CN112750978A - 极片及电池 - Google Patents

极片及电池 Download PDF

Info

Publication number
CN112750978A
CN112750978A CN202011628643.2A CN202011628643A CN112750978A CN 112750978 A CN112750978 A CN 112750978A CN 202011628643 A CN202011628643 A CN 202011628643A CN 112750978 A CN112750978 A CN 112750978A
Authority
CN
China
Prior art keywords
active material
pole piece
thickness
lithium
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011628643.2A
Other languages
English (en)
Other versions
CN112750978B (zh
Inventor
张双虎
张健
孙雷明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Cosmx Battery Co Ltd
Original Assignee
Zhuhai Cosmx Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Cosmx Battery Co Ltd filed Critical Zhuhai Cosmx Battery Co Ltd
Priority to CN202011628643.2A priority Critical patent/CN112750978B/zh
Publication of CN112750978A publication Critical patent/CN112750978A/zh
Priority to CN202180093956.9A priority patent/CN116897440A/zh
Priority to KR1020237009172A priority patent/KR20230051567A/ko
Priority to EP21913951.6A priority patent/EP4145562A1/en
Priority to JP2022574383A priority patent/JP2023528447A/ja
Priority to PCT/CN2021/139024 priority patent/WO2022143210A1/zh
Application granted granted Critical
Publication of CN112750978B publication Critical patent/CN112750978B/zh
Priority to US18/060,570 priority patent/US20230115059A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种极片及电池,该极片包括集流体和位于集流体第一表面的功能层,第一表面设有极耳,功能层由远离极耳的正常区和靠近极耳的凹陷区组成,凹陷区的厚度小于正常区的厚度。本发明能够有效避免电芯靠近极耳的部位过厚等问题,提高电池的安全性和充放电倍率等品质。

Description

极片及电池
技术领域
本发明涉及电池领域,具体涉及一种极片及采用该极片的电池。
背景技术
锂离子电池由于具有环境友好、工作电压高、比容量大和循环寿命长等优点而被广泛应用于消费电子产品及电动汽车等领域,提高锂离子电池的快充能力以及寿命和安全性等品质,对于电池的实际推广应用具有重要意义。
卷绕式电池是比较常用的一类电池,其主要由正极片、隔膜、负极片层叠设置后再经卷绕形成电芯,再经注液、封装、化成等工艺制成,然而,常规电芯通常靠近极片极耳部位处过厚,尤其是采用将极耳设计在极片的中间(而非端部)的极片时,由于需要在极耳部位贴附胶纸等原因,电芯靠近极耳部位处更易出现过厚现象,超出厚度规格,导致析锂、电池内阻增大等问题,不利于电池的安全性、电芯体积能量密度和充放电倍率等性能。
发明内容
本发明提供一种极片,以至少解决上述现有技术中所存在的电芯中靠近极片极耳部位处过厚以及由此导致的电池安全性低、充放电倍率性能差等问题。
本发明还提供一种电池,采用上述极片,能够有效避免其电芯靠近极片极耳部位处过厚等问题,具有良好的充放电倍率性能、安全性和较长的使用寿命。
本发明的一方面,提供一种极片,包括集流体和位于集流体第一表面的功能层,所述第一表面设有极耳,所述第一表面的功能层由远离极耳的正常区和靠近极耳的凹陷区组成,所述凹陷区的厚度小于正常区的厚度。
根据本发明的一实施方式,所述功能层包括底涂层和活性材料层,所述底涂层位于集流体表面和活性材料层之间,所述底涂层的原料包括活性材料、粘结剂和导电剂,所述活性材料层的原料包括活性材料、粘结剂和导电剂,所述底涂层中的粘结剂的含量高于活性材料层中的粘结剂的含量。
根据本发明的一实施方式,所述凹陷区的厚度比正常区的厚度小5-125μm。
根据本发明的一实施方式,所述凹陷区的底涂层的厚度为0-15μm,凹陷区的活性材料层的厚度为0-105μm;和/或,所述正常区的底涂层的厚度为5-15μm,所述正常区的活性材料层的厚度为90-110μm。
根据本发明的一实施方式,所述凹陷区的宽度为3-50mm。
根据本发明的一实施方式,所述底涂层为多孔结构,其孔隙率为20%-45%;和/或,所述活性材料层为多孔结构,其孔隙率为25%-50%。
根据本发明的一实施方式,所述底涂层的原料中,活性材料的质量含量为49-94%,粘结剂的质量含量为4-50%,导电剂的质量含量为1-5%;和/或,所述活性材料层的原料中,活性材料的质量含量为93-96%,粘结剂的质量含量为0.9-1.5%,导电剂的质量含量为1-3%。
根据本发明的一实施方式,所述极片为正极片,所述活性材料包括钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料、镍钴铝酸锂和钛酸锂中的至少一种。
根据本发明的一实施方式,所述极片为负极片,所述活性材料包括石墨、中间相碳微球、软碳、硬碳、硅材料、硅氧材料、硅碳材料、钛酸锂材料中的至少一种。
本发明的另一方面,提供一种电池,包括上述极片。
本发明提供的极片,通过上述特殊结构设计,具有良好的安全性,将其应用于电池时,能够有效避免电芯靠近极耳的部位过厚等问题,提高电池的安全性和充放电倍率等品质;本发明提供的电池,采用上述极片,具有良好的安全性和充放电倍率等性能,在产业上具有更大的实用意义。
附图说明
图1为本发明一实施方式的极片的结构示意图;
图2为本发明一实施方式的电池的电芯卷绕结构示意图;
图3为本发明一实施方式中制备极片时所用凹版辊示意图;
附图标记说明:1:集流体;2:底涂层;3:活性材料层;31:正常区;32:凹陷区;4:极耳;5:胶纸;6:未涂覆区;7:负极耳;8:雕刻区;9:预留极耳位;10:未雕刻区;H1:凹陷区深度;H2:胶纸上表面至正常区表面的距离。
具体实施方式
为使本领域技术人员更好地理解本发明的方案,下面结合附图对本发明作进一步地详细说明。
本发明的一方面,提供一种极片,如图1所示,该极片包括集流体1和位于集流体1第一表面的功能层,第一表面设有极耳4,第一表面的功能层由远离极耳的正常区31和靠近极耳的凹陷区32组成,凹陷区32的厚度小于正常区的厚度。
本发明提供的极片,通过上述凹陷区设计,能够有效避免采用该极片形成的电芯中靠近极耳部位处的厚度过厚的问题,进而保证电池的安全性和充放电倍率等品质。
上述功能层可以包括底涂层2和活性材料层3,底涂层2位于集流体1表面和活性材料层3之间,底涂层2的原料包括活性材料、粘结剂和导电剂,活性材料层3的原料包括活性材料、粘结剂和导电剂,底涂层2中的粘结剂的含量高于活性材料层3中的粘结剂的含量,上述底涂层(或称安全涂层)具有较高的与集流体表面的粘附力,可进一步提高极片的安全性等性能。
具体地,本发明中,极耳4可以位于极片的中部(即非端部),功能层围绕极耳设置。一般情况下,极耳4的厚度不大于凹陷区32的厚度,即在集流体设有极耳的表面(即第一表面)上,以集流体的该表面为基准,极耳4的高度不大于凹陷区32的高度。
本发明中,可以只在集流体1的第一表面设置功能层,也可以同时在与第一表面相对的第二表面设置功能层(集流体的正反两个表面均设置功能层),优选后者,能够进一步提高极片的能量密度等特性。当在两个表面均设有功能层时,第二表面上与极耳对应的位置处可以涂覆有功能层,也可以是没有涂层的未涂覆区,优选为没有涂层的未涂覆区,更利于避免电芯的超厚现象,同时也更利于极片的制作;在一具体实施方式中,在集流体1的两个表面均设有功能层时,第二表面上设有无涂层的未涂覆区6,未涂敷区6与第一表面的极耳4位置对应,第二表面的功能层可以不设有凹陷区,也可以在靠近未涂覆区6的位置处设置凹陷区(即第二表面的功能层包括靠近未涂敷区6的凹陷区和远离未涂敷区6的正常区),第一表面的凹陷区、第二表面的凹陷区的形状、面积大小、厚度等参数可以相同或不同,优选为相同。
本发明中,正常区31的底涂层和凹陷区32的底涂层的厚度可以相同或不同,只要满足凹陷区32的厚度小于正常区31的厚度即可,意即,凹陷区深度H1=正常区的厚度-凹陷区的厚度,H1>0。根据本发明的研究,上述凹陷区的厚度一般可以比正常区的厚度小5-125μm,即H1为5-125μm,进一步可以为10-125μm,比如可以为10-100μm或10-90μm或10-80μm或10-70μm或10-65μm或20-65μm或30-65μm或40-65μm或45-65μm或50-65μm或55-65μm或60-65μm。
上述凹陷区32的厚度基本等于凹陷区32的底涂层厚度和凹陷区32的活性材料层厚度之和,在一优选实施方式中,凹陷区的底涂层厚度可以为0-15μm,比如可以为5-12μm,凹陷区的活性材料层的厚度可以为0-105μm,比如可以为45-105μm。
具体地,在本发明的一实施方式中,凹陷区的厚度为0-125μm,进一步可以为0-120μm,更进一步可以为50-112μm,比如可以为为50μm、57μm、63μm、74μm、90μm、101μm、110μm、112μm。
本发明正常区31的厚度可以按照本领域常规极片涂层厚度设置,正常区31的厚度基本等于正常区的底涂层厚度和正常区的活性材料层厚度之和,在一优选实施方式中,正常区的底涂层的厚度为5-15μm,进一步可以为5-12μm,比如可以为5-8μm,利于使极片兼具良好的安全性和较低的内阻;正常区的活性材料层的厚度为90-110μm,利于进一步提高极片的能量密度等特性。
进一步地,上述凹陷区32的宽度一般可以为3-50mm,进一步可以为3-30mm,比如可以为10-30mm或20-30mm或25-30mm。
一般情况下,上述底涂层2为多孔结构,其孔隙率可以为20%-45%;和/或,活性材料层3为多孔结构,其孔隙率可以为25%-50%。
经进一步研究,上述底涂层2的原料中,活性材料的质量含量为49-94%;和/或,粘结剂的质量含量为4-50%,导电剂的质量含量为1-5%;上述活性材料层3的原料中,活性材料的质量含量为93-96%,例如94-96%;和/或,粘结剂的质量含量为0.9-1.5%,例如2-3.5%,导电剂的质量含量为1-3%,例如1-2%。
本发明中,活性材料、粘结剂、导电剂均可以是本领域常规材料,例如,粘结剂可以包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯吡咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯、聚六氟丙烯和丁苯橡胶(SBR)中的至少一种,导电剂可以包括碳黑、碳纤维、碳纳米管、石墨、石墨烯、金属材料、导电陶瓷材料中的至少一种。
具体地,上述极片可以是正极片或者负极片,例如,在一实施方式中,上述极片为正极片,上述活性材料可以是含锂活性材料等本领域常规正极活性材料,例如可以包括钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料、镍钴铝酸锂中的至少一种,上述集流体可以是铝箔等本领域常规正极集流体;在另一实施方式中,上述极片为负极片,上述活性材料可以包括石墨、中间相碳微球、软碳、硬碳、硅材料、硅氧材料、硅碳材料、钛酸锂材料等中的至少一种,上述集流体可以是铜箔等本领域常规负极集流体。
当上述极片为负极片时,底涂层2的原料和/或活性材料层3的原料还可以包括分散剂,底涂层2中分散剂的质量含量可以为1.5-2.5%,活性材料层3中分散剂的质量含量可以为1.5-2.5%,该分散剂可以是羧甲基纤维素钠(CMC)等常用分散剂。
本发明的极片可以按照涂覆法等本领域常规方法制得,如在一实施方式中,其制备方法具体可以包括:在集流体1表面涂布底涂层2后,再在底涂层2表面涂布活性材料层3,然后除去预设极耳位的底涂层和活性材料层后,在预设极耳位的集流体上焊接极耳,并根据预设凹陷区的宽度、厚度等参数除去预设凹陷区的功能层形成凹陷区32,得到极片;其中,采用凹版涂布法涂布底涂层,如图3所示,凹版涂布法所用的凹版辊设有预留极耳位9,集流体1上的预设极耳位与凹版辊的预留极耳位9的位置对应;可以采用转移涂布、挤压涂布、丝网印刷等常规方法涂布上述活性材料层,亦可以采用凹版涂布法涂布上述活性材料层;可采用激光或刮刀刮除或二者的配合等本领域常规方式除去预设极耳位的涂层。
一般情况下,可以先将底涂层的浆料涂敷于集流体后,再经干燥/烘干处理(烘干的温度可以控制为100-130℃,比如110℃),在集流体上形成底涂层,然后在底涂层表面涂覆活性材料层的浆料,涂覆完成后,再经干燥(干燥温度可以为80-110℃)和辊压处理,随后可采用台阶刮刀或激光清洗等方式除去预设凹陷区的功能层形成凹陷区,并除去预设极耳位的全部功能层,露出集流体,在集流体上焊接极耳,得到极片。其中,上述浆料的溶剂可以是N-甲基吡咯烷酮(NMP)等本领域常规溶剂。
具体地,如图3所示,上述凹版辊包括辊体,辊体表面设有至少一个对应极片涂层的涂布区,涂布区包括雕刻有网纹的雕刻区8和未经雕刻的预留极耳位9,其余为未雕刻区(即非涂布区)10。上述预设极耳位用于焊接极耳,其表面形状大小均与待焊接极耳的底面形状大小相同,上述预留极耳位9的形状大小可以根据待焊接极耳的形状大小进行设定,通常预留极耳位的形状与预设极耳位的形状类似,而其尺寸一般稍大于预设极耳位的尺寸。
采用上述凹版辊形成的凹版涂布机具体可以包括用于盛放涂层浆料的料槽、位于所述料槽上方的凹版辊、与该凹版辊配合的胶辊(通常位于凹版辊的上方)、以及与该凹版辊配合的刮刀(通常位于凹版辊的侧面并压在凹版辊上);其中,料槽、胶辊、刮刀及其位置均为本领域常规设置,不再赘述。具体实施时,可以将底涂层原料置于溶剂中形成涂层浆料,设定刮刀压力、胶辊压力、涂布速度、烘箱温度等参数或条件后,将上述浆料置于凹版涂布机的料槽中,开始对集流体等基材进行涂布;涂布完成后,经干燥处理,在基材上形成底涂层,得到涂覆有底涂层的卷料,然后在该卷料上涂覆正极活性层后,再辊压分切成符合预设形状、大小等参数的极片。具体地,上述凹版涂布的条件可以为:涂布速度为10-30m/min,比如可以为20m/min;刮刀压力为0.2-0.6MPa,比如0.4MPa;胶辊压力为0.2-0.6MPa,比如0.4MPa。
采用上述方法制备极片,不仅能够提升极片的安全性、充放电倍率等性能,还能够提高极片的制造良率,利于产业化生产和应用。
本发明的另一方面,还提供一种电池,包括上述极片。
本发明的电池可以包括具有上述结构设计的正极片(即上述极片为正极片),或者包括具有上述结构设计的负极片(即上述极片为负极片),或者可以同时包括具有上述结构设计的正极片和具有上述结构设计的负极片(即上述极片包括正极片和负极片)。当上述极片为负极片时,上述电池还包括正极片,该正极片亦可以是本领域常规正极片;当上述极片为正极片时,上述电池还包括负极片,该负极片可以是本领域常规负极片,如在一实施方式中,该负极片包括负极集流体和位于负极集流体上的负极功能层,该负极功能层厚度可以为100-120μm,其原料包括负极活性材料、粘结剂和导电剂,其中,负极活性材料的质量含量可以为94-96%,粘结剂的质量含量可以为2-3.5%,分散剂的质量含量可以为1.5-2.5%,导电剂的质量含量可以为1-2%,粘结剂、导电剂、负极活性材料、分散剂可以是如上所述的常规材料,不再赘述。
上述电池还包括位于正极片和负极片之间的隔膜,该隔膜用于间隔正极片和负极片,其可以是本领域常规隔膜,本发明对此亦不做特别限制。
一般情况下,在极片设有极耳的一表面上贴附有胶纸5,胶纸5和极耳4、环绕极耳4的至少部分凹陷区32(靠近极耳的凹陷区32)粘接,极耳4位于由凹陷区32、胶纸5、集流体1围成的腔内,胶纸5的上表面位于正常区31表面的下方,意即,胶纸5上表面至正常区31表面的距离H2=正常区31的厚度-胶纸5上表面至该胶纸所在侧的集流体表面的距离,H2>0。
在本发明的一优选实施方式中,在集流体1的两个表面均设有功能层,第二表面上设有无涂层的未涂覆区6,未涂敷区6与第一表面的极耳4位置对应,两个表面的功能层均设有凹陷区32,两个表面均贴附有胶纸5,胶纸5在第二表面的贴附方式与在第一表面的贴附方式相同,即,在第二表面,胶纸5和环绕未涂覆区6的至少部分凹陷区32(靠近未涂覆区的凹陷区)粘接,未涂覆区6位于由凹陷区32、胶纸5、集流体1围成的腔内,胶纸5的上表面位于正常区32表面的下方。
本发明可以采用本领域常规胶纸,在一优选实施方式中,胶纸厚度一般可以为16-30μm。
如图2所示,上述电池可以是卷绕式锂离子电池,带有正极耳4的正极片与带有负极耳7的负极片之间通过隔膜隔开,靠近极耳的部位没有过厚现象。
上述卷绕式电池可以按照本领域常规方法制得,如可以将正极片、隔膜、负极片层叠设置后经卷绕、组装、真空烘烤、注液、静置、封装、化成、分容等处理后制得卷绕式锂离子电池,上述卷绕、组装、真空烘烤、注液、静置、封装、化成、分容均可以是本领域常规工序,所用隔膜、电解液等均可以是本领域常规材料,不再赘述。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如无特别说明,以下实施例中,采用凹版涂布法进行涂布的过程所用的凹版涂布机包括:用于盛放涂层浆料的料槽、位于所述料槽上方的凹版辊、与该凹版辊配合的胶辊(通常位于凹版辊的上方)、以及与该凹版辊配合的刮刀(通常位于凹版辊的侧面并压在凹版辊上);其中,凹版辊包括辊体,辊体表面设有至少一个对应极片涂层的涂布区,涂布区包括雕刻有网纹的正常区和未经雕刻的预留极耳位,其余为非涂布区;涂布时,控制涂布速度为20m/min;刮刀压力为0.4MPa;胶辊压力为0.4MPa。
实施例1
本实施例的正极片包括正极集流体和涂敷于正极集流体两个表面的正极功能层,正极集流体的一表面上设有正极耳(正极耳位于正极片的中部),该表面的正极功能层由远离正极耳的正常区和靠近正极耳的凹陷区组成,所述凹陷区的厚度小于正常区的厚度;正极集流体的另一表面上设有与正极耳位置对应的未涂覆区,该另一表面的正极功能层与设有正极耳的表面的正极功能层相同(由上述正常区和凹陷区组成);上述两表面的正极功能层包括底涂层和正极活性材料层,底涂层位于正极集流体表面和正极活性材料层之间;其中,凹陷区的底涂层与正常区的底涂层厚度相同,底涂层厚度为5μm,凹陷区的正极活性材料层厚度为45μm,正常区的正极活性材料层厚度为110μm,凹陷区深度H1为65μm,凹陷区宽度30mm;底涂层的孔隙率为28%,正极活性层的孔隙率为35%;正极集流体为铝箔。
上述正极片及采用该正极片形成的卷绕式锂离子电池具体按照如下过程制得:
(1)将磷酸铁锂、聚偏氟乙烯和碳黑按照质量比65:30:5于NMP中混合均匀形成底涂层浆料(固含量为15%);将上述底涂层浆料置于凹版涂布机的料槽中,开启涂布,将其涂布于铝箔两面,然后经110℃烘干后,得到涂覆有底涂层的卷料;
将钴酸锂、聚偏氟乙烯和碳黑按照质量比97:1.3:1.4于NMP中混合均匀形成正极活性层浆料,采用狭缝式挤压涂布设备将其涂布于上述卷料的两面,于100℃干燥2-5min后,经辊压分切成1000mm×65mm的正极片前体;清洗掉正极片前体的预设极耳位的涂层后,焊接极耳,得到正极片;
(2)将石墨、CMC、SBR和碳黑按照质量比95:1.5:1.5:2于去离子水中混合均匀形成负极活性层浆料,将该浆料涂敷于铜箔的两个表面上,于70~100℃烘干2~5min,然后辊压分切成1100mm×66.5mm的负极片;其中,负极片功能层(其上述浆料经干燥、辊压后形成的涂层)的厚度为120μm;
(3)按照常规的锂电池卷绕工艺,采用上述正极片、负极片制作成卷绕式电池。其中,在正极片的两个表面均贴附有胶纸,在设有正极耳的表面,胶纸和正极耳、环绕正极耳的凹陷区粘接,正极耳位于由凹陷区、胶纸、正极集流体围成的腔内,胶纸的上表面位于正常区表面的下方,在设有未涂敷区的表面,胶纸和环绕未涂覆区的凹陷区粘接,未涂覆区位于由凹陷区、胶纸、正极集流体围成的腔内,胶纸的上表面位于正常区表面的下方;所用胶纸的厚度为16μm。
实施例2
本实施例与实施例1的区别在于,底涂层厚度为7μm,凹陷区的正极活性材料层厚度为50μm,凹陷区深度为60μm,其余条件与实施例1相同。
实施例3
本实施例与实施例1的区别在于,底涂层的厚度为8μm,凹陷区的正极活性材料层厚度为55μm,凹陷区深度为55μm,其余条件与实施例1相同。
实施例4
本实施例与实施例1的区别在于,底涂层的厚度为9μm,凹陷区的正极活性材料层厚度为65μm,凹陷区深度为45μm,其余条件与实施例1相同。
实施例5
本实施例与实施例1的区别在于,底涂层的厚度为10μm,凹陷区的正极活性材料层厚度为80μm,凹陷区深度为30μm,其余条件与实施例1相同。
实施例6
本实施例与实施例1的区别在于,底涂层的厚度为11μm,凹陷区的正极活性材料层厚度为90μm,凹陷区深度为20μm,其余条件与实施例1相同。
实施例7
本实施例与实施例1的区别在于,底涂层的厚度为12μm,凹陷区的正极活性材料层厚度为100μm,凹陷区深度为10μm,其余条件与实施例1相同。
实施例8
该对比例与实施例1的区别在于,凹陷区的深度为5μm,凹陷区的正极活性材料层厚度为105μm,其余条件与实施例1相同。
实施例9
该对比例与实施例1的区别在于,正极片凹陷区宽度设置为50mm,其余条件与实施例1相同。
对比例1
该对比例与实施例1的区别在于,未设置底涂层,凹陷区的厚度和正常区的厚度相同(即未设置凹陷区),极耳设置在极片的端部,其余与实施例1条件相同。
对比例2
该对比例与实施例1的区别在于,凹陷区的厚度和正常区的厚度相同(即未设置凹陷区),其余条件与实施例1相同。
性能测试
测得实施例1-9、对比例1和2的锂离子电池的电池内阻、2C充电倍率、电芯超厚比例、针刺通过率如表1所示,各实施例和对比例中的凹陷区深度、凹陷区宽度、底涂层厚度、电池的容量亦汇总于表1。
其中,各测试方法如下:
(1)电池内阻:电芯充电至50%SOC时,用1KHZ电压内阻测试仪检测电芯或电池的内阻。
(2)2C充放电倍率
倍率充电:在25℃±5℃条件下,将电芯以0.2C电流恒流放电到3.0V,静置10min,再以2C恒流充电至4.35V;然后改为恒压充电,直到充电电流≤0.02C;其中,恒流阶段充电容量计为Cc1,总充电容量计为C1,恒流充入比=Cc1/C1。
倍率放电:在25℃±5℃条件下,将电芯以0.2C电流恒流放电到3.0V,然后按照0.2C恒流恒压充电至4.35V截止电压,再以0.2C和2C放电至3.0V;其中,0.2C放电容量记为C0,2C放电容量记为C2,放电容量比=C2/C0。
(3)电芯超厚比例
按照如下过程分别测定各实施例和对比例的电芯超厚比例:采用平面测厚仪测量200个电芯厚度数值(各实施例和对比例的电芯厚度不超过3.965mm为宜),超过规格限(3.965+0.08mm)的电芯个数记为N,超厚比例=N/50。
(4)针刺通过率:在常温环境下,将锂离子电池以0.5C恒流充电至电压为4.35V,然后恒压充电至电流为0.025C;将锂离子电池转移至穿钉测试设备上,保持测试环境温度为25℃,用直径为4mm的钢钉,以30mm/s的速度匀速穿过锂离子电池负极耳侧距电芯侧边7mm处,保留300s,锂离子电池不起火不爆炸记为通过。每实施例/对比例测试5只锂离子电池,以穿钉测试通过率作为评价锂离子电池安全性的指标,其中,针刺测试通过率=针刺通过电池数量/针刺总电池数。
表1
Figure BDA0002873556350000121
从表1结果可以看出,相对于对比例1和2,实施例1-9的电池电芯超厚比例极低,大部分超厚比例为0,而同时具有较高的针刺通过率、较低的电池内阻、较高的电芯容量以及倍率性能等优势,尤其是实施例1-9的电池兼具更优异的电芯容量、充放电倍率、针刺通过率等综合性能。更具体来说,从实施例1-7可以看出,随着底涂层厚度增加,电池针刺通过率增加,说明底涂层厚度增加对电池的安全性提升效果明显,但过高会影响电池内阻等性能;从实施例1、8、9可以看出,随着凹陷区深度增大,电池超厚比例降低,但凹陷区过大,会影响电池的容量,而凹陷区深度过低,电池的超厚比例稍高,即相对存在较高的超厚风险;从实施例1和对比例1-2可以看出,正极片凹陷区设计,可以使得正极片卷绕形成的电池电芯中,正极片、隔膜、负极片之间接触更加紧密,有利于电芯内阻降低和充放电倍率性能的发挥。
因此,上述实施例及对比例结果表明,本发明通过在正极片极耳位设置上述特定的凹陷区,可以有效解决电芯超厚问题,提升电池的安全性,同时兼顾提高电池的容量、充放电倍率等性能。

Claims (10)

1.一种极片,其特征在于,包括集流体和位于集流体第一表面的功能层,所述第一表面设有极耳,所述第一表面的功能层由远离极耳的正常区和靠近极耳的凹陷区组成,所述凹陷区的厚度小于正常区的厚度。
2.根据权利要求1所述的极片,其特征在于,所述功能层包括底涂层和活性材料层,所述底涂层位于集流体表面和活性材料层之间,所述底涂层的原料包括活性材料、粘结剂和导电剂,所述活性材料层的原料包括活性材料、粘结剂和导电剂,所述底涂层中的粘结剂的含量高于活性材料层中的粘结剂的含量。
3.根据权利要求1所述的极片,其特征在于,所述凹陷区的厚度比正常区的厚度小5-125μm。
4.根据权利要求2所述的极片,其特征在于,所述凹陷区的底涂层的厚度为0-15μm,凹陷区的活性材料层的厚度为0-105μm;和/或,所述正常区的底涂层的厚度为5-15μm,所述正常区的活性材料层的厚度为90-110μm。
5.根据权利要求1或3所述的极片,其特征在于,所述凹陷区的宽度为3-50mm。
6.根据权利要求2所述的极片,其特征在于,所述底涂层为多孔结构,其孔隙率为20%-45%;和/或,所述活性材料层为多孔结构,其孔隙率为25%-50%。
7.根据权利要求2所述的极片,其特征在于,所述底涂层的原料中,活性材料的质量含量为49-94%,粘结剂的质量含量为4-50%,导电剂的质量含量为1-5%;和/或,所述活性材料层的原料中,活性材料的质量含量为93-96%,粘结剂的质量含量为0.9-1.5%,导电剂的质量含量为1-3%。
8.根据权利要求2所述的极片,其特征在于,所述极片为正极片,所述活性材料包括钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、磷酸铁锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、富锂锰基材料、镍钴铝酸锂和钛酸锂中的至少一种。
9.根据权利要求2所述的极片,其特征在于,所述极片为负极片,所述活性材料包括石墨、中间相碳微球、软碳、硬碳、硅材料、硅氧材料、硅碳材料、钛酸锂材料中的至少一种。
10.一种电池,其特征在于,包括权利要求1-9任一项所述的极片。
CN202011628643.2A 2020-12-30 2020-12-30 极片及电池 Active CN112750978B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202011628643.2A CN112750978B (zh) 2020-12-30 2020-12-30 极片及电池
CN202180093956.9A CN116897440A (zh) 2020-12-30 2021-12-17 极片及电池
KR1020237009172A KR20230051567A (ko) 2020-12-30 2021-12-17 전극 시트 및 배터리
EP21913951.6A EP4145562A1 (en) 2020-12-30 2021-12-17 Electrode piece and battery
JP2022574383A JP2023528447A (ja) 2020-12-30 2021-12-17 電極シート及び電池
PCT/CN2021/139024 WO2022143210A1 (zh) 2020-12-30 2021-12-17 极片及电池
US18/060,570 US20230115059A1 (en) 2020-12-30 2022-12-01 Electrode piece and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011628643.2A CN112750978B (zh) 2020-12-30 2020-12-30 极片及电池

Publications (2)

Publication Number Publication Date
CN112750978A true CN112750978A (zh) 2021-05-04
CN112750978B CN112750978B (zh) 2022-03-15

Family

ID=75650725

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202011628643.2A Active CN112750978B (zh) 2020-12-30 2020-12-30 极片及电池
CN202180093956.9A Pending CN116897440A (zh) 2020-12-30 2021-12-17 极片及电池

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202180093956.9A Pending CN116897440A (zh) 2020-12-30 2021-12-17 极片及电池

Country Status (6)

Country Link
US (1) US20230115059A1 (zh)
EP (1) EP4145562A1 (zh)
JP (1) JP2023528447A (zh)
KR (1) KR20230051567A (zh)
CN (2) CN112750978B (zh)
WO (1) WO2022143210A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948671A (zh) * 2021-09-02 2022-01-18 惠州锂威新能源科技有限公司 一种正极极片的制备方法及正极极片和二次电池
CN114068859A (zh) * 2021-11-18 2022-02-18 珠海冠宇电池股份有限公司 一种正极片及电池
CN114464772A (zh) * 2022-02-16 2022-05-10 星恒电源股份有限公司 一种极片及其制备方法
WO2022143210A1 (zh) * 2020-12-30 2022-07-07 珠海冠宇电池股份有限公司 极片及电池
WO2022236489A1 (zh) * 2021-05-08 2022-11-17 宁德新能源科技有限公司 电芯以及用电设备
CN115458879A (zh) * 2022-09-28 2022-12-09 惠州锂威新能源科技有限公司 电芯及电芯制造方法
CN115513611A (zh) * 2022-10-27 2022-12-23 惠州锂威新能源科技有限公司 电芯及电芯制造方法
WO2023241165A1 (zh) * 2022-06-17 2023-12-21 珠海冠宇电池股份有限公司 一种极片及电池
WO2023249443A1 (ko) * 2022-06-23 2023-12-28 주식회사 엘지에너지솔루션 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024057630A1 (ja) * 2022-09-15 2024-03-21 パナソニックエナジー株式会社 蓄電装置用電極板および蓄電装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988564A (en) * 1972-07-17 1976-10-26 Hughes Aircraft Company Ion beam micromachining method
GB2072930A (en) * 1980-03-27 1981-10-07 Bender E Grid plate
US4862318A (en) * 1989-04-04 1989-08-29 Avx Corporation Method of forming thin film terminations of low inductance ceramic capacitors and resultant article
JP2013089604A (ja) * 2011-10-21 2013-05-13 Research In Motion Ltd 高密度エネルギー薄型バッテリのためのはめ込まれたタブ
CN204464391U (zh) * 2015-04-03 2015-07-08 东莞新能源科技有限公司 电芯
CN105261727A (zh) * 2015-10-16 2016-01-20 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
WO2017149927A1 (ja) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2018209762A1 (zh) * 2017-05-15 2018-11-22 哈尔滨光宇电源股份有限公司 锂电池负极及其制备方法和应用
WO2019073595A1 (ja) * 2017-10-13 2019-04-18 Necエナジーデバイス株式会社 リチウムイオン二次電池
CN110739437A (zh) * 2019-11-05 2020-01-31 珈伟隆能固态储能科技如皋有限公司 一种高倍率且安全圆柱型锂离子电池及其制造方法
CN210110986U (zh) * 2019-08-03 2020-02-21 惠州市茂林电子科技有限公司 一种接触性良好的电池化成机夹具
CN210443619U (zh) * 2019-08-23 2020-05-01 惠州锂威新能源科技有限公司 一种高能量密度电芯
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN211507765U (zh) * 2020-04-03 2020-09-15 珠海冠宇电池股份有限公司 卷芯结构
CN111816838A (zh) * 2020-07-22 2020-10-23 珠海冠宇电池股份有限公司 锂离子电池正极片及其制备方法以及锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742565B (zh) * 2016-02-29 2019-03-05 宁德新能源科技有限公司 一种锂离子电池极片及其制备方法
CN110943201B (zh) * 2019-04-15 2021-02-26 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置
CN112750978B (zh) * 2020-12-30 2022-03-15 珠海冠宇电池股份有限公司 极片及电池
CN112802992B (zh) * 2020-12-30 2022-10-14 珠海冠宇电池股份有限公司 一种极片和锂离子电池
CN112820852B (zh) * 2020-12-30 2022-04-15 珠海冠宇电池股份有限公司 一种负极片和锂离子电池

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3988564A (en) * 1972-07-17 1976-10-26 Hughes Aircraft Company Ion beam micromachining method
GB2072930A (en) * 1980-03-27 1981-10-07 Bender E Grid plate
US4862318A (en) * 1989-04-04 1989-08-29 Avx Corporation Method of forming thin film terminations of low inductance ceramic capacitors and resultant article
JP2013089604A (ja) * 2011-10-21 2013-05-13 Research In Motion Ltd 高密度エネルギー薄型バッテリのためのはめ込まれたタブ
CN204464391U (zh) * 2015-04-03 2015-07-08 东莞新能源科技有限公司 电芯
CN105261727A (zh) * 2015-10-16 2016-01-20 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
WO2017149927A1 (ja) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2018209762A1 (zh) * 2017-05-15 2018-11-22 哈尔滨光宇电源股份有限公司 锂电池负极及其制备方法和应用
WO2019073595A1 (ja) * 2017-10-13 2019-04-18 Necエナジーデバイス株式会社 リチウムイオン二次電池
CN210110986U (zh) * 2019-08-03 2020-02-21 惠州市茂林电子科技有限公司 一种接触性良好的电池化成机夹具
CN210443619U (zh) * 2019-08-23 2020-05-01 惠州锂威新能源科技有限公司 一种高能量密度电芯
CN110739437A (zh) * 2019-11-05 2020-01-31 珈伟隆能固态储能科技如皋有限公司 一种高倍率且安全圆柱型锂离子电池及其制造方法
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
CN211507765U (zh) * 2020-04-03 2020-09-15 珠海冠宇电池股份有限公司 卷芯结构
CN111816838A (zh) * 2020-07-22 2020-10-23 珠海冠宇电池股份有限公司 锂离子电池正极片及其制备方法以及锂离子电池

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022143210A1 (zh) * 2020-12-30 2022-07-07 珠海冠宇电池股份有限公司 极片及电池
WO2022236489A1 (zh) * 2021-05-08 2022-11-17 宁德新能源科技有限公司 电芯以及用电设备
CN113948671A (zh) * 2021-09-02 2022-01-18 惠州锂威新能源科技有限公司 一种正极极片的制备方法及正极极片和二次电池
CN114068859A (zh) * 2021-11-18 2022-02-18 珠海冠宇电池股份有限公司 一种正极片及电池
CN114464772A (zh) * 2022-02-16 2022-05-10 星恒电源股份有限公司 一种极片及其制备方法
CN114464772B (zh) * 2022-02-16 2024-04-26 星恒电源股份有限公司 一种极片及其制备方法
WO2023241165A1 (zh) * 2022-06-17 2023-12-21 珠海冠宇电池股份有限公司 一种极片及电池
WO2023249443A1 (ko) * 2022-06-23 2023-12-28 주식회사 엘지에너지솔루션 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024057630A1 (ja) * 2022-09-15 2024-03-21 パナソニックエナジー株式会社 蓄電装置用電極板および蓄電装置
CN115458879B (zh) * 2022-09-28 2024-03-22 惠州锂威新能源科技有限公司 电芯及电芯制造方法
CN115458879A (zh) * 2022-09-28 2022-12-09 惠州锂威新能源科技有限公司 电芯及电芯制造方法
CN115513611B (zh) * 2022-10-27 2023-06-30 惠州锂威新能源科技有限公司 电芯及电芯制造方法
CN115513611A (zh) * 2022-10-27 2022-12-23 惠州锂威新能源科技有限公司 电芯及电芯制造方法

Also Published As

Publication number Publication date
JP2023528447A (ja) 2023-07-04
US20230115059A1 (en) 2023-04-13
EP4145562A1 (en) 2023-03-08
KR20230051567A (ko) 2023-04-18
CN112750978B (zh) 2022-03-15
CN116897440A (zh) 2023-10-17
WO2022143210A1 (zh) 2022-07-07

Similar Documents

Publication Publication Date Title
CN112750978B (zh) 极片及电池
CN112397682B (zh) 一种补锂的负极极片及其锂离子电池
CN111900392B (zh) 一种正极片及含有该正极片的锂离子电池
CN111540880B (zh) 一种负极片、制备方法及包含其的锂离子电池
CN111540879A (zh) 一种正极片、制备方法及包含其的锂离子电池
KR101536063B1 (ko) 비수전해액 2차 전지
KR20130064820A (ko) 비수 전해액 리튬 2차 전지
CN111564634A (zh) 导电胶、圆柱锂离子二次电池及其制备方法
CN114122320A (zh) 电极片及电化学装置
JP5017995B2 (ja) リチウム二次電池用極板の製造方法、その製造法を用いたリチウム二次電池用極板とリチウム二次電池
CN214313300U (zh) 一种电极组件和二次电池
CN112820855A (zh) 极片及电池
CN110718676A (zh) 一种锂离子电池正极极片以及其制备方法以及一种锂离子电池
CN114335560A (zh) 极片及电化学装置
CN211980812U (zh) 一种用于锂电池极片卷绕压花的工装
CN111682162A (zh) 电池极片及其制备方法
JP7008813B2 (ja) バイポーラ電極の製造方法
CN112808514B (zh) 凹版辊及凹版涂布机和电极极片的制备方法
JPWO2011114473A1 (ja) 電池用電極の製造方法
CN112928234B (zh) 一种锂离子电池正极电极的制备方法
CN115275524A (zh) 一种电池隔膜和电池
CN114204038A (zh) 集流体及其应用
CN115986322B (zh) 一种电池
CN216850037U (zh) 一种安全电池
US20220344672A1 (en) Current collector comprising primer coating layer having improved adhesive strength, and manufacturing method for same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant