CN112643023B - 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法 - Google Patents

一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法 Download PDF

Info

Publication number
CN112643023B
CN112643023B CN202011427363.5A CN202011427363A CN112643023B CN 112643023 B CN112643023 B CN 112643023B CN 202011427363 A CN202011427363 A CN 202011427363A CN 112643023 B CN112643023 B CN 112643023B
Authority
CN
China
Prior art keywords
iron
copper
fibrous
monotectic alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011427363.5A
Other languages
English (en)
Other versions
CN112643023A (zh
Inventor
周圣丰
王小健
杨俊杰
易艳良
张治国
李卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202011427363.5A priority Critical patent/CN112643023B/zh
Publication of CN112643023A publication Critical patent/CN112643023A/zh
Application granted granted Critical
Publication of CN112643023B publication Critical patent/CN112643023B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法,其中,铜铁基合金粉末经球磨机混合均匀后粒径为50μm;铜铁基合金粉末化学成分为:Fe 34.2wt.%,P 3.5wt.%,Ni 2.2wt.%,Cr 1.5wt.%,Y2O3 0.8wt.%,余量为Cu;该方法制备的铜铁基偏晶合金具有纤维状的叠层结构:纤维状富铁区由Fe2P、Fe3P与α‑Fe组成,其内弥散分布有大量平均直径为20nm的孪晶铜颗粒;纤维状富铜区主要由ε‑Cu组成;纤维状富铁区与纤维状富铜区相互层叠堆垛;获得的铜铁基偏晶合金的抗拉强度达1.3GPa,延伸率达25%,弹性模量达140GPa,纳米硬度达3.2GPa。

Description

一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法
技术领域
本发明涉及一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法,属于激光增材制造(3D打印)技术领域。
背景技术
偏晶合金是一类具有液-液相变温度区间的合金,当形成弥散、核/壳与纤维状结构时,具有独特的物理与力学性能。尤其是铜铁基偏晶合金,因与其它偏晶合金相比具有价格低廉与性能优异(导热、导电、软磁、磁阻、延展性、抗磨耐蚀),在冶金(结晶器)、交通(受电滑板)、电力电子(触头与开关)、航空航天(发动机壳体)、医疗设备(电磁屏蔽)等行业具有重要的应用价值与广泛的应用前景。然而,采用常规铸造技术在地面上制备该合金,由于密度差易形成相偏析严重甚至两相分层的凝固组织,极大地限制了该类合金在工业领域中的应用。
近年来,激光选区熔化成形技术能直接成形出接近完全致密度、力学性能良好的金属零件,受到研究者与工业界人士的广泛关注。激光选区熔化成形高强高韧铜铁基偏晶合金,由于逐层成形的切片厚度很薄(约为50~100微米),冷却速度高达~108K/s,可以极大地缩短液相分离过程,减小布朗凝并为主的空间迁移距离,诱导二次液相分离并在富铁颗粒内形成大量具有纳米孪晶结构的富铜颗粒,同时孕育剂还可以阻碍第二相富铁液滴的Marangoni与Stokes运动。在变形过程中,第二相富铁颗粒与纳米孪晶都可以阻碍位错运动而增加强度,同时纳米孪晶还可以存储位错、吸收断裂时的能量,纳米富铜颗粒还可以改变裂纹扩展方向,承受较大塑性变形而增加塑/韧性。该方法可以实现多尺度“颗粒-孪晶”协同增强增韧铜铁基偏晶合金结构功能一体化设计与制造,迄今为止,未发现国内外有对激光选区熔化成形(3D打印)均质高性能铜铁基偏晶合金零件的研究报道。
发明内容
本发明的目的在于提供一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法。本发明是这样来实现的,其方法与步骤为:
(1)将铜铁基合金粉末在球磨机内混合均匀,然后放置于激光选区熔化成形机的自动铺粉器的盛粉器内;
(2)将带有支撑结构的铜铁基偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的黄铜板加热到400℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的铜铁基偏晶合金。
本发明在进行所述的步骤(1)时,铜铁基合金粉末化学成分为:Fe 34.2wt.%,P3.5wt.%,Ni 2.2wt.%,Cr 1.5wt.%,Y2O3 0.8wt.%,余量为Cu,余量为Cu;球磨机混粉工艺参数为:球磨机转速为120转/分,球磨气氛为氦气,球磨介质为乙醇,氧化锆磨球与铜铁基合金粉质量比为20:1,氧化锆磨球直径为5mm,采用球磨60分钟然后暂停15分钟的方法球磨36小时,球磨后铜铁基合金粉末粒径为50μm。
本发明在进行所述的步骤(2)时,制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率为150W,支撑结构高度为5mm,激光扫描速度为300mm/s,分层切片厚度为80μm,搭接率为50%;制备铜铁基偏晶合金零件的工艺参数为:激光功率为200W,激光扫描速度为1500mm/s,分层切片厚度为80μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形,直到完成铜铁基偏晶合金零件制造。
本发明在进行所述的步骤(2)时,高强高韧铜铁基偏晶合金的结构特征:物相主要由Fe2P、Fe3P、α-Fe与ε-Cu组成;显微组织形貌为纤维状的叠层结构,其中纤维状富铁区由Fe2P、Fe3P与α-Fe组成,其内还弥散分布有大量平均直径为20nm的孪晶铜颗粒;纤维状富铜区主要由ε-Cu组成;纤维状富铁区与纤维状富铜区相互层叠堆垛;获得的铜铁基偏晶合金的致密度达99.6%,抗拉强度达1.3GPa,延伸率达25%,弹性模量达140GPa,纳米硬度达3.2GPa。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)可以制备形状复杂与结构尺寸大的铜铁基偏晶合金;(2)铜铁基偏晶合金具有纤维状的叠层结构,还弥散分布有既能阻碍位错运动,又能储存位错的纳米孪晶铜颗粒,从而协同增强铜铁基偏晶合金的强度与韧性;(3)铜铁基偏晶合金具有优异的综合力学性能:抗拉强度达1.3GPa,延伸率达25%,弹性模量达140GPa,纳米硬度达3.2GPa。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
将经过除锈与喷砂处理的黄铜板作为基材,采用激光选区熔化的方法制备高强高韧铜铁基偏晶合金,显微结构特征为:物相主要由Fe2P、Fe3P、α-Fe与ε-Cu组成;显微组织形貌为纤维状的叠层结构,其中纤维状富铁区由Fe2P、Fe3P与α-Fe组成,其内还弥散分布有大量平均直径为20nm的孪晶铜颗粒;纤维状富铜区主要由ε-Cu组成;纤维状富铁区与纤维状富铜区相互层叠堆垛;获得的铜铁基偏晶合金的致密度达99.6%,抗拉强度达1.3GPa,延伸率达25%,弹性模量达140GPa,纳米硬度达3.2GPa。具体实施过程如下:
(1)将铜铁基合金粉末在球磨机内混合均匀,然后放置于激光选区熔化成形机的自动铺粉器的盛粉器内;铜铁基合金粉末化学成分为:Fe 34.2wt.%,P 3.5wt.%,Ni2.2wt.%,Cr 1.5wt.%,Y2O3 0.8wt.%,余量为Cu;球磨机混粉工艺参数为:球磨机转速为120转/分,球磨气氛为氦气,球磨介质为乙醇,氧化锆磨球与铜铁基合金粉质量比为20:1,氧化锆磨球直径为5mm,采用球磨60分钟然后暂停15分钟的方法球磨36小时,球磨后铜铁基合金粉末粒径为50μm;
(2)将带有支撑结构的铜铁基偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的黄铜板加热到400℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的铜铁基偏晶合金;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率为150W,支撑结构高度为5mm,激光扫描速度为300mm/s,分层切片厚度为80μm,搭接率为50%;制备铜铁基偏晶合金零件的工艺参数为:激光功率为200W,激光扫描速度为1500mm/s,分层切片厚度为80μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形,直到完成铜铁基偏晶合金零件制造。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法,其特征在于包括以下步骤:
(1)将铜铁基合金粉末在球磨机内混合均匀,然后放置于激光选区熔化成形机的自动铺粉器的盛粉器内,铜铁基合金粉末化学成分为:Fe 34.2wt.%,P 3.5wt.%,Ni2.2wt.%,Cr 1.5wt.%,Y2O3 0.8wt.%,余量为Cu;球磨机混粉工艺参数为:球磨机转速为120转/分,球磨气氛为氦气,球磨介质为乙醇,氧化锆磨球与铜铁基合金粉质量比为20:1,氧化锆磨球直径为5mm,采用球磨60分钟然后暂停15分钟的方法球磨36小时,球磨后铜铁基合金粉末粒径为50μm;
(2)将带有支撑结构的铜铁基偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的黄铜板加热到400℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的铜铁基偏晶合金;
制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率为150W,支撑结构高度为5mm,激光扫描速度为300mm/s,分层切片厚度为80μm,搭接率为50%;制备铜铁基偏晶合金零件的工艺参数为:激光功率为200W,激光扫描速度为1500mm/s,分层切片厚度为80μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形,直到完成铜铁基偏晶合金零件制造。
2.根据权利要求1所述的一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法,其特征在于进行所述的步骤(2)时,高强高韧铜铁基偏晶合金的结构特征:物相主要由Fe2P、Fe3P、α-Fe与ε-Cu组成;显微组织形貌为纤维状的叠层结构,其中纤维状富铁区由Fe2P、Fe3P与α-Fe组成,其内还弥散分布有大量平均直径为20nm的孪晶铜颗粒;纤维状富铜区主要由ε-Cu组成;纤维状富铁区与纤维状富铜区相互层叠堆垛;获得的铜铁基偏晶合金的致密度达99.6%,抗拉强度达1.3GPa,延伸率达25%,弹性模量达140GPa,纳米硬度达3.2GPa。
CN202011427363.5A 2020-12-09 2020-12-09 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法 Active CN112643023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011427363.5A CN112643023B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011427363.5A CN112643023B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法

Publications (2)

Publication Number Publication Date
CN112643023A CN112643023A (zh) 2021-04-13
CN112643023B true CN112643023B (zh) 2022-08-09

Family

ID=75350467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011427363.5A Active CN112643023B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法

Country Status (1)

Country Link
CN (1) CN112643023B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110099336A (ko) * 2008-12-23 2011-09-07 회가내스 아베 확산 합금된 철 또는 철계 파우더, 확산 합금 파우더, 확산 합금된 파우더를 포함한 조성물을 생산하기 위한 방법, 및 상기 조성물로부터 생산된 압축되고 소결된 부품
CN102978427B (zh) * 2012-12-26 2014-09-17 南昌航空大学 一种激光-强磁场复合熔铸制备偏晶合金的方法
CN104109823B (zh) * 2014-07-04 2016-05-11 南昌航空大学 一种激光-感应复合熔覆碳纳米管增强富铁多孔复合材料的方法
CN108080636B (zh) * 2017-12-18 2019-09-27 暨南大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN107900341B (zh) * 2017-12-18 2019-08-30 暨南大学 一种激光选区熔化成形大尺寸高性能偏晶合金的方法

Also Published As

Publication number Publication date
CN112643023A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Zhang et al. A review on microstructures and properties of high entropy alloys manufactured by selective laser melting
CN112605396B (zh) 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
CN108080636B (zh) 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN111014669A (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
CN107747019A (zh) 一种Ni‑Co‑Cr‑Al‑W‑Ta‑Mo系高熵高温合金及其制备方法
KR20140045289A (ko) 높은 내식성의 소결된 NdFeB 자석과 자석 준비 방법
CN104858441A (zh) 一种微细片状金属软磁合金粉末的制备方法
Kustas et al. Emerging opportunities in manufacturing bulk soft-magnetic alloys for energy applications: A review
CN114472922A (zh) 超高速激光-感应复合熔覆增材制造铜基偏晶高熵合金的方法
CN114411067A (zh) 一种中碳热作模具钢材料及基于其的增材制造方法
CN114293087B (zh) 一种具有微米/纳米晶粒复合结构的单相高熵合金
CN112643023B (zh) 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法
EA014583B1 (ru) Композиция для получения спеченного постоянного магнита, спеченный постоянный магнит и способ его получения
Gao et al. Magnetic and mechanical properties of additive manufactured Fe-3wt.% Si material
US20190115126A1 (en) Feedstock and heterogeneous structure for tough rare earth permanent magnets and production process therefor
CN112296335B (zh) 一种激光选区熔化成形块体纳米孪晶铜基复合材料的方法
Shi et al. Pure Tungsten Fabricated by Laser Powder Bed Fusion with Subsequent Hot Isostatic Pressing: Microstructural Evolution, Mechanical Properties, and Thermal Conductivity
CN111996430B (zh) 一种不受磁场影响的钨铜合金及其制造方法和用途
CN105132799A (zh) 一种用于单向轴承的粉末冶金材料及其制备方法
JPH01294833A (ja) アルミニウム合金粉末及びその焼結体の製造方法
CN116190090A (zh) 一种矫顽力高的钕铁硼稀土永磁材料的制备工艺及其应用
CN111349838A (zh) 一种高熵合金复合材料的制备方法
CN112647075B (zh) 一种激光选区熔化成形高强韧高耐蚀铜基合金的方法
CN114807695A (zh) 一种Al-Mg-Sc合金粉末及激光选区熔化成形工艺
CN114535606A (zh) 一种氧化物弥散强化合金及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant