CN114989462A - 一种温敏水凝胶材料及其制备方法 - Google Patents

一种温敏水凝胶材料及其制备方法 Download PDF

Info

Publication number
CN114989462A
CN114989462A CN202210800609.1A CN202210800609A CN114989462A CN 114989462 A CN114989462 A CN 114989462A CN 202210800609 A CN202210800609 A CN 202210800609A CN 114989462 A CN114989462 A CN 114989462A
Authority
CN
China
Prior art keywords
solution
temperature
hydrogel material
sensitive hydrogel
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210800609.1A
Other languages
English (en)
Inventor
卢春兰
罗艳荣
杨东旭
张晓琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202210800609.1A priority Critical patent/CN114989462A/zh
Publication of CN114989462A publication Critical patent/CN114989462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明属于生物材料制备领域,公开了一种温敏水凝胶材料及其制备方法。制备方法包括:(1)将壳聚糖加入稀乙酸溶液中搅拌并超声分散,得到溶液A;(2)将无水柠檬酸加入到溶液A中,水浴加热,得到溶液B;(3)将阿拉伯树胶溶于去离子水中,得到溶液C;(4)将溶液C加入到溶液B中,共混分散同时水浴加热,随后将其倒入24孔板中,添加一定量交联剂,静置,得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶材料。采用的温敏水凝胶制备方法,不产生污染物,绿色环保,操作简单;制备的水凝胶材料内部经交联形成了化学键,有较好的力学性能,在强度、生物相容性等方面得到了极大程度的改善,具有更好的机械强度以及延展性,并且具有温敏性。

Description

一种温敏水凝胶材料及其制备方法
技术领域
本发明属于生物材料制备领域,具体涉及了一种温敏水凝胶材料及其制备方法。
背景技术
水凝胶是一种以水为分散介质的,有独特的三维网络结构的高分子聚合物材料,它能够吸收比自身大数十乃至数百倍的水分,可以显著溶胀而不溶解于水溶液中,并且还能保持物质本来的结构。水凝胶具有高含水量、三维结构、可调节的力学性能和微创传递能力,同时还具有生物可降解性、生物兼容性、来源广、成本低、易于规模化生产制备等优势,是一类很有前途的组织再生材料。
随着生命科学的飞速发展,由于功能性天然高分子水凝胶在生物降解性、生物相容性、材料来源和生产等方面的独特优势,在多个应用领域相关的研究也越来越多。水凝胶作为一种有潜力的修复材料常应用于软组织修复,它还可以加速不同组织的修复并促进伤口收缩愈合的能力,也被用于伤口敷料应用当中。此外,还作为药物载体十分适合于局部注射治疗。
壳聚糖(CS)是一种含有氨基的多糖,在节肢动物骨骼中广泛存在,其结构类似于天然存在的糖胺聚糖,在人体内被酶生物降解。CS具有良好的生物降解性、生物相容性和抗菌性,在药物传递领域得到了广泛的应用。然而,CS的快速降解特性及力学性能差等问题使其应用范围受到限制。因此,CS作为水凝胶医用材料通常需要与材料复合以改善其性能。
由于纯壳聚糖水凝胶的骨架结构往往会过于硬脆,受力后会发生破碎,机械性能很差,这限制了它们在组织工程中的应用。
发明内容
由于水凝胶结构类似于各种组织的细胞外基质,可在关节镜下输送,所以可以根据应用需要对其性能进行调整,例如其组成、交联度、交联方式以及细胞密度。理想状态下水凝胶材料能完美地模拟细胞外基质,特别是在承重关节中承受机械压力和负载。
为了克服现有技术纯壳聚糖水凝胶的骨架结构往往会过于硬脆,受力后会发生破碎,机械性能很差的技术问题,本发明通过添加阿拉伯树胶和柠檬酸复合改性增加了其柔性,克服了单一壳聚糖水凝胶的缺点,使得其具有更好的机械强度以及延展性。
与现有技术相比,本发明使用壳聚糖、无水柠檬酸和阿拉伯树胶,以戊二醛为交联剂,通过化学交联,提高了水凝胶的力学性能,得到生物相容性良好、有一定力学强度、对温度有智能响应的水凝胶。
无水柠檬酸是一种三元酸,在生物代谢中具有非常重要的作用,柠檬酸为食用酸类,可增强体内正常代谢,同时柠檬酸具有抗氧化性以及抗炎作用,可同时作为物理和化学交联的交联位点。
阿拉伯胶是阿拉伯胶树的分泌物,由于多产于阿拉伯国家而得名。阿拉伯树胶是一种多糖类天然高分子,它具有来源广泛、安全、可再生、可降解等优点。具有良好的理化特性,广泛应用于食品、医药、造纸和纺织等行业,具有广阔的应用前景。
为了实现上述目的,本发明提供一种温敏水凝胶材料,为壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶材料,其中壳聚糖、无水柠檬酸和阿拉伯树胶的质量百分比分别为50~85%:5~10%:5~45%。
一种温敏水凝胶材料的制备方法,所述方法包括以下步骤:
(1)将壳聚糖加入稀乙酸溶液中搅拌并超声分散,得到溶液A;
(2)将无水柠檬酸加入到溶液A中,水浴加热,得到溶液B;
(3)将阿拉伯树胶溶于去离子水中,得到溶液C;
(4)将溶液C加入到溶液B中,共混分散同时水浴加热,得到溶液D,随后将其倒入24孔板中,添加交联剂,静置,得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶材料;
上述技术方案中,进一步地,所述步骤(1)中壳聚糖的脱乙酰度为85~99%,分子量为100万。
上述技术方案中,进一步地,所述步骤(1)中的稀乙酸质量分数为0.5~3%。
上述技术方案中,进一步地,所述步骤(2)中无水柠檬酸为分析纯,纯度为99.5%以上。
上述技术方案中,进一步地,所述步骤(3)中阿拉伯树胶为琥珀色颗粒状、医用级。
上述技术方案中,进一步地,所述步骤(4)中共混搅拌速度为500~1000r/min,水浴加热温度为40~70℃,搅拌时间为8~12h。
上述技术方案中,进一步地,所述交联剂为戊二醛水溶液、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基丁二酰亚胺(NHS)的2-(N-吗啉代)乙磺酸(MES)溶液、京尼平中的任意一种。
本发明通过将质量分数为2.5%的戊二醛水溶液或1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基丁二酰亚胺(NHS)的2-(N-吗啉代)乙磺酸(MES)溶液或京尼平加入到溶液D中,使得柠檬酸和壳聚糖发生酰胺反应,水凝胶整体的交联度提高。阿拉伯树胶的加入可以改善水凝胶的脆性,最终将获得均质、韧性较好的温敏水凝胶复合物。
本发明的有益效果为:
壳聚糖具有非常优秀的亲水性,并且有很高的生物黏附性,所以本发明使用壳聚糖作为水凝胶材料,可以使其具有良好的多孔性和水膨胀性,从而使壳聚糖水凝胶拥有良好的组织相容性。柠檬酸的引入可以有效减轻机体的炎症反应,阿拉伯胶作为增稠剂加入使得水凝胶粘度变大,成型之后弹性更大且不易脆性开裂。
本发明制备方法不产生污染物,绿色环保,其操作简单;制备的水凝胶材料内部经交联形成化学键,可以更好地分散掉水凝胶的受力有较好的力学性能,在强度、生物相容性等方面也得到了极大程度的改善,并且具有温敏性。力学性能较好的水凝胶还可以增加自愈合性能或者回复性能,为其临床使用提供了便利。
附图说明
图1为实施例1制备的壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶的红外光谱图;
图2为实施例1制备的壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶的样品图;
图3为实施例1制备的温敏水凝胶的温度对溶胀性能影响图;
图4为本发明制备的温敏水凝胶的力学性能图。
具体实施方式
以下的实施例便于更好的理解本发明,但并不限定本发明。另外,下述实施例中,如无特殊说明,所用材料、试剂等均可从生物或化学试剂公司购买。
实施例1
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)称量2g阿拉伯树胶溶解于10mL去离子水中,配制质量分数为20%的阿拉伯树胶溶液。向步骤2所得的溶液中添加5mL,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶。
实验结束后,通过溴化钾压片法测定该水凝胶的红外吸收,图1为实施例1制备的壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶的红外光谱图。从中可以看出,图1(a)和(c)中,3200-3600cm-1区域内的宽峰为CS和阿拉伯树胶的O-H键的吸收峰,1760cm-1为阿拉伯树胶分子链上C=O伸缩振动峰。图1(b)中,柠檬酸波数3500cm-1为-COOH的吸收峰,1721和1683cm-1为C=O伸缩振动吸收峰,1406处为柠檬酸-OH面内弯曲振动和C-O伸缩振动的耦合。图1(c)中,1117和1090cm-1处是CS多糖环结构上C-O-C伸缩振动以及C-O反对称和对称伸缩振动峰。图1(d)中,1750和1590cm-1处分别为酰胺Ⅰ和Ⅱ键的吸收峰,可以观察到酰胺键的形成,说明柠檬酸与壳聚糖之间发生了酰胺化反应。
图2为实施例1制备的壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶的样品图。从图2(a)中可以看出,本方法制备的水凝胶为形状均一、表面光滑的黄色凝胶,凝胶尺寸为25×25×15mm;对其进行简易的承重实验,将50g的砝码置于凝胶上方,记录其形变量,从图2(b)中可以看到,该水凝胶发生5mm位移量时,能够承受一定的压力且保持原有的形状不发生破裂。
图3为实施例1制备的水凝胶的温度对溶胀性能影响图。通过将制备的水凝胶称重,浸泡在盛有蒸馏水的烧杯中,并用保鲜膜封口,随后分别放入5℃、25℃、35℃、45℃和65℃的烘箱中,每隔30min取出擦除表面的水称重,直到水凝胶质量不变为止,计算水凝胶在不同温度下的最大吸水溶胀度。从中可以看出,当温度由5℃升高到25℃时,饱和溶胀度升高;继续升高温度,饱和溶胀率减小。当25℃时,达到最大溶胀率。这是因为当温度较低时,随着温度升高,分子链运动加剧,网状结构膨胀,体积扩大,容易通过氢键等分子间作用力与水分子结合,使得吸收率增加;当温度继续升高时,水分子的无规热运动加剧,水凝胶分子结构结合水分子吸引作用力下降,使得吸水率降低,饱和溶胀度降低。
实施例2
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)称量2g阿拉伯树胶溶解于10mL去离子水中,配制质量分数为20%的阿拉伯树胶溶液。向步骤2所得的溶液中添加1mL,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶。
实施例3
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)称量2g阿拉伯树胶溶解于10mL去离子水中,配制质量分数为20%的阿拉伯树胶溶液。向步骤2所得的溶液中添加3mL,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶。
实施例4
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)称量2g阿拉伯树胶溶解于10mL去离子水中,配制质量分数为20%的阿拉伯树胶溶液。向步骤2所得的溶液中添加7mL,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶。
实施例5
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)称量2g阿拉伯树胶溶解于10mL去离子水中,配制质量分数为20%的阿拉伯树胶溶液。向步骤2所得的溶液中添加9mL,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶。
实施例6
(1)脱乙酰度≥95%、分子量为100万的壳聚糖称量2g,在60℃水浴加热条件下,溶解于100mL、2%的稀乙酸溶液中,搅拌时间为1h;
(2)随后称量0.2g无水柠檬酸加入到步骤1中得到的溶液,继续搅拌1h,设置搅拌速度为500r/min;
(3)步骤2所得的溶液中不添加阿拉伯树胶,机械搅拌8h,速率为500r/min,同时进行水浴加热,温度为35℃,随后将共混液倒出到24孔(26×26×26mm)模具中,冷却至常温后缓慢滴入1mL、2.5%的戊二醛溶液,交联后制备得到壳聚糖/无水柠檬酸温敏水凝胶。
图4为本发明制备的温敏水凝胶的力学性能图。通过在水凝胶上方施加载荷,以位移量4mm为标准来分析本发明制备的水凝胶的力学性能。从图中可以看到,在阿拉伯树胶添加量为1-9mL时,壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶的承重量分别为70、75、80、100和65g,相比于壳聚糖/无水柠檬酸温敏水凝胶的力学性能都有明显提升。阿拉伯树胶的加入使得水凝胶的韧性得到一定改善,在添加5mL时可以承重100g,此时交联剂与聚合物链间的相互作用最强,网络结构更加紧密,因此压缩性能最好。
以上所述实施方式仅为本发明的优选实施例,而并非本发明可行实施的全部实施例。对于本领域一般技术人员而言,在不背离本发明原理和精神的前提下对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。

Claims (9)

1.一种温敏水凝胶材料,其特征在于,为壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶材料,其中壳聚糖、无水柠檬酸和阿拉伯树胶的质量百分比分别为50~85%:5~10%:5~45%。
2.一种温敏水凝胶材料的制备方法,其特征在于,所述方法包括以下步骤:
(1)将壳聚糖加入稀乙酸溶液中搅拌并超声分散,得到溶液A;
(2)将无水柠檬酸加入到溶液A中,水浴加热,得到溶液B;
(3)将阿拉伯树胶溶于去离子水中,得到溶液C;
(4)将溶液C加入到溶液B中,共混分散同时水浴加热,得到溶液D,随后将其倒入24孔板中,添加交联剂,静置,得到壳聚糖/无水柠檬酸/阿拉伯树胶温敏水凝胶材料。
3.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述步骤(1)中壳聚糖的脱乙酰度为85~99%,分子量为100万。
4.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述步骤(1)中的稀乙酸质量分数为0.5~3%。
5.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述步骤(2)中无水柠檬酸为分析纯,纯度为99.5%以上。
6.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述步骤(3)中阿拉伯树胶为琥珀色颗粒状、医用级。
7.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述步骤(4)中共混搅拌速度为500~1000r/min,水浴加热温度为40~70℃,搅拌时间为8~12h。
8.如权利要求2所述的一种温敏水凝胶材料的制备方法,其特征在于,所述交联剂为戊二醛水溶液、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)/N-羟基丁二酰亚胺(NHS)的2-(N-吗啉代)乙磺酸(MES)溶液、京尼平中的任意一种。
9.如权利要求8所述的一种温敏水凝胶材料的制备方法,其特征在于,所述戊二醛水溶液的质量分数为2.5%。
CN202210800609.1A 2022-07-08 2022-07-08 一种温敏水凝胶材料及其制备方法 Pending CN114989462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210800609.1A CN114989462A (zh) 2022-07-08 2022-07-08 一种温敏水凝胶材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210800609.1A CN114989462A (zh) 2022-07-08 2022-07-08 一种温敏水凝胶材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114989462A true CN114989462A (zh) 2022-09-02

Family

ID=83019325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210800609.1A Pending CN114989462A (zh) 2022-07-08 2022-07-08 一种温敏水凝胶材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114989462A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860958A (zh) * 2024-01-10 2024-04-12 四川大学 基于章鱼喷墨式温敏抗菌型的敷料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117860958A (zh) * 2024-01-10 2024-04-12 四川大学 基于章鱼喷墨式温敏抗菌型的敷料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Sun et al. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength
Lin et al. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels
CN111303459B (zh) 一种透明质酸基双交联水凝胶的制备方法
Pourjavadi et al. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands
Han et al. Gelatin-based adhesive hydrogel with self-healing, hemostasis, and electrical conductivity
Shao et al. A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction
Yuan et al. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive
Chen et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose
Lei et al. Polysaccharide-based recoverable double-network hydrogel with high strength and self-healing properties
Miao et al. Biocompatible lignin-containing hydrogels with self-adhesion, conductivity, UV shielding, and antioxidant activity as wearable sensors
Zhang et al. Rheological and ion-conductive properties of injectable and self-healing hydrogels based on xanthan gum and silk fibroin
Ghorbani et al. Construction of collagen/nanocrystalline cellulose based-hydrogel scaffolds: synthesis, characterization, and mechanical properties evaluation
Shui et al. Poly (vinyl Alcohol)(PVA)-based hydrogel scaffold with isotropic ultratoughness enabled by dynamic amine–catechol interactions
CN107043465A (zh) 一种脲基嘧啶酮改性明胶可注射自愈合水凝胶及其制备方法
CN108727610A (zh) 一种具有高强韧、形状记忆和自修复特性的双网络水凝胶及其制备方法
Qu et al. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking
Shi et al. Tough and self-healing chitosan/poly (acrylamide-co-acrylic acid) double network hydrogels
Qin et al. In situ self-assembly of nanoparticles into waxberry-like starch microspheres enhanced the mechanical strength, fatigue resistance, and adhesiveness of hydrogels
Guo et al. κ-Carrageenan/poly (N-acryloyl glycinamide) double-network hydrogels with high strength, good self-recovery, and low cytotoxicity
CN110157012A (zh) 一种高强度高韧性明胶基水凝胶的制备方法
CN112646203B (zh) 自润滑高强互穿网络水凝胶仿生关节软骨及其制备方法
CN114989462A (zh) 一种温敏水凝胶材料及其制备方法
Pourjavadi et al. Facile synthesis of extremely biocompatible double‐network hydrogels based on chitosan and poly (vinyl alcohol) with enhanced mechanical properties
CN113248743A (zh) 一种生物相容的可降解的三维纤维素凝胶及其制备方法和应用
Yang et al. Deep Eutectic Solvent‐Based Ultra‐Stretchable, Anti‐Freezing, and Ambient‐Stable Supramolecular Ionogel for Wearable Sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination