CN112812293A - 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用 - Google Patents

一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用 Download PDF

Info

Publication number
CN112812293A
CN112812293A CN202011609874.9A CN202011609874A CN112812293A CN 112812293 A CN112812293 A CN 112812293A CN 202011609874 A CN202011609874 A CN 202011609874A CN 112812293 A CN112812293 A CN 112812293A
Authority
CN
China
Prior art keywords
energy storage
naphthalene
dielectric material
film dielectric
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011609874.9A
Other languages
English (en)
Other versions
CN112812293B (zh
Inventor
商赢双
张海博
周晨义
徐勤飞
刘新
韩金轩
于畅
何俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202011609874.9A priority Critical patent/CN112812293B/zh
Publication of CN112812293A publication Critical patent/CN112812293A/zh
Application granted granted Critical
Publication of CN112812293B publication Critical patent/CN112812293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/10Polyamides derived from aromatically bound amino and carboxyl groups of amino carboxylic acids or of polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyamides (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用,属于聚合物介电材料技术领域。本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料,萘环的引入可以改善其溶解性,醚键的引入可以增加链段的柔韧性,同时少量刚性苯环的加入能够增加主链的刚性,通过调节刚性链段的比例,使得聚芳酰胺具有结晶的特性,这种结晶型的含萘聚芳酰胺同时具备耐高温、高能量密度以及高充放电效率等优势。实施例的结果表明,本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料在200℃高温下,放电能量密度为2.2J/cm3,在纯聚合物介电材料中具有着不可比拟的地位。

Description

一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方 法和应用
技术领域
本发明涉及聚合物介电材料技术领域,尤其涉及一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用。
背景技术
将酰胺键(85%以上)与苯环直接相连的芳香族聚酰胺称为聚芳酰胺。聚芳酰胺由于其出色的耐热性和机械强度而被视为高性能有机高分子材料。聚芳酰胺突出的特性主要来自于其全芳香结构和高分子主链中所存在的大量酰胺键。由酰胺键形成的分子间氢键使得这些刚性的棒状高分子链高度取向,有序排布,形成了微晶区,导致高分子链间的紧密堆积和高内聚能。商业上最著名的聚芳酰胺,聚对苯二甲酰对苯二胺和间苯二甲酰间苯二胺的纤维制品,即芳纶1414和芳纶1313已成功用于先进技术,并转变为高强度和耐火的纤维和涂料,可用于航空航天和军械工业,比如防弹衣、防护服、运动服、电绝缘以及石棉替代品和工业过滤器等。聚芳酰胺主链中的刚性芳环结构,苯环的憎水性极大程度的降低了其吸水率,同时给了它极高的热稳定性。但正由于其高结晶性和高热稳定性,导致其不可以熔融加工或溶液加工,而只能溶于浓硫酸中纺丝加工,这种加工方式成本高、环境污染大,极大的限制了聚芳酰胺材料的应用领域。
随着现代电子、电气设备和系统的高速发展以及对新型能源的迫切需求,对储能装置的储能能力和效率以及耐温性提出更高的挑战,而储能设备中最重要的是介电电容器,其具有高的功率密度,可以将储存的能量在极短的时间内释放出去,具有极大的应用前景。目前,应用最广泛的商业电容器-双向拉伸聚丙烯(BOPP),以其高的击穿强度、低的介电损耗和低成本受到了广泛的亲睐。但是最高2J/cm3的放电能量密度限制了现在和未来对更高能量密度需求的使用,更重要的是BOPP的最高使用温度仅为105℃,远远满足不了航空航天、石油、天然气开采等领域对高温使用的需求。因此,迫切需要开发出耐高温(200℃)、高能量密度以及高充放电效率的纯聚合物基介电储能材料。
发明内容
本发明的目的在于提供一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用,所述结晶型含萘聚芳酰胺高温储能薄膜介电材料同时具备耐高温、高能量密度以及高充放电效率等优势。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料,具有式I所示结构:
Figure BDA0002872782580000021
其中,n=100~800,且n为整数;
R1
Figure BDA0002872782580000022
R2
Figure BDA0002872782580000023
R'为
Figure BDA0002872782580000024
优选的,包括
Figure BDA0002872782580000025
n=100~600;或
Figure BDA0002872782580000026
n=400~800。
本发明提供了上述技术方案所述结晶型含萘聚芳酰胺高温储能薄膜介电材料的制备方法,包括以下步骤:
将1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺、亚磷酸三苯酯、N-甲基吡咯烷酮、吡啶和氯化锂混合,将所得混合物料进行Yamazaki磷酰化反应,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料;
所述含苯醚基团的二胺为1,4-双(4-氨基苯氧基)苯或4,4-二氨基二苯醚。
优选的,所述1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺和亚磷酸三苯酯的摩尔比为(0.7~1):(0~0.3):1:(2~5),且所述对苯二甲酸的用量不为0。
优选的,所述N-甲基吡咯烷酮和吡啶的体积之和与氯化锂的用量比为1mL:(0.08~0.15)g;所述N-甲基吡咯烷酮与吡啶的体积比为1:(0.2~0.4)。
优选的,以质量百分含量计,所述混合物料的固含量为10~20%。
优选的,所述Yamazaki磷酰化反应的温度为105~120℃,时间为5~6.5h。
优选的,完成所述Yamazaki磷酰化反应后,还包括:将所得物料依次进行冷却、粉碎、抽滤、煮沸、过滤和干燥,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料。
本发明提供了上述技术方案所述结晶型含萘聚芳酰胺高温储能薄膜介电材料或上述技术方案所述制备方法制备得到的结晶型含萘聚芳酰胺高温储能薄膜介电材料在航空航天、石油和天然气开采领域的应用。
本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料,具有式I所示结构:
Figure BDA0002872782580000031
其中,n=100~800,且n为整数;
R1
Figure BDA0002872782580000032
R2
Figure BDA0002872782580000033
R'为
Figure BDA0002872782580000034
本发明提供的式I所示结构的含萘聚芳酰胺中,萘环的引入可以改善其溶解性,进而提高可加工性能;醚键的引入可以增加链段的柔韧性,同时刚性苯环的引入能够增加主链的刚性,改变链段整体的刚性比例,赋予聚芳酰胺结晶性,这种结晶型的含萘聚芳酰胺同时具备耐高温、高能量密度以及高充放电效率等优势。实施例的结果表明,本发明提供的结晶型含萘聚芳酰胺高温储能薄膜介电材料在200℃高温下,放电能量密度可达2.2J/cm3,在纯聚合物介电材料中具有着不可比拟的地位。
此外,与已知种类聚芳酰胺相比,本发明所述含萘聚芳酰胺高温储能薄膜介电材料在120℃可直接溶于DMF、DMAc、NMP或DMSO等极性溶剂,不需要助溶剂辅助,可以通过溶液浇筑法浇筑成膜,所得聚合物薄膜的拉伸强度为96MPa,杨氏模量为2.8GPa。
本发明提供了所述结晶型含萘聚芳酰胺高温储能薄膜介电材料的制备方法,本发明通过Yamazaki磷酰化反应方法,将1,4-萘二甲酸、对苯二甲酸与1,4-双(4-氨基苯氧基)苯(或4,4-二氨基二苯醚)进行溶液聚合,即可合成主链含萘和苯醚结构的结晶型含萘聚芳香酰胺,方法简单,可控性强,具有良好的工业化前景。
附图说明
图1为实施例1和实施例2制备的含萘聚芳酰胺聚合物的核磁谱图;
图2为实施例3制备的PEENA聚合物的DSC图;
图3为实施例3制备的PEENA聚合物的XRD图;
图4为实施例3制备的PEENA聚合物的热重曲线图;
图5为采用实施例3制备的PEENA制成的聚合物薄膜实物图;
图6为实施例1制备的PEENA聚合物薄膜在150℃时的能量储存示意图;
图7为实施例1制备的PEENA聚合物薄膜在200℃时的能量储存示意图;
图8为实施例2制备的PEENA聚合物薄膜在150℃时的能量储存示意图;
图9为实施例2制备的PEENA聚合物薄膜在200℃时的能量储存示意图;
图10为实施例3制备的PEENA聚合物薄膜在150℃时的能量储存示意图;
图11为实施例3制备的PEENA聚合物薄膜在200℃时的能量储存示意图。
具体实施方式
本发明提供了一种结晶型含萘聚芳酰胺高温储能薄膜介电材料,具有式I所示结构:
Figure BDA0002872782580000051
其中,n=100~800,且n为整数;
R1
Figure BDA0002872782580000052
R2
Figure BDA0002872782580000053
R'为
Figure BDA0002872782580000054
在本发明中,所述结晶型含萘聚芳酰胺高温储能薄膜介电材料优选包括
Figure BDA0002872782580000055
n=100~600;或
Figure BDA0002872782580000056
n=400~800。
本发明提供了上述技术方案所述结晶型含萘聚芳酰胺高温储能薄膜介电材料的制备方法,包括以下步骤:
将1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺、亚磷酸三苯酯、N-甲基吡咯烷酮、吡啶和氯化锂混合,将所得混合物料进行Yamazaki磷酰化反应,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料;
所述含苯醚基团的二胺为1,4-双(4-氨基苯氧基)苯或4,4-二氨基二苯醚。
在本发明中,若无特殊说明,所需制备原料均为本领域技术人员熟知的市售商品。
在本发明中,所述含苯醚基团的二胺为1,4-双(4-氨基苯氧基)苯或4,4-二氨基二苯醚。
在本发明中,所述1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺和亚磷酸三苯酯的摩尔比优选为(0.7~1):(0~0.3):1:(2~5),且所述对苯二甲酸的用量不为0;更优选为0.8:0.2:1:4;所述N-甲基吡咯烷酮和吡啶的体积之和与氯化锂的用量比优选为1mL:(0.08~0.15)g,更优选为1mL:(0.10~0.12)g;所述N-甲基吡咯烷酮与吡啶的体积比优选为1:(0.2~0.4),更优选为1:0.3。
在本发明中,以质量百分含量计,所述混合物料的固含量优选为10~20%,更优选为15%。
在本发明中,所述1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺、亚磷酸三苯酯(TPPi)、N-甲基吡咯烷酮(NMP)、吡啶(Py)和氯化锂混合的过程优选为在搅拌条件下,将1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺、氯化锂和亚磷酸三苯酯混合,然后向所得混合物中加入N-甲基吡咯烷酮和吡啶。本发明对所述搅拌的速率没有特殊的限定,按照本领域熟知的过程能够将物料混合均匀即可;在本发明的实施例中,所述搅拌的速率具体为150rad/s。本发明利用亚磷酸三苯酯作为催化剂,利用NMP作为溶剂,Py作为敷酸剂,利用氯化锂作为助溶剂。
在本发明中,所述Yamazaki磷酰化反应的过程优选为在150rad/s搅拌速率下升温至90℃,保温2h,待体系呈略粘稠的淡黄色溶液,逐渐升温至110℃,体系逐渐由粘稠变稀,再变粘稠,加快搅拌速度至400rad/s,进行Yamazaki磷酰化反应。本发明对所述升温的速率没有特殊的限定,按照本领域熟知的过程进行即可。在本发明中,所述Yamazaki磷酰化反应的温度优选为105~120℃,更优选为110~115℃,时间优选为5~6.5h,更优选为6h。
在本发明中,所述Yamazaki磷酰化反应的机理如下式所示:
Figure BDA0002872782580000061
在本发明中,完成所述Yamazaki磷酰化反应后,优选还包括:将所得物料依次进行冷却、粉碎、抽滤、煮沸、过滤和干燥,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料。
在本发明中,所述冷却、粉碎、抽滤、煮沸、过滤和干燥的过程优选为将Yamazaki磷酰化反应所得聚合物粘液物料注入室温甲醇溶剂中冷却成条状固体,过滤后在粉碎机中粉碎成粉末状,将所得聚合物粉末用甲醇煮沸1小时,趁热抽滤,依次反复进行煮沸-抽滤过程5~10次(洗去催化剂亚磷酸三苯酯及残留的溶剂),再用去离子水煮沸,趁热过滤,依次反复进行煮沸-抽滤过程5~10次(洗去残留的助溶剂),将所得洗净的聚合物粉料干燥,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料。在本发明中,所述干燥优选在烘箱中进行,所述干燥的温度优选为120℃,时间优选为12h。
在本发明中,当所述含苯醚基团的二胺为1,4-双(4-氨基苯氧基)苯或4,4-二氨基二苯醚时,所述Yamazaki磷酰化反应的过程分别为:
Figure BDA0002872782580000071
本发明提供了上述技术方案所述结晶型含萘聚芳酰胺高温储能薄膜介电材料或上述技术方案所述制备方法制备得到的结晶型含萘聚芳酰胺高温储能薄膜介电材料在航空航天、石油和天然气开采领域的应用。本发明对所述应用的方法没有特殊的限定,按照本领域熟知的过程应用即可。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
在装有温度计、氮气通口、球形冷凝管和机械搅拌器的100mL三口瓶中,依次加入1,4-萘二甲酸2.0814g(0.009628mol)、对苯二甲酸0.3998g(0.002407mol)、1,4-双(4-氨基苯氧基)苯3.5183g(0.012035mol)、LiCl 4.8g和12.6mLTPPi(0.04804mol),随后加入30mLNMP和10mL吡啶,将所得混合物料(固含量为15%)在150rad/s搅拌速率下升温至90℃,恒温反应2h,待体系呈略粘稠的淡黄色溶液,逐渐升温至110℃,体系逐渐由粘稠变稀,再变粘稠,同时加快搅拌速度至400rad/s,进行Yamazaki磷酰化反应6h后,停止搅拌和加热,将所得聚合物粘液缓慢倒入室温的甲醇中,冷却析出得到细条状固体,将所述细条状固体过滤后粉碎,将粉碎得到的粉末用热甲醇反复清洗10遍,再用去离子水洗涤5次,将洗净的粉末在120℃烘箱中干燥12h,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料,记为PEENA,
结构式为:
Figure BDA0002872782580000081
其中,n=400~800。
实施例2
在装有温度计、氮气通口、球形冷凝管和机械搅拌器的100mL三口瓶中,依次加入1,4-萘二甲酸2.0901g(0.009668mol)、对苯二甲酸0.4839g(0.002417mol)、4,4-二氨基二苯醚3.6104g(0.01235mol)、LiCl 4.8g和TPPi 12.9mL(0.04942mol),随后加入30mLNMP和10mL吡啶,将所得混合物料(固含量为15%)在150rad/s搅拌速率下升温至90℃恒温反应2h,待体系呈略粘稠的淡黄色溶液,逐渐升温至110℃,体系逐渐由粘稠变稀,再变粘稠,同时加快搅拌速度到400rad/s,反应6h后,停止搅拌和加热,将所得聚合物粘液缓慢倒入室温的甲醇中,冷却析出得到絮状固体,将所得絮状固体过滤后粉碎,将粉碎得到的粉末用热甲醇反复清洗6遍,再用去离子水洗涤6次,将洗净的粉末在120℃烘箱中干燥12h后,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料,记为PENA,结构式为:
Figure BDA0002872782580000082
其中,n=100~600。
实施例3
在装有温度计、氮气通口、球形冷凝管和机械搅拌器的250mL三口瓶中,依次加入1,4-萘二甲酸6.2435g(0.02888mol)、对苯二甲酸1.1994g(0.00722mol)、1,4-双(4-氨基苯氧基)苯10.5534g(0.0361mol)、LiCl 18g和TPPi 37.8mL(0.1444mol),随后加入120mL NMP和30mL吡啶,将所得混合物料(固含量为15%)在150rad/s搅拌速率下升温至95℃,恒温反应2h,待体系呈略粘稠的淡黄色溶液,逐渐升温至110℃,体系逐渐由粘稠变稀,再变粘稠,同时加快搅拌速度到400rad/s,反应6h后,停止搅拌和加热,将所得聚合物粘液缓慢倒入室温的甲醇中,冷却析出得到细条状固体;将所述细条状固体过滤后粉碎,将粉碎得到的粉末用热甲醇反复清洗6遍,再用去离子水洗涤10次,将洗净的粉末在120℃烘箱中干燥12h后,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料,结构同实施例1。
性能测试
1)对实施例1制备的PEENA和实施例2制备的PEENA进行核磁表征,结果见图1;其中,图1中(a)为实施例1制备的PEENA的核磁谱图,图1中(b)为实施例2制备的PENA的核磁谱图。由图1可知,本发明成功合成了上述结构的PEENA和PENA聚合物。
2)对实施例3制备的PEENA进行DSC测试,结果见图2;由图2可以看出,PEENA具有明显的冷结晶峰,证明了具有极强的结晶性。
3)对实施例3制备的PEENA进行XRD测试,结果见图3;由图3可以明显看到结晶衍射峰的存在,证明了所合成的PEENA具有优异的结晶性能。
4)对实施例3制备的PEENA进行热稳定性测试,结果见图4;由图4可以看出,PEENA的初始分解温度大于400℃,具有优异的热稳定性。
5)采用流延法将实施例3制备的PEENA制成15μm的自支撑聚合物薄膜,具体方法为在置有磁力搅拌子的锥形瓶中将0.2g PEENA聚合物置于15mLNMP中,在120℃油浴加热器中搅拌24h,然后将所得溶液浇筑至调平的玻璃板上,于烘箱中160℃烘干24h后,再于真空条件下200℃烘干24h,将干燥所得聚合物薄膜与玻璃板分离后进行后续测试,结果见图5。
由图5可知,所制备的PEENA聚合物薄膜透明度高、柔性好且颜色浅;使用Precision LCR meter(HP 4284A)型精密阻抗分析仪和Delta model 9023型变温烘箱(测试范围102~106Hz),将PEENA聚合物薄膜放置在孔径为10mm的双层铝板中间,然后将其置于ZHD300型高真空蒸发仪中蒸镀金属电极,其中,金属铜电极厚度为50nm,圆形铜电极的直径为10mm,测试所述PEENA聚合物薄膜的介电常数和介电损耗。结果表明,所制备的PEENA聚合物薄膜的介电常数达到4.1,介电损耗为0.01,有望作为光学或电学材料使用。
6)对实施例1制备的PEENA聚合物所形成的薄膜进行力学性能测试,结果表明,所得聚合物薄膜的拉伸强度为96MPa,杨氏模量为2.8GPa。
7)溶解性测试
溶解性测试方法:分别将实施例1~3制备的10mg含萘聚芳酰胺聚合物溶于10mL不同溶剂中,震荡1h,观察其溶解性,结果见表1:室温可溶标记为++,加热(120℃)可溶标记为+,室温溶胀标记为+-,加热溶胀标记为-,加热不可溶胀标记为--
表1实施例1~3制备的含萘聚芳酰胺聚合物的溶解性测试结果
溶剂 DMAc DMF DMSO NMP THF
实施例1 + + + + +-
实施例2 + + + + -
实施例3 + + + + --
由表1可知,本发明制备的结晶型含萘聚芳酰胺高温储能薄膜介电材料在多种常见溶剂中均具有优异的溶解性。
8)能量储存性能测试
测试方法:使用Poly K公司改进的Sawyer-Tower电路,配备Trek 610C型电源放大器,采用二甲基硅油模拟真空环境,测试温度分别为150℃和200℃,测试频率为100Hz,测试电极为球电极。
测试所用样品制备过程为:将不同实施例按照上述5)制备的聚合物薄膜放置于孔径为3.4mm的双层铝板中间,然后置于ZHD300型高真空蒸发仪中蒸镀金属电极,其中,金属铜电极厚约50nm,圆形铜电极的直径为3.4mm,结果见图6~11,其中,图6为实施例1制备的PEENA聚合物薄膜在150℃时的能量储存示意图;图7为实施例1制备的PEENA聚合物薄膜在200℃时的能量储存示意图;图8为实施例2制备的PEENA聚合物薄膜在150℃时的能量储存示意图;图9为实施例2制备的PEENA聚合物薄膜在200℃时的能量储存示意图;图10为实施例3制备的PEENA聚合物薄膜在150℃时的能量储存示意图;图11为实施例3制备的PEENA聚合物薄膜在200℃时的能量储存示意图。
由图6和7可知,实施例1制备的结晶型含萘聚芳香酰胺薄膜在450MV/m的施加电场强度下展示出4.0J/cm3的放电能量密度,在200℃时,在90%的充放电效率下,放电能量密度达到2.0J/cm3;由图8和9可知,实施例2制备的结晶型含萘聚芳香酰胺薄膜在500MV/m的施加电场强度下展示4.7J/cm3的放电能量密度,在200℃时,90%的充放电效率下,放电能量密度达到1.6J/cm3
由图10可知,实施例3制备的结晶型含萘聚芳香酰胺薄膜在150℃和500MV/m的施加电场强度下展示出了4.9J/cm3的放电能量密度,具有巨大的应用前景。
由图11可知,在200℃高温下,制备的结晶型含萘聚芳香酰胺薄膜介电材料在90%的充放电效率下,放电能量密度达到了2.2J/cm3,在纯聚合物介电材料中具有着不可比拟的地位。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种结晶型含萘聚芳酰胺高温储能薄膜介电材料,具有式I所示结构:
Figure FDA0002872782570000011
其中,n=100~800,且n为整数;
R1
Figure FDA0002872782570000012
R2
Figure FDA0002872782570000013
R'为
Figure FDA0002872782570000014
2.根据权利要求1所述的结晶型含萘聚芳酰胺高温储能薄膜介电材料,其特征在于,包括
Figure FDA0002872782570000015
n=100~600;或
Figure FDA0002872782570000016
n=400~800。
3.权利要求1或2所述结晶型含萘聚芳酰胺高温储能薄膜介电材料的制备方法,包括以下步骤:
将1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺、亚磷酸三苯酯、N-甲基吡咯烷酮、吡啶和氯化锂混合,将所得混合物料进行Yamazaki磷酰化反应,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料;
所述含苯醚基团的二胺为1,4-双(4-氨基苯氧基)苯或4,4-二氨基二苯醚。
4.根据权利要求3所述的制备方法,其特征在于,所述1,4-萘二甲酸、对苯二甲酸、含苯醚基团的二胺和亚磷酸三苯酯的摩尔比为(0.7~1):(0~0.3):1:(2~5),且所述对苯二甲酸的用量不为0。
5.根据权利要求3所述的制备方法,其特征在于,所述N-甲基吡咯烷酮和吡啶的体积之和与氯化锂的用量比为1mL:(0.08~0.15)g;所述N-甲基吡咯烷酮与吡啶的体积比为1:(0.2~0.4)。
6.根据权利要求3所述的制备方法,其特征在于,以质量百分含量计,所述混合物料的固含量为10~20%。
7.根据权利要求3所述的制备方法,其特征在于,所述Yamazaki磷酰化反应的温度为105~120℃,时间为5~6.5h。
8.根据权利要求3所述的制备方法,其特征在于,完成所述Yamazaki磷酰化反应后,还包括:将所得物料依次进行冷却、粉碎、抽滤、煮沸、过滤和干燥,得到结晶型含萘聚芳酰胺高温储能薄膜介电材料。
9.权利要求1或2所述结晶型含萘聚芳酰胺高温储能薄膜介电材料或权利要求3~8任一项所述制备方法制备得到的结晶型含萘聚芳酰胺高温储能薄膜介电材料在航空航天、石油和天然气开采领域的应用。
CN202011609874.9A 2020-12-30 2020-12-30 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用 Active CN112812293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011609874.9A CN112812293B (zh) 2020-12-30 2020-12-30 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011609874.9A CN112812293B (zh) 2020-12-30 2020-12-30 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112812293A true CN112812293A (zh) 2021-05-18
CN112812293B CN112812293B (zh) 2021-12-07

Family

ID=75856199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011609874.9A Active CN112812293B (zh) 2020-12-30 2020-12-30 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112812293B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724209A (zh) * 2014-01-16 2014-04-16 郑州大学 一种长碳链半芳香族尼龙盐的制备方法
CN108794740A (zh) * 2017-04-26 2018-11-13 中国科学院化学研究所 一种改性的多元共聚芳酰胺及其制备方法和用途
CN110467725A (zh) * 2019-08-27 2019-11-19 吉林大学 一种聚萘醚酮芳香酰胺及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103724209A (zh) * 2014-01-16 2014-04-16 郑州大学 一种长碳链半芳香族尼龙盐的制备方法
CN108794740A (zh) * 2017-04-26 2018-11-13 中国科学院化学研究所 一种改性的多元共聚芳酰胺及其制备方法和用途
CN110467725A (zh) * 2019-08-27 2019-11-19 吉林大学 一种聚萘醚酮芳香酰胺及其制备方法和应用

Also Published As

Publication number Publication date
CN112812293B (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
Li et al. Synthesis and Characterization of a New Fluorine‐Containing Polybenzimidazole (PBI) for Proton‐Conducting Membranes in Fuel Cells
WO2020238732A1 (zh) 一种杂环铵离子聚苯并咪唑及阴离子交换膜其制备方法和应用
JP2013544323A (ja) ポリイミドブレンド・ナノファイバーおよびその電池セパレータにおける応用
WO2020238731A1 (zh) 一种双环铵离子聚苯并咪唑及阴离子交换膜及其制备方法和应用
Tan et al. Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery
CN112159524A (zh) 一种可溶性聚酰亚胺薄膜及其制备方法和应用
CN111082112B (zh) 质子交换膜及其制备方法和燃料电池
CN111647159B (zh) 一种聚酰亚胺薄膜及其制备方法
CN113717524A (zh) 一种用于制备石墨膜的聚酰亚胺薄膜及其制备方法
CN101774973B (zh) 一种含三唑环的多元胺及其制备方法与用途
Sun et al. The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries
Qian et al. Incorporation of N-phenyl in poly (benzimidazole imide) s and improvement in H 2 O-absorbtion and transparency
CN112812293B (zh) 一种结晶型含萘聚芳酰胺高温储能薄膜介电材料及其制备方法和应用
CN112439319B (zh) 一种耐溶剂型pbo纳滤膜及其制备方法
CN110467725B (zh) 一种聚萘醚酮芳香酰胺及其制备方法和应用
Zong et al. Soluble and thermally stable copoly (phenyl-s-triazine) s containing both diphenylfluorene and phthalazinone units in the backbone
CN113105628B (zh) 一种咪唑基多孔有机聚合物、其制备方法及在燃料电池质子传导材料中的应用
Liu et al. Structure and properties of halogen-free flame retardant and phosphorus-containing aromatic poly (1, 3, 4-oxadiazole) s fiber
CN104946123B (zh) 用于热阻隔层的组合物
CN111072964A (zh) 一种聚酰亚胺前体组合物及其制备方法和应用
CN114530629B (zh) 一种固态电解质及其添加剂的制备和应用
CN105001421A (zh) 一种含酚羟基聚酰亚胺固体粉末的制备及其应用
CN110982065A (zh) 一种含萘聚芳香酰胺及其制备方法和应用
CN104130410A (zh) 一种酚酞型共聚酰亚胺及其制备方法
Baskoro et al. High-performance aramid electrodes for high-rate and long cycle-life organic Li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant