-碳键会向sp2碳-碳键转化,转化过程逐层进行,从外层开始逐渐到纳米金刚石核心,转化后的碳层呈无序分布,碳由纳米金刚石碳转变为无序非晶碳,生成不规则、无序的石墨烯条带,且由于放电等离子烧结是压力烧结,所以这种无序的不定形碳体积会收缩、挤压成致密块体,相比传统树脂类热处理工艺,此制备工艺相对简单;
2、在烧结阶段施加50-100MPa范围内的不同压力,在1400℃下保温5-10分钟即可将分散的纳米金刚石转化为玻璃碳体材料,制备方式成本低、无污染、工艺简单,且可以通过调节烧结温度和时间调节玻璃碳内石墨烯条带的组成及成键比例,实现调控sp3碳向sp2碳转化的转化率,进而实现调控玻璃碳体材料的物理和电学性能,制得的玻璃碳体材料具有高电导率、高硬度特性,适用于工业化生产;
3、烧结的玻璃碳体材料毛坯经抛光机抛光后显现玻璃特征,表面抛光后可达到镜面效果,具有极高光洁度。
附图说明
图1是纳米金刚石前驱物的透射电镜图;
图2是玻璃碳体材料的透射电镜图;
图3是玻璃碳体材料的外视图。
具体实施方式
下面通过实施例进一步描述本发明,但是本发明不受这些实施例的限制。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
实施例1
用爆轰法制备得到粒径为5nm的纳米金刚石,将其经酸、碱以及去离子水漂洗净化去除表面杂质及官能团,真空烘箱120℃保温24h去除水分,再将干燥过的纳米金刚石放置到圆柱石墨模具内,纳米金刚石与石墨模具通过厚度为0.01mm石墨纸隔离,以免纳米金刚石粘连模具导致后期脱模困难;然后将石墨模具放入液压机,10MPa压力下冷压并保压5min,之后将石墨模具放入放电等离子体烧结设备内,关闭腔室,通过石墨模具上下压头施加压力至30MPa,腔体抽真空至10Pa以内,开始以100℃/min的升温速率升温至800℃,保温2min,然后将烧结压力升高至50MPa,以100℃/min升温速率升温至1400℃,保温5min后,停止加热,待炉膛温度降至室温后,释放压力,取出石墨模具,在压片机上进行退模操作,得到玻璃碳毛坯,对玻璃碳毛坯进行打磨、抛光,即得到黑色的表面光亮的、高硬度及高导电率的玻璃碳体材料。
实施例2
用爆轰法制备得到粒径为50nm的纳米金刚石,将其经酸、碱以及去离子水漂洗净化去除表面杂质及官能团,真空烘箱120℃保温24h去除水分,将干燥后的纳米金刚石放置于石墨模具内,纳米金刚石与石墨模具通过厚度0.01mm石墨纸隔离,然后放到压片机上10MPa下预压5min;之后将石墨模具放置到放电等离子体烧结设备腔室内,通过石墨模具上下压头施加压力至30MPa,待腔室真空度低于10MPa后,以100℃/min升温速率升温至800℃,保温2min,然后将烧结压力升高至50MPa,以100℃/min升温速率升温至1400℃,保温5min后,停止加热,待炉膛温度降至室温后,释放压力,取出石墨模具,退模得到玻璃碳毛坯,经打磨、抛光处理可得到玻璃碳体材料。
实施例3
用爆轰法制备得到粒径为50nm的纳米金刚石,将其经酸、碱以及去离子水漂洗净化去除表面杂质及官能团,真空烘箱120℃保温24h去除水分,将干燥后的纳米金刚石放置于石墨模具内,纳米金刚石与石墨模具通过厚度0.01mm石墨纸隔离,然后放到压片机上10MPa下预压5min;之后将石墨模具放置到放电等离子体烧结设备腔室内,通过石墨模具上下压头施加压力至30MPa,待腔室真空度低于10MPa后,以100℃/min升温速率升温至800℃,保温2min,然后将压力升高至100MPa,以100℃/min升温至1400℃,保温10min,停止加热,待炉膛温度降至室温后,释放压力,取出石墨模具,退模得到玻璃碳毛坯,经打磨、抛光处理可得到玻璃碳体材料。
实施例4
用爆轰法制备得到粒径为20nm的纳米金刚石,将其经酸、碱以及去离子水漂洗净化去除表面杂质及官能团,真空烘箱120℃保温24h去除水分,将干燥后的纳米金刚石放置于石墨模具内,纳米金刚石与石墨模具通过厚度0.01mm石墨纸隔离,然后放到压片机上10MPa下预压5min;之后将石墨模具放置到放电等离子体烧结设备腔室内,通过石墨模具上下压头施加压力至30MPa,待腔室真空度低于10MPa后,以100℃/min升温速率升温至800℃,保温2min,然后将压力升高至80MPa,以100℃/min升温至1400℃,保温8min,停止加热,待炉膛温度降至室温后,释放压力,取出石墨模具,退模得到玻璃碳毛坯,经打磨、抛光处理可得到玻璃碳体材料。
实施例5
用爆轰法制备得到粒径为20nm的纳米金刚石,将其经酸、碱以及去离子水漂洗净化去除表面杂质及官能团,真空烘箱120℃保温24h去除水分,将处理后的纳米金刚石放置于高强石墨模具内,纳米金刚石粉末与石墨模具通过薄石墨纸隔离,然后放到液压机上10MPa下预压5min;之后将石墨模具放置到放电等离子体烧结设备腔室内,通过石墨模具上下压头施加压力至30MPa,开启真空系统,待腔室真空度低于10MPa后,以100℃/min升温速率加热至800℃,保温2min,以排出纳米金刚石残留气体;然后加压压力升至70MPa,温度以100℃/min速率升温至1400℃,保温6min后停止加热,待炉膛温度降至室温后,释放压力,取出石墨模具,退模得到玻璃碳毛坯,经打磨、抛光、切割处理后可得到任意形状玻璃碳体材料制品。
由于实施例1-5制备得到的玻璃碳体材料的性能基本相同,故以下仅以实施例1制备得到的玻璃碳体材料为例进行效果说明。
图1是纳米金刚石前驱物的透射电镜图。由图1可以看出,纳米金刚石前驱物主要以纳米颗粒形式存在,经过放电等离子体烧结处理后其存在形式发生明显变化。
图2是玻璃碳体材料的透射电镜图。由图2可以明显发现,已不存在颗粒状的纳米金刚石,取而代之的是无序存在的非晶碳条带,其存在形式无特定形式、无规律。
图3是玻璃碳体材料的外视图。由图3可知,本申请制备得到的玻璃碳体材料呈黑色、表面光亮,显现玻璃特征,表面抛光后可达到镜面效果,具有极高光洁度。
采用四探针对各实施例制备的玻璃碳材料的电阻率进行测量,其室温电阻率为50-80μΩ·m;使用维氏硬度计在5N载荷时测定各实施例制备的玻璃碳材料的硬度为138-250HV。差异性主要由制备压力决定,如制备压力高玻璃碳材料致密度会更高,其电阻率会下降,同样硬度指标也是如此,压力高硬度也会上升。
以上公开的仅为本发明的具体实施例,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (5)

1.一种玻璃碳体材料的制备方法,其特征在于,是以纳米金刚石为前驱物,经真空放电等离子烧结制得所述玻璃碳体材料;
所述放电等离子烧结是在真空条件下,先控制压力为30MPa,以100℃/min升温速率升温至800℃,保温2min;再将压力升高至50-100MPa,以100℃/min升温速率升温至1400℃,保温5-10min。
2.根据权利要求1所述的玻璃碳体材料的制备方法,其特征在于,所述纳米金刚石的粒径为5-50nm。
3.根据权利要求1所述的玻璃碳体材料的制备方法,其特征在于,所述真空是真空度低于10Pa。
4.根据权利要求1所述的玻璃碳体材料的制备方法,其特征在于,所述纳米金刚石在放电等离子烧结前依次经酸洗、碱洗、去离子水洗涤,再进行真空干燥处理。
5.根据权利要求1-4任一项所述的方法制备得到的玻璃碳体材料。
CN202110077209.8A 2021-01-20 2021-01-20 一种玻璃碳体材料及其制备方法 Active CN112830784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110077209.8A CN112830784B (zh) 2021-01-20 2021-01-20 一种玻璃碳体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110077209.8A CN112830784B (zh) 2021-01-20 2021-01-20 一种玻璃碳体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112830784A CN112830784A (zh) 2021-05-25
CN112830784B true CN112830784B (zh) 2022-07-22

