CN112814146A - 基于bim技术的墙体绿色施工方法 - Google Patents

基于bim技术的墙体绿色施工方法 Download PDF

Info

Publication number
CN112814146A
CN112814146A CN202011638926.5A CN202011638926A CN112814146A CN 112814146 A CN112814146 A CN 112814146A CN 202011638926 A CN202011638926 A CN 202011638926A CN 112814146 A CN112814146 A CN 112814146A
Authority
CN
China
Prior art keywords
prefabricated
wall
dimensional
floor slab
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011638926.5A
Other languages
English (en)
Inventor
殷国华
赵志伟
熊志杰
殷丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Chuangwei Building Decoration Engineering Co ltd
Original Assignee
Hubei Chuangwei Building Decoration Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Chuangwei Building Decoration Engineering Co ltd filed Critical Hubei Chuangwei Building Decoration Engineering Co ltd
Priority to CN202011638926.5A priority Critical patent/CN112814146A/zh
Publication of CN112814146A publication Critical patent/CN112814146A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B1/6108Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B1/6108Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together
    • E04B1/6116Connections for building structures in general of slab-shaped building elements with each other the frontal surfaces of the slabs connected together by locking means on lateral surfaces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • E04C5/165Coaxial connection by means of sleeves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B2001/6195Connections for building structures in general of slab-shaped building elements with each other the slabs being connected at an angle, e.g. forming a corner

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

本发明涉及一种基于BIM技术的墙体绿色施工方法,涉及建筑墙体的技术领域。它包括根据待修筑墙体的二维图纸和施工场地的地形地势,建立待修筑墙体的三维BIM模型,并确定待修筑墙体的预制剪力墙和预制楼板的安装位置;根据三维BIM模型准备多个预制楼板和多个预制剪力墙;根据三维BIM模型中预制楼板和预制剪力墙的安装位置在施工场地的基础上安装预制楼板和预制剪力墙;在待修筑墙体装配完毕后,利用扫描获得的点云数据对已经装配好的墙体进行三维建模,得到已装配墙体的三维实体模型,将此三维实体模型与三维BIM模型进行对比,检查实体三维模型是否符合设计要求。本发明能耗较小、施工周期短、节能环保。

Description

基于BIM技术的墙体绿色施工方法
技术领域
本发明涉及建筑墙体的技术领域,尤其是涉及一种基于BIM技术的墙体绿色施工方法。
背景技术
建筑信息模型(BuildingInformationModeling,简称BIM)是建筑学、工程学及土木工程的新工具,其被定义成由完全和充足信息构成以支持生命周期管理,并可由计算机应用程序直接解释的建筑或建筑工程信息模型。
现检索到一篇公开号为CN107368618A的中国专利公开了一种基于BIM技术的双曲幕墙施工方法,其包括步骤:利用BIM的AutodeskRevit软件创建双曲幕墙的三维梁柱模型;在三维梁柱模型中创建双曲幕墙的埋件和龙骨的对应关系,对不同位置的龙骨和埋件进行关系定位;对双曲幕墙的表皮进行单元模块的划分,利用AutodeskRevit软件对每个单元模块进行表皮模型的建立;将表皮模型、三维梁柱模型、埋件和龙骨导出至Navisworks软件中,进行安装模拟。
针对上述相关技术,发明人认为上述双曲幕墙在施工过程中没有采用装配式结构进行施工,从而让上述双曲幕墙在施工时耗时较长、能源消耗较大,因此有必要进行改进。
发明内容
针对相关技术存在的不足,本发明的目的是提供一种基于BIM技术的墙体绿色施工方法,具有能耗较小、施工周期短、节能环保的优点。
本发明的上述发明目的一是通过以下技术方案得以实现的:
一种基于BIM技术的墙体绿色施工方法,包括如下步骤:
S1:根据待修筑墙体的二维图纸和施工场地的地形地势,建立待修筑墙体的三维BIM模型;
S2:根据三维BIM模型准备多个预制楼板和多个预制剪力墙,所述预制剪力墙上安装若干定位柱,和用于方便装配预制楼板和预制剪力墙的企口;所述预制楼板上安装有若干与所述定位柱对应的定位孔;
S3:根据三维BIM模型中预制楼板和预制剪力墙的安装位置在施工场地的基础上安装预制楼板和预制剪力墙;
S4:在待修筑墙体装配完毕后,利用扫描获得的点云数据对已经装配好的墙体进行三维建模,得到已装配墙体的三维实体模型,将此三维实体模型与三维BIM模型进行对比,检查实体三维模型是否符合设计要求。
通过采用上述技术方案,本申请通过建立三维BIM模型以让人们可以方便地了解各个预制剪力墙和各个预制楼板应当安装的位置,这样,工作人员在施工时会更加方便、快捷;同时,由于本申请采用装配式结构来制作墙体,因此,本申请不仅可以在PC工厂进行预制生产,在施工现场安装,实现工业化成产,同时还能极大提高生产效率、材料利用率,从源头上减少能耗、资源利用,故本申请装配式建筑工人投入少,人工成本低,并降低人为对施工质量的影响;施工现场更规范、整洁,噪音污染、扬尘等影响也有极大改善。
可选的,所述三维BIM模型的创建方法如下:根据待修筑墙体已有的二维CAD图纸绘制,通过基于Revit的MagiCAD软件绘制待修筑墙体的三维模拟模型,然后在三维模拟模型中加载待修筑墙体的动态装配过程,此时,也可完成三维BIM模型的创建;
通过采用上述技术方案,并通过模拟建造弧形墙体的动态过程以便于工作人员在动态模拟建造弧形墙体过程中发现问题以修正,这样,本申请在施工时会更加方便,施工周期更短。
可选的,所述三维BIM模型上还加载有装配过程中的施工操作信息以及施工操作注意事项信息。
通过采用上述技术方案,本申请通过模拟建造弧形墙体的动态过程中标准的施工操作信息以及施工操作注意事项信息,起到指导工作人员施工操作效果,降低工作人员在施工操作过程中的不合理操作,以提高本申请的施工质量。
可选的,所述定位柱为带有连结筋的灌浆套筒,且所述灌浆套筒呈竖直布置并安装于预制剪力墙的两端。
通过采用上述技术方案,本申请能够更好地传递连结筋(钢筋)的应力,便于预制楼板和预制剪力墙能更牢固的装配在一起。
实际工作时,本申请所述的套筒灌浆连接是将钢筋插入对接套筒中,然后从灌浆口注入由水泥、膨胀剂、细骨料和高性能外加剂等构成的高强度灌浆材料,当高强灌浆材料达到预定强度后,钢筋与套筒牢固地连接在一起进而使两相邻的构件连接成一个整体。
可选的,将预制楼板和预制剪力墙安装在施工场地的基础上的步骤包括:基于三维BIM模型,先将预制剪力墙安装在施工场地的基础上,然后通过企口和定位柱将预制楼板装配在预制剪力墙上,接着通过预制装配构件将底层楼板和底层墙体连接在一起,最后向预制楼板的定位孔内灌注现浇混凝土,通过现浇混凝土将预制楼板和预制剪力墙连接在一起。
通过采用上述技术方案,安装于基础上的预制剪力墙也被称为底层预制剪力墙,在企口的帮助下,本申请能够很方便的对预制楼板和预制剪力墙进行定位,能方便人们装配预制楼板和预制剪力墙,同时,在预制装配构件的帮助下,本申请能够更好的将预制楼板和预制剪力墙连接在一起。
实际工作时,本申请的预制装配构件为现有技术,它可以为由钢制板材焊接而成的型材,也可以为角钢和型钢等型钢,人们在装配预制楼板和预制剪力墙,只需要在上述装配预制楼板和预制剪力墙的连接处安装上述型钢或型材,并通过螺栓、铆钉等标准件件将预制楼板和预制剪力墙牢固的连接在一起即可。
可选的,所述施工场地上的基础为现浇条形杯口基础,将预制剪力墙安装在所述条形杯口基础上的步骤为:首先在条形杯口基础底部设置水泥砂浆;然后用吊车将预制墙体放于条形杯口基础中,并设置临时支撑以保证该预制墙体的稳定性;接着按三维BIM模型中施工操作信息以及施工操作注意事项信息要求浇筑混凝土,最后等到混凝土达到规定强度之后,撤离临时支撑,再继续进行后续装配施工。
通过采用上述技术方案,现浇条形杯口基础能确保本申请的结构强度满足本申请的施工要求,能将预制墙板和预制楼板牢固的连接在一起,这样,在三维BIM模型的帮助下,本申请即可将预制剪力墙安装在施工场地的基础上。
实际工作时,此时安装的预制剪力墙为底层剪力墙。
可选的,通过企口和定位柱将预制楼板装配在预制剪力墙上的步骤为:先通过吊机将预制楼板放置于预制剪力墙的正上方,并使预制楼板上的企口的位置和预制剪力墙端部的位置对应,然后根据定位柱的位置沿竖直方向下放预制楼板,最后在将预制楼板下放至预制剪力墙上后,通过吊机调节预制楼板的位置,直至预制楼板和预制剪力墙之间的装配位置和三维BIM模型内的安装位置相符。
通过采用上述技术方案,定位柱能够起到一定的导向作用,让工作人员知道应当将预制剪力墙和预制楼板吊装到何处,这样,本申请施工会更加方便。
本申请的企口和预制楼板为一体成型,定位柱和预制剪力墙一体成型
可选的,所述预制楼板的四个侧边上均设有企口,所述定位柱位于企口内。
通过采用上述技术方案,当将定位柱安装于企口内后,本申请不仅在结构上会更加紧凑,而且能更加方便人们装配预制楼板和预制剪力墙。
综上所述,本发明包括以下至少一种有益技术效果:
1.本申请通过建立三维BIM模型以让人们可以方便地了解各个预制剪力墙和各个预制楼板应当安装的位置,这样,工作人员在施工时会更加方便、快捷;
2.本申请不仅可以在PC工厂进行预制生产,在施工现场安装,实现工业化成产,同时还能极大提高生产效率、材料利用率,从源头上减少能耗、资源利用,故本申请装配式建筑工人投入少,人工成本低,并降低人为对施工质量的影响;施工现场更规范、整洁,噪音污染、扬尘等影响也有极大改善;
3.在企口的帮助下,本申请能够很方便的对预制楼板和预制剪力墙进行定位,能方便人们装配预制楼板和预制剪力墙,同时,在预制装配构件的帮助下,本申请能够更好的将预制楼板和预制剪力墙连接在一起。
附图说明
图1是本发明所述基于BIM技术的墙体绿色施工方法的流程示意图;
图2是预制楼板和预制剪力墙的装配结构示意图;
图3是预制剪力墙的结构示意图。
附图标记:1、预制楼板;2、预制剪力墙;3、企口;4、定位柱;5、混凝土;6、预制装配构件;7、连结筋;8、灌浆套筒;9、定位孔。
具体实施方式
以下结合附图对本发明作进一步详细说明。
如图1所示,本申请提供一种基于BIM技术的墙体绿色施工方法,包括如下步骤:
S1:根据待修筑墙体的二维图纸和施工场地的地形地势,建立待修筑墙体的三维BIM模型,并确定待修筑墙体的预制剪力墙2和预制楼板1的安装位置;
实际工作时,三维BIM模型的创建方法如下:根据待修筑墙体已有的二维CAD图纸绘制,通过基于Revit的MagiCAD软件绘制待修筑墙体的三维模拟模型,然后在三维模拟模型中加载待修筑墙体的动态装配过程,此时,也可完成三维BIM模型的创建。本申请并通过模拟建造弧形墙体的动态过程以便于工作人员在动态模拟建造弧形墙体过程中发现问题以修正,这样,本申请在施工时会更加方便,施工周期更短。
实际工作时,三维BIM模型上还加载有装配过程中的施工操作信息以及施工操作注意事项信息。这样,本申请可以起到指导工作人员施工操作效果,降低工作人员在施工操作过程中的不合理操作,以提高本申请的施工质量。
S2:根据三维BIM模型准备多个预制楼板1和多个预制剪力墙2,预制剪力墙2上安装若干定位柱4,和用于方便装配预制楼板1和预制剪力墙2的企口3,企口3能对预制楼板1和预制剪力墙2进行定位,方便人们装配预制楼板1和预制剪力墙2;预制楼板1上安装有若干与定位柱4对应的定位孔9;
实际工作时,定位柱4为带有连结筋7的灌浆套筒8,且灌浆套筒8呈竖直布置并安装于预制剪力墙2的两端。本申请灌浆套筒8为现有技术,它是将钢筋插入对接套筒中,然后从灌浆口注入由水泥、膨胀剂、细骨料和高性能外加剂等构成的高强度灌浆材料,当高强灌浆材料达到预定强度后,钢筋与套筒牢固地连接在一起进而使两相邻的构件连接成一个整体。
S3:根据三维BIM模型中预制楼板1和预制剪力墙2的安装位置在施工场地的基础上安装预制楼板1和预制剪力墙2;
优选的,将预制楼板1和预制剪力墙2安装在施工场地的基础上的步骤包括:基于三维BIM模型,先将预制剪力墙2安装在施工场地的基础上,然后通过企口3和定位柱4将预制楼板1装配在预制剪力墙2上,接着通过预制装配构件6将底层楼板和底层墙体连接在一起,最后向预制楼板1的定位孔9内灌注混现浇混凝土5,通过现浇混凝土5将预制楼板1和预制剪力墙2连接在一起。
实际工作时,安装于基础上的预制剪力墙2也被称为底层预制剪力墙2,在安装预制楼板1和预制剪力墙2时,本申请还可以根据原有的二维图纸进行墙体施工,同时,如果在施工过程中发现原有的三维BIM模型中有设计不合理之处,也可以对基于三维BIM模型进行适当修改。
实际工作时,本申请的预制装配构件6为现有技术,它可以为由钢制板材焊接而成的型材,也可以为角钢和型钢等型钢,人们在装配预制楼板1和预制剪力墙2,只需要在上述装配预制楼板1和预制剪力墙2的连接处安装上述型钢或型材,并通过螺栓、铆钉等标准件将预制楼板1和预制剪力墙2牢固的连接在一起(在需要时,需要浇筑混凝土5),因此,本申请的施工非常方便。
实际工作时,施工场地上的基础为现浇条形杯口基础,以确保本申请的结构强度满足本申请的施工要求,将预制剪力墙2安装在条形杯口基础上的步骤为:首先在条形杯口基础底部设置水泥砂浆;然后用吊车将预制墙体放于条形杯口基础中,并设置临时支撑以保证该预制墙体的稳定性;接着按三维BIM模型中施工操作信息以及施工操作注意事项信息要求浇筑混凝土5,最后等到混凝土5达到规定强度之后,撤离临时支撑,再继续进行后续装配施工。这样,在三维BIM模型的帮助下,本申请即可将预制剪力墙2安装在施工场地的基础上。
实际工作时,安装于基础上的预制剪力墙2也被称为底层预制剪力墙2,通过企口3和定位柱4将预制楼板1装配在预制剪力墙2上的步骤为:先通过吊机将预制楼板1放置于预制剪力墙2的正上方,并使预制楼板1上的企口3的位置和预制剪力墙2端部的位置对应,此时定位柱4能够起到一定的导向作用,让工作人员知道应当将预制剪力墙2和预制楼板1吊装到何处,然后根据定位柱4的位置沿竖直方向下放预制楼板1,最后在将预制楼板1下放至预制剪力墙2上后,通过吊机调节预制楼板1的位置,直至预制楼板1和预制剪力墙2之间的装配位置和三维BIM模型内的安装位置相符。实际工作,本申请的企口3和预制楼板1为一体成型,定位柱4和预制剪力墙2可以采用一体成型,也可以在预制完预制剪力墙2后,再在预制剪力墙2上安装灌浆套筒8。
S4:在待修筑墙体装配完毕后,利用扫描获得的点云数据对已经装配好的墙体进行三维建模,得到已装配墙体的三维实体模型,将此三维实体模型与三维BIM模型进行对比,检查实体三维模型是否符合设计要求。
实际工作时,本申请通过三维激光扫描仪对装配完毕的墙体进行扫描,三维激光扫描仪通过记录物体表面密集的点的三维坐标、颜色及反射率,生成由数百万彩色点组成的详细几何图像,用来对现有环境进行数字化再现,通过上述三维激光扫描仪扫描得到的数据称之为点云数据,上述点云数据的成型原理为现有技术,在此不做赘述。
实际工作时,本申请通过建立三维BIM模型以让人们可以方便地了解各个预制剪力墙2和各个预制楼板1应当安装的位置,同时,由于本申请采用装配式结构来制作墙体,故本申请不仅可以在PC工厂进行预制生产,在施工现场安装,实现工业化成产,同时还能极大提高生产效率、材料利用率,从源头上减少能耗、资源利用,故本申请装配式建筑工人投入少,人工成本低,并降低人为对施工质量的影响;施工现场更规范、整洁,噪音污染、扬尘等影响也有极大改善。
本具体实施方式的实施例均为本发明的较佳实施例,并非依此限制本发明的保护范围,故:凡依本发明的结构、形状、原理所做的等效变化,均应涵盖于本发明的保护范围之内。

Claims (8)

1.一种基于BIM技术的墙体绿色施工方法,其特征在于,包括如下步骤:
S1:根据待修筑墙体的二维图纸和施工场地的地形地势,建立待修筑墙体的三维BIM模型;
S2:根据三维BIM模型准备多个预制楼板(1)和多个预制剪力墙(2),所述预制剪力墙(2)上安装若干定位柱(4),和用于方便装配预制楼板(1)和预制剪力墙(2)的企口(3);所述预制楼板(1)上安装有若干与所述定位柱(4)对应的定位孔(9);
S3:根据三维BIM模型中预制楼板(1)和预制剪力墙(2)的安装位置在施工场地的基础上安装预制楼板(1)和预制剪力墙(2);
S4:在待修筑墙体装配完毕后,利用扫描获得的点云数据对已经装配好的墙体进行三维建模,得到已装配墙体的三维实体模型,将此三维实体模型与三维BIM模型进行对比,检查实体三维模型是否符合设计要求。
2.根据权利要求1所述的基于BIM技术的墙体绿色施工方法,其特征在于,所述三维BIM模型的创建方法如下:根据待修筑墙体已有的二维CAD图纸绘制,通过基于Revit的MagiCAD软件绘制待修筑墙体的三维模拟模型,然后在三维模拟模型中加载待修筑墙体的动态装配过程,此时,也可完成三维BIM模型的创建。
3.根据权利要求1所述的基于BIM技术的墙体绿色施工方法,其特征在于,所述三维BIM模型上还加载有装配过程中的施工操作信息以及施工操作注意事项信息。
4.根据权利要求1所述的基于BIM技术的墙体绿色施工方法,其特征在于,所述定位柱(4)为带有连结筋(7)的灌浆套筒(8),且所述灌浆套筒(8)呈竖直布置并安装于预制剪力墙(2)的两端。
5.根据权利要求1所述的基于BIM技术的墙体绿色施工方法,其特征在于,将预制楼板(1)和预制剪力墙(2)安装在施工场地的基础上的步骤包括:基于三维BIM模型,先将预制剪力墙(2)安装在施工场地的基础上,然后通过企口(3)和定位柱(4)将预制楼板(1)装配在预制剪力墙(2)上,接着通过预制装配构件(6)将底层楼板和底层墙体连接在一起,最后向预制楼板(1)的定位孔(9)内灌注现浇混凝土(5),通过现浇混凝土(5)将预制楼板(1)和预制剪力墙(2)连接在一起。
6.根据权利要求3所述的基于BIM技术的墙体绿色施工方法,其特征在于,所述施工场地上的基础为现浇条形杯口基础,将预制剪力墙(2)安装在所述条形杯口基础上的步骤为:首先在条形杯口基础底部设置水泥砂浆;然后用吊车将预制墙体放于条形杯口基础中,并设置临时支撑以保证该预制墙体的稳定性;接着按三维BIM模型中施工操作信息以及施工操作注意事项信息要求灌注现浇混凝土(5),最后等到现浇混凝土(5)达到规定强度之后,撤离临时支撑,再继续进行后续装配施工。
7.根据权利要求5所述的基于BIM技术的墙体绿色施工方法,其特征在于,通过企口(3)和定位柱(4)将预制楼板(1)装配在预制剪力墙(2)上的步骤为:先通过吊机将预制楼板(1)放置于预制剪力墙(2)的正上方,并使预制楼板(1)上的企口(3)的位置和预制剪力墙(2)端部的位置对应,然后根据定位柱(4)的位置沿竖直方向下放预制楼板(1),最后在将预制楼板(1)下放至预制剪力墙(2)上后,通过吊机调节预制楼板(1)的位置,直至预制楼板(1)和预制剪力墙(2)之间的装配位置和三维BIM模型内的安装位置相符。
8.根据权利要求1所述的基于BIM技术的墙体绿色施工方法,其特征在于,所述预制楼板(1)的四个侧边上均设有多个企口(3),所述定位柱(4)位于企口(3)内。
CN202011638926.5A 2020-12-31 2020-12-31 基于bim技术的墙体绿色施工方法 Pending CN112814146A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011638926.5A CN112814146A (zh) 2020-12-31 2020-12-31 基于bim技术的墙体绿色施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011638926.5A CN112814146A (zh) 2020-12-31 2020-12-31 基于bim技术的墙体绿色施工方法

Publications (1)

Publication Number Publication Date
CN112814146A true CN112814146A (zh) 2021-05-18

Family

ID=75857801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011638926.5A Pending CN112814146A (zh) 2020-12-31 2020-12-31 基于bim技术的墙体绿色施工方法

Country Status (1)

Country Link
CN (1) CN112814146A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113882503A (zh) * 2021-09-09 2022-01-04 深圳市金世纪工程实业有限公司 一种基于bim的混凝土装配式建筑施工方法
CN116464283A (zh) * 2023-06-20 2023-07-21 北京建工四建工程建设有限公司 一种基于bim的清水墙体施工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113797A1 (en) * 2011-11-08 2013-05-09 Harman Becker Automotive Systems Gmbh Parameterized graphical representation of buildings
CN105696801A (zh) * 2016-02-02 2016-06-22 江苏建筑职业技术学院 预制构件吊装精确定位装置
CN107092739A (zh) * 2017-04-12 2017-08-25 四川云图瑞科技有限公司 利用模型对预制构件现场拼装时的施工管理方法
CN107254933A (zh) * 2017-07-17 2017-10-17 广东省建科建筑设计院有限公司 高层装配式单排通孔预制剪力墙及其装配结构和施工方法
CN109800509A (zh) * 2019-01-22 2019-05-24 浙江东南建筑设计有限公司 一种基于bim的弧形墙体的砌筑方法
CN209227831U (zh) * 2018-09-18 2019-08-09 三一筑工科技有限公司 墙体与楼板连接结构及装配式建筑结构体系
CN209397767U (zh) * 2018-12-21 2019-09-17 刘祥锦 一种装配剪力墙结构连接体系与竖向缝连接结构
CN111926913A (zh) * 2020-07-13 2020-11-13 福建和盛达建筑工程有限公司 一种楼板与墙板的连接结构及其施工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113797A1 (en) * 2011-11-08 2013-05-09 Harman Becker Automotive Systems Gmbh Parameterized graphical representation of buildings
CN105696801A (zh) * 2016-02-02 2016-06-22 江苏建筑职业技术学院 预制构件吊装精确定位装置
CN107092739A (zh) * 2017-04-12 2017-08-25 四川云图瑞科技有限公司 利用模型对预制构件现场拼装时的施工管理方法
CN107254933A (zh) * 2017-07-17 2017-10-17 广东省建科建筑设计院有限公司 高层装配式单排通孔预制剪力墙及其装配结构和施工方法
CN209227831U (zh) * 2018-09-18 2019-08-09 三一筑工科技有限公司 墙体与楼板连接结构及装配式建筑结构体系
CN209397767U (zh) * 2018-12-21 2019-09-17 刘祥锦 一种装配剪力墙结构连接体系与竖向缝连接结构
CN109800509A (zh) * 2019-01-22 2019-05-24 浙江东南建筑设计有限公司 一种基于bim的弧形墙体的砌筑方法
CN111926913A (zh) * 2020-07-13 2020-11-13 福建和盛达建筑工程有限公司 一种楼板与墙板的连接结构及其施工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113882503A (zh) * 2021-09-09 2022-01-04 深圳市金世纪工程实业有限公司 一种基于bim的混凝土装配式建筑施工方法
CN116464283A (zh) * 2023-06-20 2023-07-21 北京建工四建工程建设有限公司 一种基于bim的清水墙体施工方法
CN116464283B (zh) * 2023-06-20 2023-09-22 北京建工四建工程建设有限公司 一种基于bim的清水墙体施工方法

Similar Documents

Publication Publication Date Title
CN102127930B (zh) 钢混建筑网模构件及组合填充框剪围护工法
CN108595891B (zh) 混凝土桥主梁施工临时支架结构的二维化bim设计方法
CN112814146A (zh) 基于bim技术的墙体绿色施工方法
CN112049146A (zh) 一种钢结构基础预埋件及其工艺流程
CN203213346U (zh) 一种装配整体式混凝土框架-剪力墙连接结构
CN102605902A (zh) 穿筋卡勾组合钢网模板及应用方法
CN212154120U (zh) 一种用于预制装配式建筑的铝合金模板组
CN206352348U (zh) 一种型钢混凝土板墙与型钢混凝土叠合楼板的连接结构
CN112411798A (zh) 一种卫生间预制导墙与主体结构同步施工方法
CN108396781B (zh) 一种装配式竖井锁口圈梁构件结构
CN116378428A (zh) 一种纵肋叠合剪力墙结构墙体施工方法
CN211523766U (zh) 一种承托混凝土剪刀楼梯防火墙的预制混凝土梁
CN215254581U (zh) 一种工具式梁柱节点角模
CN213978596U (zh) 一种薄壁钢箱混凝土组合桥塔
CN214144240U (zh) 榫卯连接装配式剪力墙结构及节点连接件
CN212957612U (zh) 装配式免拆模结构体模壳及现浇筑免拆模结构体
CN212926589U (zh) 一种装配式免拆模结构体模壳及现浇筑免拆模结构体
CN212053436U (zh) 一种带有自就位结构的加强型预制混凝土墙板及连接结构
CN107605156B (zh) 一种倒角模板的加固方法
CN210529928U (zh) 一种框架结构用预制钢筋砼凸形支座体
CN112112057A (zh) 一种装配式组合桥墩连接系统及其施工方法
CN110920832A (zh) 一种船用施工平台的搭设方法
CN212642119U (zh) 一种模块化灌浆模具
CN117846295B (zh) 一种双曲面带弧形倒角的楼梯扶手施工方法
CN210104774U (zh) 装配式新型连接节点的免支撑整体预制沉箱结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518