CN112646203B - 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法 - Google Patents

自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法 Download PDF

Info

Publication number
CN112646203B
CN112646203B CN202011401945.6A CN202011401945A CN112646203B CN 112646203 B CN112646203 B CN 112646203B CN 202011401945 A CN202011401945 A CN 202011401945A CN 112646203 B CN112646203 B CN 112646203B
Authority
CN
China
Prior art keywords
mixed solution
articular cartilage
interpenetrating network
pva
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011401945.6A
Other languages
English (en)
Other versions
CN112646203A (zh
Inventor
熊党生
陈俊玥
崔玲玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011401945.6A priority Critical patent/CN112646203B/zh
Publication of CN112646203A publication Critical patent/CN112646203A/zh
Application granted granted Critical
Publication of CN112646203B publication Critical patent/CN112646203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/606Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing other heteroatoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法。所述方法将聚乙烯醇、两性离子甜菜碱、光引发剂α‑酮戊二酸和交联剂N,N'‑亚甲基双丙烯酰胺均匀分散在水中配置成混合溶液,然后将混合溶液放置在紫外光下通过辐照进行自由基聚合反应,最后经过物理交联制得自润滑高强互穿网络水凝胶仿生关节软骨。本发明利用共混的方法,将两性离子均匀地分散在基体成分中,所制备的互穿水凝胶成分均匀,结构与性能均表现稳定;利用辐照交联和物理交联相结合的方式,在保持高含水量的同时,进一步提高了产物的力学性能和摩擦学性能,适用于关节软骨替换修复及含水溶液环境减摩耐磨等领域。

Description

自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法
技术领域
本发明属于高分子材料领域,涉及一种自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法。
背景技术
关节软骨是一种坚韧而有弹性的承重结缔组织,具有特殊的生物学和生物力学特性。软骨可以起到缓冲、吸收震动的作用,让骨头以极低摩擦的方式相互滑动。成熟的软骨细胞内不含有血管和营养物质,难以进行自我修复。目前软骨修复的研究主要集中在合成关节软骨替换物或者能够刺激新组织再生的生物材料。水凝胶由于其优越的生物相容性、高含水性和溶胀性能,与天然关节软骨相似的结构和性能,成为仿生关节软骨的研究热点。
聚乙烯醇是一种常用的合成水凝胶材料,具有稳定的化学性质,高弹性,易于成型,具有耐磨、减震以及良好的生物相容性。
两性离子被认为在边界润滑中起着重要作用。在剪切作用下,两性离子形成的水化层可以与周围的水分子进行迅速的交换,产生类似流体的效果,有效地降低摩擦系数和宏观磨损。
Milner等将两性离子物质PMPC(聚(2-甲基丙烯酰氧基乙基磷酰胆碱))溶胀进PAMPS(聚(2-丙烯酰胺基-2-甲基丙磺酸))单网络水凝胶后,进行辐照交联形成了双网络水凝胶,该水凝胶证实了两性离子可以改善水凝胶的摩擦性能,但溶胀的方式不能保证内部结构的均匀性和各向同性,且其机械性能跟天然软骨相比也存在较大差距(Milner P E,Parkes M,Puetzer J L,et al.A Low Friction,Biphasic and Boundary LubricatingHydrogel for Cartilage Replacement[J].Acta Biomaterialia,2017:S1742706117306773.)。
发明内容
本发明针对现有技术中人工关节软骨的摩擦性能和机械性能较差的问题,提供一种自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法。
本发明的技术解决方案如下:
自润滑高强互穿网络水凝胶仿生关节软骨的制备方法,包括以下步骤:
将聚乙烯醇(PVA)、两性离子甜菜碱(MPDSAH)、光引发剂α-酮戊二酸(α-Ketoglutaric acid)和交联剂N,N'-亚甲基双丙烯酰胺均匀分散在水中配置成混合溶液,然后将混合溶液放置在紫外光下通过辐照进行自由基聚合反应,最后经过物理交联制得自润滑高强互穿网络水凝胶仿生关节软骨。
进一步的,所述的混合溶液中,PVA的浓度为5~20wt%,优选为15wt%;MPDSAH的浓度为5wt%~15wt%,优选为10wt%。
在本发明具体实施方式中,光引发剂α-酮戊二酸和交联剂N,N'-亚甲基双丙烯酰胺的添加量均为PVA的0.1wt%。
进一步的,紫外光辐照时间为2~8h,优选为5h。
进一步的,物理交联的方式采用反复冷冻解冻的方式。
更进一步的,反复冷冻解冻过程中,冷冻时间为12~24h,解冻时间为2~4h,重复5次。
本发明在紫外光辐照作用下,甜菜碱单体MPDSAH发生自由基聚合,结构中的C=C双键打开形成聚合物pMPDSAH;在反复冷解冻过程中,通过氢键的方式,聚合物pMPDSAH与PVA交联形成双网络结构水凝胶。
与现有技术相比,本发明具有以下优点:
(1)本发明利用共混的方法,将两性离子均匀地分散在基体成分中,所制备的互穿水凝胶成分均匀,结构与性能均表现稳定。
(2)本发明利用辐照交联和物理交联相结合的方式,在保持高含水量的同时,进一步提高了产物的摩擦学性能和力学性能,其摩擦系数降低50%,拉伸强度最高提高40多倍。
(3)本发明使用的试剂无需特殊处理,制备过程简单,反应条件温和,适合大规模生产。
附图说明
图1为本发明的自润滑高强互穿网络水凝胶仿生关节软骨的制备流程示意图。
图2为聚乙烯醇和两性离子甜菜碱的分子式图。
图3为制备的互穿网络水凝胶的红外光谱。
图4为制备的互穿网络水凝胶样品PVA-5%MPDSAH-5h的SEM图。
图5为不同互穿网络水凝胶的含水量测试结果图。
图6为不同互穿网络水凝胶的拉伸应变-应力曲线图。
图7为不同互穿网络水凝胶的摩擦性能测试结果图。
图8为不同互穿网络水凝胶在不同摩擦时间下的摩擦系数对比结果图。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
下述实施例中,采用的聚乙烯醇(PVA)为1799型,聚合度为1700,醇解度≥99%,购自南京晶格化学科技有限公司。
下述实施例中,各实施例制得的互穿网络水凝胶样品命名为PVA-x%MPDSAH-yh,其中,x%表示MPDSAH的质量分数,yh表示混合溶液在紫外光下聚合的时间。
实施例1
(1)配置占混合溶液质量分数为15%的PVA和5%的MPDSAH的混合水溶液。
(2)将占PVA质量分数比为0.1%的交联剂N,N'-亚甲基双丙烯酰胺和光引发剂α-酮戊二酸加入步骤1中的混合溶液中。
(3)将混合溶液在95℃下加热搅拌至呈现无色透明状态。
(4)将混合均匀的溶液倒入培养皿中,置于紫外光灯下,辐照不同时间:2h、5h、8h。
(5)将步骤4所得样品放入冰箱冷冻21h,解冻3h。
(6)将步骤5重复5次。
(7)将步骤6所得水凝胶放入去离子水中以除去表面残留的单体和交联剂等杂质,制得互穿网络水凝胶。
图3为实施例1制备的互穿网络水凝胶的红外光谱。PVA-5%MPDSAH-5h的红外光谱中,在3298cm-1处出现大量-OH的特征峰,在1091cm-1处出现S=O的特征峰,表明PVA与MPDSAH共混,成功制备互穿网络水凝胶。
图4为实施例1制备的互穿网络水凝胶样品PVA-5%MPDSAH-5h的SEM图,观测到水凝胶样品呈现三维网络状多孔组织结构。
实施例2
(1)配置占混合溶液质量分数为15%的PVA和10%的MPDSAH的混合溶液。
(2)将占PVA质量分数比为0.1%的交联剂N,N'-亚甲基双丙烯酰胺和光引发剂α-酮戊二酸加入步骤1中的混合溶液中。
(3)将混合溶液在95℃下加热搅拌至呈现无色透明状态。
(4)将混合均匀的溶液倒入培养皿中,置于紫外光灯下,辐照5h。
(5)将步骤4所得样品放入冰箱冷冻21h,解冻3h。
(6)将步骤5重复5次。
(7)将步骤6所得水凝胶放入去离子水中以除去表面残留的单体和交联剂等杂质,制得互穿网络水凝胶。
实施例3
(1)配置占混合溶液质量分数为15%的PVA和15%的MPDSAH的混合溶液。
(2)将占PVA质量分数比为0.1%的交联剂N,N'-亚甲基双丙烯酰胺和光引发剂α-酮戊二酸加入步骤1中的混合溶液中。
(3)将混合溶液在95℃下加热搅拌至呈现无色透明状态。
(4)将混合均匀的溶液倒入培养皿中,置于紫外光灯下,辐照5h。
(5)将步骤4所得样品放入冰箱冷冻21h,解冻3h。
(6)将步骤5重复5次。
(7)将步骤6所得水凝胶放入去离子水中以除去表面残留的单体和交联剂等杂质,制得互穿网络水凝胶。
对比例1
(1)配置占混合溶液质量分数为15%的PVA溶液。
(2)将占PVA质量分数比为0.1%的交联剂N,N'-亚甲基双丙烯酰胺和光引发剂α-酮戊二酸加入PVA溶液中。
(3)将PVA溶液在95℃下加热搅拌至呈现无色透明状态。
(4)将溶解后均匀透明的溶液倒入培养皿中,置于紫外光灯下,辐照不同5h。
(5)将步骤4所得样品放入冰箱冷冻21h,解冻3h。
(6)将步骤5重复5次。
(7)将步骤6所得水凝胶放入去离子水中以除去表面残留的单体和交联剂等杂质,制得PVA水凝胶PVA-0%MPDSAH-5h。
对比例2
(1)配置占混合溶液质量分数为15%的PVA和5%的MPDSAH的混合溶液。
(2)将占PVA质量分数比为0.1%的交联剂N,N'-亚甲基双丙烯酰胺和光引发剂α-酮戊二酸加入步骤1中的混合溶液中。
(3)将混合溶液在95℃下加热搅拌至呈现无色透明状态,倒入培养皿中。
(4)放入冰箱冷冻21h,解冻3h。
(5)将步骤4重复5次。
(6)将步骤5所得水凝胶放入去离子水中以除去表面残留的单体和交联剂等杂质,制得水凝胶PVA-5%MPDSAH-0h。
图5为不同实施例和对比例下的互穿网络水凝胶的含水量测试结果,可以看到实验制备的水凝胶样品均保持较高水平。紫外光辐照和MPDSAH的添加对样品含水量的影响不大,其含水量仍保持在78%以上。
图6为不同实施例和对比例下的互穿网络水凝胶的拉伸应变-应力曲线图。可以看到MPDSAH的添加使水凝胶的拉伸模量增加,样品PVA-15%MPDSAH-5h的拉伸强度为5.543MPa,与未添加甜菜碱的样品PVA-0%MPDSAH-5h(2.47MPa)相比提高了两倍多;而增加紫外辐照时长也能有效提高水凝胶样品的力学性能,样品PVA-5%MPDSAH-8h的拉伸强度为9.872MPa,与未辐照样品PVA-5%MPDSAH-0h(0.241MPa)相比提高了40多倍。
图7为不同实施例和对比例下的互穿网络水凝胶的摩擦性能测试结果。可以看到MPDSAH的添加明显降低了水凝胶样品的摩擦学性能,样品PVA-15%MPDSAH-5h与未添加甜菜碱的样品PVA-0%MPDSAH-5h相比,摩擦系数从0.2819±0.0547降低到了0.1354±0.00903,证明了MPDSAH的添加可以起到自润滑效果。且实验中可以通过控制辐照时间进一步降低摩擦系数,样品PVA-5%MPDSAH-8h与未辐照样品PVA-5%MPDSAH-0h相比,摩擦系数从0.4033±0.04261降低到了0.1592±0.01172,说明辐照交联有效提高了水凝胶的摩擦学性能。
图8为不同实施例和对比例下的互穿网络水凝胶在不同摩擦时间下的摩擦系数对比结果,可以从图中看到长时间的摩擦实验过程中,MPDSAH的添加和紫外辐照时间对于水凝胶的稳定性具有积极作用,辐照时间较长的样品和添加MPDSAH含量高的样品的摩擦系数随摩擦时间增加变化幅度不大,可以在长时间的磨损实验中减少水凝胶样品的磨损,保持较低的摩擦系数。

Claims (7)

1.自润滑高强互穿网络水凝胶仿生关节软骨的制备方法,其特征在于,包括以下步骤:
将PVA、MPDSAH、光引发剂α-酮戊二酸和交联剂N,N'-亚甲基双丙烯酰胺均匀分散在水中配置成混合溶液,然后将混合溶液放置在紫外光下通过辐照进行自由基聚合反应,最后经过物理交联制得自润滑高强互穿网络水凝胶仿生关节软骨,物理交联的方式采用反复冷冻解冻的方式,所述的混合溶液中,PVA的浓度为5~20wt%,MPDSAH的浓度为5 wt%~15 wt%。
2. 根据权利要求1所述的制备方法,其特征在于,所述的混合溶液中,PVA的浓度为15wt%,MPDSAH的浓度为10 wt%。
3.根据权利要求1所述的制备方法,其特征在于,光引发剂α-酮戊二酸和交联剂N,N'-亚甲基双丙烯酰胺的添加量均为PVA的0.1wt%。
4.根据权利要求1所述的制备方法,其特征在于,紫外光辐照时间为2~8h。
5.根据权利要求1所述的制备方法,其特征在于,紫外光辐照时间为5h。
6.根据权利要求1所述的制备方法,其特征在于,反复冷冻解冻过程中,冷冻时间为12~24h,解冻时间为2~4h,重复5次。
7.根据权利要求1至6任一所述的制备方法制得的自润滑高强互穿网络水凝胶仿生关节软骨。
CN202011401945.6A 2020-12-04 2020-12-04 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法 Active CN112646203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011401945.6A CN112646203B (zh) 2020-12-04 2020-12-04 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011401945.6A CN112646203B (zh) 2020-12-04 2020-12-04 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法

Publications (2)

Publication Number Publication Date
CN112646203A CN112646203A (zh) 2021-04-13
CN112646203B true CN112646203B (zh) 2022-11-18

Family

ID=75350162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011401945.6A Active CN112646203B (zh) 2020-12-04 2020-12-04 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法

Country Status (1)

Country Link
CN (1) CN112646203B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874399B (zh) * 2022-04-27 2023-02-24 北京交通大学 一种复合水凝胶及其制备方法和应用
CN117563044A (zh) * 2023-11-17 2024-02-20 北京大学口腔医学院 一种可植入的两性离子水凝胶及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633111B (zh) * 2017-01-11 2018-12-25 福州大学 一种高强度聚乙烯醇基双网络水凝胶的制备方法
WO2018213627A1 (en) * 2017-05-17 2018-11-22 Quadion Llc Zwitterionic monomers, polyzwitterionic polymers formed therefrom, surface functionalization and surface modification
CN110437472B (zh) * 2019-08-12 2022-03-08 浙江工业大学 一种高强度、盐响应的双网络水凝胶及其应用
CN110498886B (zh) * 2019-08-26 2020-11-20 吉林大学 一种润滑水凝胶材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112646203A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Gan et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry
CN112646203B (zh) 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法
CN108653809B (zh) 一种基于黑磷和明胶的复合水凝胶及其在骨组织工程方面的应用
KR100696408B1 (ko) 폴리(에틸렌글리콜)과 가교결합을 이룬 폴리(프로필렌푸마레이트)
CN109762182B (zh) 一种高强度-多孔结构聚乙烯醇-单宁酸水凝胶的制备方法及应用
CN108794771B (zh) 双网络交联纤维素/丝素蛋白高强度水凝胶及其制备与应用
CN112759774B (zh) 一种力学增强明胶冷冻水凝胶及其制备方法与应用
CN108047465A (zh) 一种甲基丙烯酸酯明胶/壳聚糖互穿网络水凝胶、制备方法及应用
CN110124113B (zh) 取向导电胶原水凝胶、仿生导电神经支架材料及其制备方法
CN113788960A (zh) 一种高力学强度聚乙烯醇-丙烯酰胺-琼脂糖水凝胶的制备方法
Wang et al. Biomimetic poly (γ-glutamic acid) hydrogels based on iron (III) ligand coordination for cartilage tissue engineering
CN113372582B (zh) 一种仿生复合水凝胶及其制备方法和应用
CN110157012A (zh) 一种高强度高韧性明胶基水凝胶的制备方法
WO2023024055A1 (en) Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength
Li et al. Preparation, mechanical properties, fatigue and tribological behavior of double crosslinked high strength hydrogel
Jafari et al. Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application
CN102516473B (zh) 细胞片智能分离用共聚纳米复合水凝胶及其制备方法与应用
CN112940294A (zh) 一种pva/ha双网络水凝胶及其制备方法和应用
CN113150318A (zh) 一种可注射镁合金复合多网络水凝胶的制备方法及应用
CN116396499A (zh) 一种多巴胺改性纳米复合水凝胶及其制备方法
CN111253607A (zh) 用于软骨修复的可注射聚氨基酸水凝胶及其制备方法
CN109880011A (zh) 一种关节软骨浅表层修复用高效自修复水凝胶及其制备方法
CN118063679A (zh) 一种双网络pva基自润滑水凝胶及其制备方法
Wang et al. Design, characterization and evaluation of homogeneous oxidized sodium alginate/polyacrylamide–gelatin composite hydrogels constructed via interpenetrating network technology
Peng et al. 3D Bio-Printing Fabrication and Properties of Graphene Dispersion-based Hybrid Scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant