CN112824441A - 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 - Google Patents
一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 Download PDFInfo
- Publication number
- CN112824441A CN112824441A CN201911122565.6A CN201911122565A CN112824441A CN 112824441 A CN112824441 A CN 112824441A CN 201911122565 A CN201911122565 A CN 201911122565A CN 112824441 A CN112824441 A CN 112824441A
- Authority
- CN
- China
- Prior art keywords
- membrane
- polyvinylpyrrolidone
- composite membrane
- heteropoly acid
- porous base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2287—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2427/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2427/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2439/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
- C08J2439/04—Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
- C08J2439/06—Homopolymers or copolymers of N-vinyl-pyrrolidones
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明提供一种聚乙烯吡咯烷酮‑杂多酸复合膜及其制备方法与应用,具体表现为一种多孔基膜作为支撑层,向孔中填入聚乙烯吡咯烷酮与杂多酸的复合膜制备方法。其方法是:将聚乙烯吡咯烷酮与杂多酸的混合溶液浇铸在多孔基膜上,在一定温度烘干成膜;或在一定温度、压力下热压一段时间制备复合膜。由于杂多酸的存在,复合膜具备质子传导能力,由于聚乙烯吡咯烷酮的存在,可以锚定杂多酸防止其流失,最后多孔基膜作为支撑体,起到提高复合膜机械强度和减小膜溶胀以及膜厚度的作用。这种复合膜可应用在燃料电池、液流电池、铅酸电池以及水电解器中。
Description
技术领域
本发明涉及一种多孔聚乙烯/聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用,属于新能源技术与新材料技术领域
背景技术
质子交换膜燃料电池(PEMFC)是一种高效、清洁、环境友好的发电装置,是电动汽车的可靠动力源,也可以作为分散电站、潜艇、航天器和航空器等民用军用电源以及便携式小型电源等,具有广泛的应用前景。然而目前广泛使用的以为代表的全氟磺酸型质子交换膜燃料电池,在电池工作过程中,膜经过反复的吸水溶胀之后,机械性能会变得很差,且其价格昂贵,限制其使用。因此,开发低成本且性能满足使用要求的新型膜是PEMFC技术的一个重要发展方向。
杂多酸属于固体超强酸,具有超强质子传导能力,文献中常将其与SPEEK、Nafion等共混制备复合膜,但其为水溶性,在电池运行过程中会逐渐流失,稳定性不佳,专利文献CN201610854194.0以含有自由基淬灭剂的多孔聚苯并咪唑为基底,孔内填充聚苯并咪唑与有机硅交联树脂,制备得到复合膜浸泡磷酸用于高温质子交换膜燃料电池领域,但这种方法制备的质子交换膜只能在温度高于120℃时使用,而大多数燃料电池、水电解器、液流电池的使用温度为80℃以下,故上述专利的应用有很大局限。专利文献CN201010256732.9也用到聚乙烯吡咯烷酮,但其同样也是用于高温燃料电池中,制备得到的复合膜在浸泡磷酸之后溶胀严重。
发明内容
本发明的目的在于提供一种多孔基膜/聚乙烯吡咯烷酮-杂多酸复合膜的制备方法。杂多酸的加入,能够使复合膜具备质子传导能力,同时聚乙烯吡咯烷酮是一种碱性聚合物,能够与酸发生酸碱相互作用从而生成沉淀,聚乙烯吡咯烷酮的存在可以阻止杂多酸的流失,同时二者的相互作用能赋予复合物不溶于水的特性,多孔基膜为二者提供一个支撑体,以减小复合膜在水中或甲醇中的溶胀,维持尺寸稳定性。
为实现上述目的,本发明采用的技术方案可通过以下方法实现:
本发明一方面提供一种复合膜,所述复合膜包括多孔基膜和位于多孔基膜孔内的聚乙烯吡咯烷酮和杂多酸;
所述多孔基膜为多孔聚乙烯、多孔聚丙烯、多孔聚偏氟乙烯和多孔聚四氟乙烯中的任意一种;
所述聚乙烯吡咯烷酮与杂多酸的质量比为1:0.2-1:2;聚乙烯吡咯烷酮与杂多酸在多孔基膜内的含量与基膜的孔隙率相关,本发明的聚乙烯吡咯烷酮与杂多酸是完全填充在多孔基膜的孔内。
基于以上技术方案,优选的,所述多孔基膜厚度为1-40微米,孔径为0.1-2微米,孔隙率为45%-90%。
基于以上技术方案,优选的,所述聚乙烯吡咯烷酮的分子量为50000-1500000;所述杂多酸为磷钨酸、磷钼酸、硅钨酸、硅钼酸中的一种或多种。
本发明还提供一种PVP-杂多酸复合膜的制备方法,具体包括如下步骤:
A)铸膜液溶液配制:称取适当质量的将聚乙烯吡咯烷酮固体与、杂多酸固体,溶于高沸点溶剂混合中,搅拌搅拌适当时间,得到不同质量浓度的均匀透明的混合溶液作为铸膜液溶液;
B)将步骤A)得到的铸膜液溶液通过浇铸法或热压法与多孔基膜复合,得到所述PVP-杂多酸复合膜。
基于以上技术方案,优选的,所述浇铸法的具体步骤为:将适当体积、质量浓度的聚乙烯吡咯烷酮与杂多酸的混合所述铸膜液溶液浇铸在多孔基膜上,再于适当的温度下烘干溶剂烘干,最终得到所述复合膜;将铸膜液溶液浇铸在多孔基膜上,成膜温度为50-140℃,在溶剂缓慢蒸发过程中,聚乙烯吡咯烷酮与杂多酸分子由于重力和毛细力作用逐渐进入多孔膜孔中,待溶剂完全蒸干后,多孔膜由白色变透明。
所述热压法的具体步骤为:向多孔基膜上涂覆所述铸膜液溶液,然后将涂覆有铸膜液溶液的多孔基膜置于将多孔基膜平铺在一片干净的聚酯片上之间,向其上均匀涂覆一定质量浓度、体积的聚乙烯吡咯烷酮-杂多酸混合溶液,将另一片干净聚酯片盖于其上,用平板等工具挤压除去膜中及两片聚酯片间气泡,最后置于两片石墨板中间,置于油压机上,一定温度和压力下热压一段时间后热压,待溶剂完全挥发后,小心取下复合膜,得到复合膜,密封保存。
基于以上技术方案,多孔基膜在使用前可在无水乙醇中浸泡1-24小时以除去膜孔中或表面的杂质及改善与溶剂的亲和性。
基于以上技术方案,优选的,步骤A)中混合溶液的搅拌温度为15-80℃,搅拌时间为1-48h。
基于以上技术方案,优选的,所述高沸点溶剂为N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP)或二甲基亚砜(DMSO)中一种或多种,聚乙烯吡咯烷酮与杂多酸总量在溶剂中的质量分数为1-50%。
基于以上技术方案,优选的,浇铸法中,复合膜的烘干温度为50-140℃,烘干时间为6-48h;热压法中,复合膜的热压温度为60-100℃,压力为0.05MPa-5MPa,热压时间为5-600min。
本发明还提供一种上述复合膜的应用,所述复合膜应用于燃料电池、液流电池、铅酸电池或水电解器中。
有益效果
(1)本发明以多孔基膜为基体,向膜孔中填充聚乙烯吡咯烷酮与杂多酸,基膜的使用使复合膜具有优异的尺寸稳定性,杂多酸赋予复合膜质子传导能力,聚乙烯吡咯烷酮与基膜相容性良好且用于锚定杂多酸,二者相互作用提高其在复合膜中稳定性。
(2)本发明通过选用碱性功能聚合物PVP对杂多酸进行锚定,防止杂多酸流失,聚乙烯吡咯烷酮是一种碱性聚合物,能够与酸发生酸碱相互作用从而生成沉淀,对杂多酸进行锚,聚乙烯吡咯烷酮的存在可以阻止杂多酸的流失,同时二者的相互作用能赋予复合物不溶于水的特性,多孔基膜为二者提供一个支撑体,以减小复合膜在水中或甲醇中的溶胀,维持尺寸稳定性。
(3)本发明复合膜制备方法灵活,可使用浇铸法或热压法制备。制备得到的复合膜具有较好的机械强度,拉伸强度可达60MPa以上,大大优于商业化Nafion 212膜(18.1MPa)。
(4)本发明制备得到的复合膜厚度可达10微米,薄于商业化Nafion 211膜(25微米),在将膜组装成电池测试时,膜厚度越低使得质子传导路径越短,且水管理更简单。并且本明的复合膜不局限于在高温质子交换膜燃料电池中使用,且由于有多孔基膜作为基体,复合膜的溶胀被多孔膜骨架限制,有良好的尺寸稳定性
(5)原料便宜易得,保存简单,可以极大降低目前质子交换膜的使用成本。
附图说明
图1为实施例1-5得到的复合膜的机械性能图。
实施例1
取0.5017g聚乙烯吡咯烷酮(分子量58000),取0.5009g磷钼酸,溶于49.0129g N,N-二甲基甲酰胺中,配制溶质质量分数为2%的混合溶液,搅拌10h,静置过夜脱除气泡,取10*8cm的8微米厚的多孔聚乙烯膜(孔径0.2微米,孔隙率50%)置于带有凹槽的8*8cm中,取7.5ml的混合溶液滴在多孔膜上,置于烘箱中85℃烘干16h,得到复合膜厚度为12微米,30℃横向电导率为28mS/cm。
实施例2
取1.6013g聚乙烯吡咯烷酮(分子量130000),取0.4097g硅钨酸,溶于48.0311g N,N-二甲基乙酰胺中,配制溶质质量分数为4%的混合溶液,搅拌12h,静置过夜脱除气泡,取10*8cm的35微米厚的多孔聚偏氟乙烯膜(孔径0.45微米,孔隙率64%)置于带有凹槽的10*10cm中,取12ml的混合溶液滴在多孔膜上,置于烘箱中70℃烘干20h,得到复合膜厚度为38微米,30℃横向电导率为13mS/cm。
实施例3
取2.6147g聚乙烯吡咯烷酮(分子量480000),取1.4073g磷钨酸,溶于3.0025g N,N-二甲基甲酰胺和5.0074g二甲基亚砜的混合溶剂中,配制溶质质量分数为33.3%的混合溶液,搅拌24h,静置过夜脱除气泡,取12*8cm的20微米厚的多孔聚丙烯膜(孔径0.15微米,孔隙率65%)置于一片干净的聚酯片上,用涂布棒将上述浓溶液涂布在多孔膜上,将另一片干净的聚酯片盖在上面,再将其夹在两块石墨板中间,放在油压机上热压温度设置在100℃,压力为1MPa,热压60min取下,得到复合膜厚度为20微米,30℃横向电导率为40mS/cm。
实施例4
取1.5147g聚乙烯吡咯烷酮(分子量900000),取2.5073g磷钼酸,溶于6.0025g N-甲基吡咯烷酮中,配制溶质质量分数为40%的混合溶液,搅拌36h,静置过夜脱除气泡,取10*8cm的10微米厚的多孔聚四氟乙烯膜(孔径0.75微米,孔隙率70%)置于一片干净的聚酯片上,将上述溶液涂覆在多孔膜上,将另一片干净的聚酯片盖在上面,再将其夹在两块石墨板中间,放在油压机上热压温度设置在90℃,压力为0.3MPa,热压500min取下,得到复合膜厚度为10微米,30℃横向电导率为50mS/cm。
实施例5
取2.7105g聚乙烯吡咯烷酮(分子量1360000),取0.6057g硅钼酸,0.7034g硅钨酸,溶于46.0009g二甲基亚砜中,配制溶质质量分数为8%的混合溶液,搅拌40h,静置过夜脱除气泡,取10*8cm的28微米厚的多孔聚乙烯膜(孔径1.8微米,孔隙率85%)置于带有凹槽的12*10cm中,取10ml的混合溶液滴在多孔膜上,置于烘箱中110℃烘干35h,得到复合膜厚度为30微米,30℃横向电导率为35mS/cm。
图1为实施例1-5得到的复合膜的机械性能图。本发明制备得到的复合膜的拉伸强度高于Nafion 212膜(18.1MPa。)
Claims (10)
1.一种复合膜,其特征在于,所述复合膜包括多孔基膜和位于多孔基膜孔内的聚乙烯吡咯烷酮和杂多酸;
所述多孔基膜为多孔聚乙烯、多孔聚丙烯、多孔聚偏氟乙烯和多孔聚四氟乙烯中的任意一种;
所述聚乙烯吡咯烷酮与杂多酸的质量比为1:0.2-1:2。
2.根据权利要求1所述的复合膜,其特征在于,所述多孔基膜厚度为1-40微米,孔径为0.1-2微米,孔隙率为45%-90%。
3.根据权利要求1所述的复合膜,其特征在于,所述聚乙烯吡咯烷酮的分子量为50000-1500000;所述杂多酸为磷钨酸、磷钼酸、硅钨酸、硅钼酸中的一种或多种。
4.一种权利要求1所述复合膜的制备方法,其特征在于,具体包括如下步骤:
A)铸膜液溶液配制:将聚乙烯吡咯烷酮、杂多酸、高沸点溶剂混合,搅拌,得到铸膜液溶液;
B)将步骤A)所述铸膜液溶液通过浇铸法或热压法与多孔基膜复合,得到所述复合膜。
5.根据权利要求4所述的制备方法,其特征在于:
所述浇铸法的具体步骤为:将所述混合溶液浇铸在多孔基膜上,烘干溶剂,得到复合膜;
所述热压法的具体步骤为:向所述多孔基膜上涂覆所述混合溶液,然后将涂覆有混合溶液的多孔基膜置于聚酯片之间,用平板挤压除去气泡,最后置于油压机上热压,得到所述复合膜。
6.按照权利要求4所述的制备方法,其特征在于,所述多孔基膜在使用前在无水乙醇中浸泡1-24小时。
7.按照权利要求4所述的制备方法,其特征在于,步骤A)中混合溶液的搅拌温度为15-80℃,搅拌时间为1-48h。
8.按照权利要求4所述的制备方法,其特征在于,所述高沸点溶剂为N,N-二甲基甲酰胺(DMF),N,N-二甲基乙酰胺(DMAc),N-甲基吡咯烷酮(NMP)或二甲基亚砜(DMSO)中一种或多种,聚乙烯吡咯烷酮与杂多酸总量在溶剂中的质量分数为1-50%。
9.按照权利要求5所述的制备方法,其特征在于,浇铸法中,复合膜的烘干温度为50-140℃,烘干时间为6-48h;热压法中,复合膜的热压温度为60-100℃,压力为0.05MPa-5MPa,热压时间为5-600min。
10.一种权利要求1所述的复合膜的应用,其特征在于,所述复合膜应用于燃料电池、液流电池、铅酸电池或水电解器中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911122565.6A CN112824441A (zh) | 2019-11-15 | 2019-11-15 | 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911122565.6A CN112824441A (zh) | 2019-11-15 | 2019-11-15 | 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112824441A true CN112824441A (zh) | 2021-05-21 |
Family
ID=75906190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911122565.6A Pending CN112824441A (zh) | 2019-11-15 | 2019-11-15 | 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112824441A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512696A (zh) * | 2022-02-14 | 2022-05-17 | 上海捷氢科技股份有限公司 | 一种含自由基淬灭层的增强型质子交换膜及其制备方法和应用 |
CN115364898A (zh) * | 2022-08-31 | 2022-11-22 | 浙江大学 | 黄钨酸膜催化剂的制备方法及在压电催化污染物去除中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376961A (zh) * | 2010-08-18 | 2012-03-14 | 北京航空航天大学 | 一种燃料电池用的高温质子交换膜及制备方法 |
CN104659395A (zh) * | 2013-11-20 | 2015-05-27 | 北京迈托科美科技有限公司 | 一种质子交换膜燃料电池用有机-无机复合质子交换膜及其制备方法 |
-
2019
- 2019-11-15 CN CN201911122565.6A patent/CN112824441A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102376961A (zh) * | 2010-08-18 | 2012-03-14 | 北京航空航天大学 | 一种燃料电池用的高温质子交换膜及制备方法 |
CN104659395A (zh) * | 2013-11-20 | 2015-05-27 | 北京迈托科美科技有限公司 | 一种质子交换膜燃料电池用有机-无机复合质子交换膜及其制备方法 |
Non-Patent Citations (3)
Title |
---|
SHANFU LU: "Homogeneous blend membrane made from poly(ether sulphone) and poly(vinylpyrrolidone) and its application to water electrolysis", 《JOURNAL OFMEMBRANESCIENCE》 * |
吴庆银: "Dawson结构钨磷酸复合有机聚合物高质子导体的制备与导电性能研究", 《徐州工程学院学报》 * |
赵守莉: "取代型杂多酸一有机杂化材料的合成、表征及导电性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512696A (zh) * | 2022-02-14 | 2022-05-17 | 上海捷氢科技股份有限公司 | 一种含自由基淬灭层的增强型质子交换膜及其制备方法和应用 |
CN115364898A (zh) * | 2022-08-31 | 2022-11-22 | 浙江大学 | 黄钨酸膜催化剂的制备方法及在压电催化污染物去除中的应用 |
CN115364898B (zh) * | 2022-08-31 | 2024-03-15 | 浙江大学 | 黄钨酸膜催化剂的制备方法及在压电催化污染物去除中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110982085B (zh) | 一类富偶氮键共价有机框架材料的制备及其在质子导电和燃料电池应用 | |
Park et al. | Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs | |
CN105047844A (zh) | 一种三明治结构复合质子交换膜及其制备方法和用途 | |
CN102569855A (zh) | 电解质膜和使用该电解质膜的燃料电池 | |
CN112824441A (zh) | 一种聚乙烯吡咯烷酮-杂多酸复合膜及其制备方法与应用 | |
CN108987774A (zh) | 一种稳定型MOFs燃料电池质子交换膜及其制备方法 | |
CN111333892B (zh) | 一种有机/无机两性离子传导复合膜的制备方法 | |
CN112717731B (zh) | 一种离子导电膜及其制备方法 | |
CN110943238B (zh) | 一种液流电池用离子传导膜及其制备和应用 | |
CN110556558A (zh) | 多层复合质子交换膜及其制备方法 | |
CN103296296B (zh) | 一种氢氯燃料电池用多孔膜及其制备和应用 | |
CN111129557B (zh) | 磷酸改性聚苯并咪唑质子交换膜及其制备方法 | |
CN117276610A (zh) | 一种高韧性COFs/PTFE复合质子交换膜及其制备方法 | |
CN110943237B (zh) | 一种离子传导膜在液流电池上的应用 | |
CN103515629B (zh) | 一种氢氯燃料电池用复合超滤或纳滤膜及其制备和应用 | |
CN111048811B (zh) | 一种复合质子交换膜、制备方法以及质子交换膜燃料电池 | |
CN101794889B (zh) | 一种基于聚氨酯的互穿网络离子交换膜及其制备方法 | |
CN101359743A (zh) | 无机/有机复合质子燃料电池交换膜及制备方法 | |
CN109390601B (zh) | 一种离子交换膜的制备方法 | |
CN114573847B (zh) | 一种液流电池用超高机械强度超薄膜及其制备和应用 | |
Yu et al. | Electrochemical properties of proton exchange membrane I: The influence of sulfonation degree and solvent | |
CN112940321B (zh) | 一种液流电池用交联复合膜及其制备和应用 | |
CN117069988B (zh) | 一种磺化聚醚醚酮基复合离子膜的制备方法及其产品和应用 | |
CN111952648B (zh) | 一种增强型复合高分子电解质膜及其制备方法和应用 | |
CN117638130B (zh) | 一种高阻钒性全钒液流电池用多孔隔膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210521 |
|
RJ01 | Rejection of invention patent application after publication |