Family

ID=75929093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110077209.8A Active CN112830784B (zh) 2021-01-20 2021-01-20 一种玻璃碳体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112830784B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143518A (zh) * 2021-11-23 2023-05-23 燕山大学 导电高强金刚石/非晶碳复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133715A (ja) * 1994-11-14 1996-05-28 Kobe Steel Ltd 均質なガラス状炭素材の製造方法
JPH08325059A (ja) * 1995-05-30 1996-12-10 Tokai Carbon Co Ltd Si含有ガラス状カーボン材およびその製造方法
CN112176313A (zh) * 2019-07-02 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 一种玻璃碳/碳纳米管薄膜复合材料及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745340B2 (ja) * 1988-08-22 1995-05-17 株式会社神戸製鋼所 ダイヤモンド焼結体の製造方法
JP3166983B2 (ja) * 1992-02-10 2001-05-14 東海カーボン株式会社 管状多孔質ガラス状カーボン体の製造方法
US5413689A (en) * 1992-06-12 1995-05-09 Moltech Invent S.A. Carbon containing body or mass useful as cell component
CN102976311A (zh) * 2012-12-24 2013-03-20 武汉大学 一种二维片层碳纳米荧光材料
JP2014194852A (ja) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd リチウムイオン二次電池負極用の非晶質炭素材料及び黒鉛質炭素材料、それらを用いたリチウムイオン二次電池並びにリチウムイオン二次電池負極用の炭素材料の製造方法
CN107810071A (zh) * 2015-08-05 2018-03-16 哈利伯顿能源服务公司 火花等离子体烧结的聚晶金刚石
CN105753476B (zh) * 2016-02-16 2018-01-12 武汉理工大学 采用放电等离子烧结制备超高硬度金刚石复合材料的方法
CN109573979A (zh) * 2019-01-25 2019-04-05 燕山大学 一种新型玻璃碳的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133715A (ja) * 1994-11-14 1996-05-28 Kobe Steel Ltd 均質なガラス状炭素材の製造方法
JPH08325059A (ja) * 1995-05-30 1996-12-10 Tokai Carbon Co Ltd Si含有ガラス状カーボン材およびその製造方法
CN112176313A (zh) * 2019-07-02 2021-01-05 中国科学院苏州纳米技术与纳米仿生研究所 一种玻璃碳/碳纳米管薄膜复合材料及其制备方法与应用

Also Published As

Publication number Publication date
CN112830784A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
EP1425147B1 (en) Process for making porous graphite and articles produced therefrom
CN110698205B (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
US4226900A (en) Manufacture of high density, high strength isotropic graphite
JPH02279575A (ja) 緻密なセラミック膜を有するセラミック焼結体の製造方法
CN112830784B (zh) 一种玻璃碳体材料及其制备方法
CN110395988B (zh) 一种高强度氮化硼陶瓷及其制备方法
CN108610049B (zh) 各向同性石墨材料,其制造方法及其应用
CN104313380A (zh) 一种分步烧结制备高致密度纳米晶硬质合金的方法
CN111320478A (zh) 一种碳硅陶瓷靶材的制备方法
CN107129298B (zh) 一种石墨烯/ZrO2陶瓷复合材料的制备方法
CN106513683A (zh) 制备细晶高致密的氧化钇弥散强化钨基合金的方法
US11535567B2 (en) Polyimide-based composite carbon film with high thermal conductivity and preparation method therefor
CN111004036A (zh) 一种高致密度六方氮化硼基固体润滑复合材料及其制备方法
CN114105631A (zh) 一种超导靶材及其制备方法和应用
CN106587940B (zh) 一种高纯致密氧化镁靶材及其制备方法
CN113321208B (zh) 一种高致密性石墨烯膜的制备方法
CN110372394B (zh) 一种高塑性高弹性氮化硼致密陶瓷及其制备方法
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN109020508B (zh) 一种三维石墨烯桥连氧化物陶瓷及其制备方法
CN103567443A (zh) 钨靶材的制作方法
CN209872799U (zh) 一种低能耗热压生产氮化硼基陶瓷的装置
JP2024518014A (ja) 高靭性及び高強度窒化ケイ素ボールの製造方法
CN1371885A (zh) 放电等离子烧结法制备氮化铝透明陶瓷
JP2005039212A (ja) ダミーウェハ及びその製造方法
CN110629093A (zh) 一种TiAl基耐高温自润滑复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant