CN112755795B - 一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 - Google Patents
一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 Download PDFInfo
- Publication number
- CN112755795B CN112755795B CN202110001360.3A CN202110001360A CN112755795B CN 112755795 B CN112755795 B CN 112755795B CN 202110001360 A CN202110001360 A CN 202110001360A CN 112755795 B CN112755795 B CN 112755795B
- Authority
- CN
- China
- Prior art keywords
- amphiphobic
- film
- membrane
- layer
- pvdf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/364—Membrane distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/043—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法,该双疏膜由双层静电纺丝纳米纤维基质和复合双疏层构成。本发明中双疏膜是指兼具超疏水和超疏油性能的膜。所述双疏膜双层纳米纤维基质层通过静电纺丝不同配比铸膜液制得。所述双疏膜通过化学活化、原位聚合和浸涂改性,获得具有低表面能的重入结构,从而获得复合双疏层。本发明中的双疏膜可有效抵抗低表面张力液体的润湿,比如表面活性剂和含油液体。所述双疏膜在静态接触润湿和动态膜蒸馏测试中均表现优异的抗润湿性。本发明的双疏膜在膜蒸馏过程的废水处理和海水淡化领域展现良好发展前景。
Description
技术领域
本发明属于废水处理和海水淡化领域,具体涉及了一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法。
背景技术
当前冠状病毒大流行下与水危机和卫生相关的问题给人类发展带来了前所未有的挑战。鉴于出色的水质保证,基于膜的水处理技术是解决潜在危机的首选。其中,结合了膜过滤和蒸馏过程的膜蒸馏(MD)由于具有更高的脱盐率和低级热能需求的竞争优势而备受关注。MD是一种热驱动的海水淡化技术,用于处理含有多种非挥发性成分的高盐废水。在膜两侧的蒸气压梯度的驱动下,水蒸气渗透过膜孔进入冷的渗透液,而盐则被截留在热的进料中。膜润湿和膜污染会损害膜的透水性和选择性,从而使MD工艺失效。日益复杂的废水(比如含有表面活性剂和油)对疏水膜的抗润湿、抗污染性能提出了严峻的挑战。
表面活性剂引起的膜润湿被证明是一个过渡态的连续过程。除了降低进料的表面张力外,表面活性剂可以很容易地吸附到疏水膜的表面甚至是膜的孔中,从而使疏水孔道逐渐亲水化,并随着时间的延长,最终从部分孔润湿发展为完全孔润湿。对于油污染来说,疏水-疏水相互作用会导致膜的结垢或选择性损失,MD中使用的疏水膜的孔很容易被油润湿或污染。疏水膜润湿和污染阻碍了MD在处理废水中的使用。
膜的强疏水和强疏油性对于防止MD过程中盐类通过膜渗透到蒸馏水中而言至关重要。尽管传统的疏水膜,超疏水膜也具有出色的疏水性,但它们易于被表面张力低的表面活性剂和油类润湿污染,导致MD过程不再具有实际效力。具有超强抗润湿性和抗污染性的双疏膜展现良好的发展前景。具有凹腔结构和低表面能的全憎性表面使液滴以Cassie-Baxter状态存在,从而表现出对低表面张力液体的抗润湿和抗污染性。因此,对于膜蒸馏处理日益复杂的低表面张力废水,双疏膜的开发和制备对于保证MD过程的稳定有效运行至关重要。
发明内容
为解决上述问题,本发明提供了一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法,主要采用静电纺丝技术制备了纳米纤维基膜,并在此基础上通过化学活化、原位聚合和浸涂构建具有重入结构和低表面能的双疏层。本发明的双疏膜可有效防止低表面张力液体润湿,比如表面活性剂和含油液体,提高抗污染性,有助于扩展膜蒸馏技术在废水处理和海水淡化领域的应用范围。
改性后的双疏膜具有优异的超疏水和超疏油性能。所述双疏膜双层纳米纤维基质层通过静电纺丝不同配比铸膜液制得。所述双疏膜在静态接触润湿和动态膜蒸馏测试中均表现优异的抗润湿性。
为达到上述目的,本发明通过一些技术方案获得:
一种针对膜蒸馏过程的抗润湿、抗污染的双疏膜,该双疏膜是纳米纤维基质层和双疏表层构成的多层膜结构,双疏表层通过化学原位聚合在纳米纤维上,所述双疏膜具有抗润湿和抗污染性能。
进一步,所述纳米纤维基质层是通过静电纺丝不同配比铸膜液制得的双层聚偏氟乙烯(PVDF)纳米纤维支撑层。
进一步,所述复合双疏层为化学活化、原位聚合和浸涂改性制备的具有重入结构和低表面能的聚多巴胺(PDA)/银纳米颗粒(AgNPs)/1H,1H,2H,2H-全氟癸硫醇(PDFT)复合双疏层。
进一步,所述双疏膜的膜厚度为60-75μm,膜平均孔径为0.5-0.7μm,膜孔隙率为62-70%。
一种针对膜蒸馏过程的抗润湿、抗污染的双疏膜的制备方法,通过静电纺丝以及化学活化-原位聚合-浸涂制备了抗润湿和抗污染的新型双疏膜,具体步骤如下:
(1)纳米纤维基质层的制备:通过顺序静电纺丝10-13wt%PVDF和6-8wt%PVDF溶液,并经热压处理(120-160℃)制备了权利要求4所述特征的PVDF纳米纤维基质层(#PVDF);
(2)复合双疏层的制备:在上述步骤(1)纳米纤维基质层的表面,通过PDA活化,AgNPs原位聚合和PFDT浸涂改性制备复合双疏层;
(3)双疏膜的制备:在上述步骤(1)PVDF纳米纤维基质层的表面上化学活化、原位聚合和浸涂PDA/AgNPs/PFDT得到双疏膜(#PVDF-F)。
所述步骤(2)中聚多巴胺溶液的浓度为1-5mg/mL;AgNPs前体液硝酸银的浓度为0.1-1wt%,氨水浓度为12-18M,葡萄糖浓度为0.5-1.5wt%;所述PFDT的浓度为10-30mM。
所述步骤(2)的具体方法为:将PVDF纳米纤维基膜浸入制备的聚多巴胺水溶液振摇1-3h,以获得聚多巴胺预活化膜(#PVDF-D)。之后,将聚多巴胺活化膜放入硝酸银溶液中,借助氨水和葡萄糖引发银镜反应以促使AgNPs均匀沉积在PDA活化膜表面上(#PVDF-Ag)。最后,将沉积有AgNPs的膜浸入PFDT(10-30mM)中3-12h,以获得最终的双疏膜(#PVDF-F)。
本发明有益效果:
本发明针对废水处理和海水淡化领域,应用于膜蒸馏过程中,可有效提高膜的双疏性能。该双疏膜具有良好的抗润湿性、抗污染性能,使膜材料在膜蒸馏测试过程中持久有效。
附图说明
为使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1:双疏膜的制备过程示意图;
图2:双疏膜的扫描电子显微镜(SEM)图像;
其中,A为纳米纤维支持层;B为聚多巴胺活化膜;C为AgNPs聚合膜;D为浸涂PFDT的双疏膜;
图3:不同表面张力液体在双疏膜表面的接触角数据和照片图;
不同进料溶液的DCMD过程中纳米纤维#PVDF膜,双疏膜#PVDF-F和商业膜#PVDF-C的抗润湿、抗污染性能测试图。其中,图4:3.5wt%NaCl;图5:3.5wt%NaCl,6mM DTAB,其中,A为#PVDF膜的抗润湿情况;B为#PVDF-F商业膜的抗润湿情况;C为#PVDF-F改性膜的抗润湿情况;图6:3.5wt%NaCl,0.0015v/v%矿物油(Tf=333K,Tp=293K,两侧流速均为0.6L min-1)。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
实施例1
通过静电纺丝11wt%PVDF和8wt%PVDF溶液,并经热压处理(150℃,30分钟)制备了PVDF纳米纤维基质层(#PVDF)。
在该纳米纤维支撑层的上部,顺序PDA化学活化,AgNPs原位聚合和浸涂PFDT来制备双疏膜(#PVDF-F)。通过该改性技术可有效制得对表面活性剂和油具有优异抗润湿性能的双疏膜。聚多巴胺水溶液的组成和浓度为2mg/mL多巴胺盐酸盐,10mM tris,5mM CuSO4·5H2O和19.6mM H2O2,将#PVDF浸入该聚多巴胺水溶液中并振摇1h,以获得PDA预活化膜(#PVDF-D)。之后,将#PVDF-D放入含银的水溶液中,硝酸银水溶液的组分和浓度为1wt%的AgNO3和0.02wt%的乙醇。将氨水(12.8M)和葡萄糖(1wt%)加入溶液中以引发银镜反应。静置12小时后,AgNPs均匀沉积在#PVDF-D表面上形成具有凹角结构的纳米纤维膜(#PVDF-Ag)。最后,将#PVDF-Ag浸入PFDT(10mM)中3h,以获得具有低表面能的最终双疏膜(#PVDF-F)。双疏膜制备过程和形貌如图1和2所示。
实施例2
通过对实施例1中得到的本发明双疏膜进行抗润湿性能测试,该双疏膜表现出优异的双疏性,水接触角为164°±4°,矿物油接触角为159°±2°,对十二烷基磺酸钠(SLS),十二烷基硫酸钠(SDS),十二烷基三甲基溴化铵(DTAB),十六烷基三甲基溴化铵(CTAB)的接触角均大于150°。相对于#PVDF和#PVDF-C,#PVDF-F抗润湿性明显。结果如图3所示。
实施例3
通过对实施例1中得到的本发明双疏膜进行基本性能测试,由膜蒸馏测试结果可知。当使用3.5wt%的氯化钠溶液作为进料液,进料液侧温度为333K,渗透测温度为293K时,#PVDF-F膜可以获得22±2kg m-2h-1的稳定通量(图4)。
实施例4
通过对实施例1中得到的本发明双疏膜进行抗润湿性能测试,由膜蒸馏测试结果可知,与#PVDF和#PVDF-F膜相比,#PVDF-F膜具有优异的抗润湿性能。该双疏膜具有优异的抗润湿,可使膜蒸馏技术在实际应用中处理多种不同类型的废水,其中包括:由3.5wt%NaCl和0.9mM DTAB组成的进料液。在该进料液条件下,进料侧与出水侧稳定分别为60℃及20℃,连续测试20小时,该双疏膜依然具有稳定的归一化通量及盐截留率(图5)。
实施例5
通过对实施例1中得到的本发明双疏膜进行抗污染性能测试,由膜蒸馏测试结果可知,与#PVDF和#PVDF-F膜相比,#PVDF-F膜具有优异的油污染性能。本申请提供的超疏水膜可以应用于废水处理和海水淡化,因为其优异的双疏性,在处理含0.0015v/v%矿物油的3.5wt%氯化钠模拟含油废水时,可以达到99.99%的盐截留率,并有着20±2kg m-2h-1的稳定通量(图6)。
Claims (3)
1.一种针对膜蒸馏过程的抗润湿、抗污染双疏膜的制备方法,其特征在于:该双疏膜是纳米纤维基质层和双疏表层构成的多层膜结构;纳米纤维基质层和双疏表层通过聚多巴胺层结合;
通过顺序静电纺丝10-13 wt% PVDF和6-8 wt%PVDF铸膜液制备了双层PVDF纳米纤维基质层,具体步骤如下:
(1)纳米纤维基质层的制备:通过顺序静电纺丝10-13 wt% PVDF和6-8 wt%PVDF溶液,并经热压处理制备得到PVDF纳米纤维基质层;所述热压处理温度为120-160℃;
(2)复合双疏层的制备:在上述步骤(1)纳米纤维基质层的表面,通过PDA活化,AgNPs原位聚合和1H,1H,2H,2H-全氟癸硫醇(PFDT)浸涂改性制备复合双疏层;
通过在上述步骤(1)PVDF纳米纤维基质层的表面上顺序PDA化学活化、AgNPs原位聚合和浸涂PFDT得到双疏膜;
该双疏膜应用于废水处理和海水淡化;
所述步骤(2)聚多巴胺水溶液(PDA)包含1-5 mg / mL的多巴胺盐酸盐,10-15 mM 三羟甲基氨基甲烷(Tris),5-10 mM 五水硫酸铜(CuSO4•5H2O)和19-25 mM 过氧化氢(H2O2),AgNPs前体液硝酸银的浓度为1-5 wt%;所述PFDT的浓度为10-30 mM;
所述步骤(2)的具体方法为:将PVDF纳米纤维基质层浸入制备的聚多巴胺水溶液振摇1-3 h,以获得PDA预活化膜;之后,将PDA活化膜放入硝酸银溶液中,借助氨水和葡萄糖引发银镜反应以促使AgNPs均匀沉积在PDA活化膜表面上;最后,将沉积有AgNPs的膜浸入PFDT(10-30 mM)中3-12 h,以获得最终的双疏膜。
2.根据权利要求1所述的双疏膜的制备方法,其特征在于:所述双疏膜的膜厚度为60-75 μm,膜平均孔径为0.5-0.7 μm,膜孔隙率为62-70%。
3.根据权利要求1所述的针对膜蒸馏过程的抗润湿、抗污染的双疏膜的制备方法,其特征在于:所述硝酸银溶液包含0.1-1 wt%硝酸银(AgNO3)和0.02-0.05 wt%的乙醇;所述氨水浓度为12-18 M,葡萄糖浓度为0.5-1.5 wt%;所述PFDT溶液为10-30 mM的1H,1H,2H,2H-全氟癸硫醇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110001360.3A CN112755795B (zh) | 2021-01-04 | 2021-01-04 | 一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110001360.3A CN112755795B (zh) | 2021-01-04 | 2021-01-04 | 一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112755795A CN112755795A (zh) | 2021-05-07 |
CN112755795B true CN112755795B (zh) | 2023-06-09 |
Family
ID=75698810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110001360.3A Active CN112755795B (zh) | 2021-01-04 | 2021-01-04 | 一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112755795B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114367205B (zh) * | 2022-01-28 | 2024-04-12 | 山西大学 | 一种疏水疏油复合膜及其制备方法和应用 |
CN114849490B (zh) * | 2022-03-31 | 2023-08-01 | 浙江泰林生命科学有限公司 | 一种高效低阻超疏水纳米纤维复合膜的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108755111A (zh) * | 2018-06-20 | 2018-11-06 | 西安科技大学 | 一种沉积银纳米颗粒制备性能稳定抗菌超疏水织物的方法 |
CN110777533A (zh) * | 2019-09-19 | 2020-02-11 | 中南大学 | 一种超疏水纳米纤维、纤维膜及其制备和应用 |
CN111871230A (zh) * | 2019-09-26 | 2020-11-03 | 南开大学 | 一种针对膜蒸馏过程的耐摩擦、抗污染的超疏水膜及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8801933B2 (en) * | 2011-09-15 | 2014-08-12 | Bha Altair, Llc | Membrane distillation modules using oleophobically and antimicrobially treated microporous membranes |
CN104069750A (zh) * | 2013-03-26 | 2014-10-01 | 中国科学院宁波材料技术与工程研究所 | 一种超疏水仿生膜材料及其制备方法和用途 |
CN105644085B (zh) * | 2015-12-31 | 2018-04-03 | 中国科学院烟台海岸带研究所 | 多层复合纳米纤维膜及其应用 |
CN108404685B (zh) * | 2018-04-14 | 2020-12-18 | 哈尔滨工业大学 | 一种高通透、耐润湿、抗污染膜蒸馏用蒸馏膜的制备方法 |
CN108722200B (zh) * | 2018-06-01 | 2021-08-27 | 天津大学 | 一种具有光热效应的双仿生膜蒸馏用超疏水疏油膜的制备方法 |
CN109621738A (zh) * | 2018-12-11 | 2019-04-16 | 天津工业大学 | 一种多级结构双层膜蒸馏用膜的制备方法 |
CN111841334B (zh) * | 2020-07-29 | 2022-01-04 | 自然资源部天津海水淡化与综合利用研究所 | 一种超疏液多级纳米纤维复合膜蒸馏膜的制备方法 |
-
2021
- 2021-01-04 CN CN202110001360.3A patent/CN112755795B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108755111A (zh) * | 2018-06-20 | 2018-11-06 | 西安科技大学 | 一种沉积银纳米颗粒制备性能稳定抗菌超疏水织物的方法 |
CN110777533A (zh) * | 2019-09-19 | 2020-02-11 | 中南大学 | 一种超疏水纳米纤维、纤维膜及其制备和应用 |
CN111871230A (zh) * | 2019-09-26 | 2020-11-03 | 南开大学 | 一种针对膜蒸馏过程的耐摩擦、抗污染的超疏水膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112755795A (zh) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112755795B (zh) | 一种针对膜蒸馏过程的抗润湿、抗污染双疏膜及其制备方法和应用 | |
CN107670513B (zh) | 一种植物多酚改性聚合物膜及其制备方法与应用 | |
CN109589804A (zh) | 一种亲水聚烯烃基底复合纳滤膜及其制备方法 | |
CN109794173B (zh) | 一种高性能海水淡化反渗透膜的制备方法 | |
CN107469650B (zh) | 一种疏水大孔聚酰亚胺纳米纤维正渗透膜的制备方法 | |
CN111203104A (zh) | 一种具有超薄非对称聚酰胺截留层的反渗透膜的制备方法 | |
CN106582318A (zh) | 一种通过氧化石墨烯改性耐有机溶剂纳滤膜、制备方法和应用 | |
WO2006038409A1 (ja) | 複合半透膜の製造方法 | |
CN111888953B (zh) | 一种降低反渗透膜表面粗糙度的方法 | |
CN106512729A (zh) | 一种高脱盐率反渗透复合膜及其制备方法 | |
Du et al. | Chitosan‐modified graphene oxide as a modifier for improving the structure and performance of forward osmosis membranes | |
CN111644080B (zh) | 高亲水性纳米纤维涂层基纳滤膜及其制备方法 | |
WO2023035555A1 (zh) | 一种正渗透膜及其制备方法 | |
CN113750818B (zh) | 一种高渗透性聚酰胺反渗透复合膜及其制备方法 | |
Kwon et al. | Preparation and characterization of antimicrobial bilayer electrospun nanofiber membrane for oily wastewater treatment | |
CN109621740B (zh) | 一种孔径可控超疏水聚合膜及其制备方法 | |
CN110479116A (zh) | 一种介孔疏水硅改性聚偏氟乙烯平板微滤膜的制备方法 | |
CN116020280A (zh) | 一种兼具抗润湿、抗污染、抗结垢水凝胶Janus膜的制备方法 | |
JP2018012072A (ja) | 正浸透膜およびその製造方法 | |
RU2465951C1 (ru) | Композиционный материал для фильтрационной очистки жидкости | |
JP2016010771A (ja) | 複合半透膜 | |
KR20190051550A (ko) | 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막 | |
KR20180107605A (ko) | 고염배제율 역삼투막 및 그 제조방법 | |
CN111871209A (zh) | 一种耐热缩聚四氟乙烯复合纳滤膜的制备方法 | |
CN118577144A (zh) | 一种基于定量渗吸的聚酰胺复合膜可控制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |