CN107900341B - 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 - Google Patents

一种激光选区熔化成形大尺寸高性能偏晶合金的方法 Download PDF

Info

Publication number
CN107900341B
CN107900341B CN201711389074.9A CN201711389074A CN107900341B CN 107900341 B CN107900341 B CN 107900341B CN 201711389074 A CN201711389074 A CN 201711389074A CN 107900341 B CN107900341 B CN 107900341B
Authority
CN
China
Prior art keywords
copper
monotectic
follows
alloy
selective laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711389074.9A
Other languages
English (en)
Other versions
CN107900341A (zh
Inventor
周圣丰
戴晓琴
谢敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201711389074.9A priority Critical patent/CN107900341B/zh
Publication of CN107900341A publication Critical patent/CN107900341A/zh
Application granted granted Critical
Publication of CN107900341B publication Critical patent/CN107900341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种激光选区熔化成形大尺寸高性能偏晶合金的方法,该方法的特点为:铜铁基合金粉末进行机械合金化处理后粒径为30μm;采用激光选区熔化的方法制备大尺寸高性能偏晶合金;其中,铜铁基合金粉末化学成分为:Cu 58.3wt.%,Fe 22.2wt.%,P 5.07wt.%,W 3.07wt.%,Mo 1.02wt.%,Cr 2.05wt.%,Ni 2.06wt.%,Si 1.02wt.%,Mn 0.34wt.%,C 0.34wt.%,Nb 1.23wt.%,HfO20.8wt.%与TiB22.5wt.%;采用该方法制备的偏晶合金尺寸可达150mm×150mm×150mm或Φ150mm×150mm,TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;硬度是黄铜7倍,耐磨性是黄铜的5倍,电导率为65%IACS,室温最大饱和磁化强度为150emu/g,矫顽力为15Oe。

Description

一种激光选区熔化成形大尺寸高性能偏晶合金的方法
技术领域
本发明涉及一种激光选区熔化成形大尺寸高性能偏晶合金的方法,属于激光增材制造或激光3D打印技术领域。
背景技术
当具有亚稳态难混溶区间的偏晶合金处于过冷液相区时,可自发地分离成两种熔体:L1是少量熔体,L2是主要熔体。当凝固后,球状微量相颗粒弥散分布在主体相金属基体内而形成难混溶合金,这些合金具有许多新性能,如高强度、高导电性、优异的软磁性能和巨磁电阻效应,因此被用作结晶器、电源插头、磁带、光学仪器和传感器等。尤其是Cu-Fe偏晶合金,因Fe与Cr、Nb和Ag等相比,具有成本较低的特点,在工业领域中具有巨大的发展前景。
但是,采用传统凝固技术制备的Cu-Fe偏晶合金,由于受到具有不同密度的两种液态熔体的影响,极易发生组织偏析,因而成为Cu-Fe偏晶合金在工业领域广泛应用的主要难点。为了克服这一难题,得到由弥散分布于金属基体中的少量球形颗粒组成的结构,研究者提出了诸如落管技术、无容器超过冷技术、气雾化、电磁悬浮技术等方法。但是,这些方法并不能有效解决由Marangoni运动与Stokes运动导致的颗粒之间的碰撞、合并与长大,很难获得结构尺寸较大且第二相颗粒弥散分布的偏晶合金,极大地限制了偏晶合金的大规模制备及应用领域。
激光选区熔化技术是采用精细激光束快速熔化预置粉末材料,几乎可以直接获得任意形状以及具有完全冶金结合的功能零件,致密度可达到几乎100%,尺寸精度达20~50微米,表面粗糙度达20~30微米,是一种极具发展前景的快速成形技术,尤其是其超快加热与超快冷却速度以及超高过冷度的特征,为常规方法难以生产的材料开辟了一个全新的增材制造方法,受到了研究者的广泛关注。但是,关于激光选区熔化成形大尺寸高性能偏晶合金的方法并未见文献报道。
发明内容
本发明的目的在于提供一种激光选区熔化成形大尺寸高性能偏晶合金的方法。本发明是这样来实现的,其方法与步骤为:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的偏晶合金。
本发明在进行所述的步骤(1)时,铜铁基合金粉末化学成分为:Cu 58.3wt.%,Fe22.2wt.%,P 5.07wt.%,W 3.07wt.%,Mo 1.02wt.%,Cr 2.05wt.%,Ni 2.06wt.%,Si1.02wt.%,Mn 0.34wt.%,C 0.34wt.%,Nb 1.23wt.%,HfO20.8wt.%与TiB2 2.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为15:1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后铜铁基合金粉末粒径为30μm。
本发明在进行所述的步骤(2)时,制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成尺寸达150mm×150mm×150mm或Φ150mm×150mm偏晶合金零件制造。
本发明在进行所述的步骤(2)时,偏晶合金的结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;偏晶合金的性能特征为:硬度是黄铜7倍,耐磨性是黄铜的5倍,电导率为65%IACS,室温最大饱和磁化强度为150emu/g,矫顽力为15Oe。
本发明的优点是:(1)可以制备形状复杂与结构尺寸大的偏晶合金;(2)非晶球状富Fe颗粒均匀分布于富铜基体内;(3)偏晶合金的力学性能得到大幅度提高,硬度是黄铜7倍,耐磨性是黄铜的5倍;(4)偏晶合金还表现出优异的软磁性能与导电性能,如电导率为65%IACS,室温最大饱和磁化强度为150emu/g,矫顽力为15Oe。
具体实施方式
在基材为A3钢表面,采用激光选区熔化的方法制备大尺寸高性能偏晶合金,制备的尺寸为150mm×150mm×150mm(长×宽×高)或Φ150mm×150mm,显微结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;检测的性能为:硬度是黄铜7倍,耐磨性是黄铜的5倍;电导率为65%IACS,室温最大饱和磁化强度为150emu/g,矫顽力为15Oe。具体实施过程如下:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末化学成分为:Cu 58.3wt.%,Fe 22.2wt.%,P5.07wt.%,W 3.07wt.%,Mo 1.02wt.%,Cr 2.05wt.%,Ni 2.06wt.%,Si 1.02wt.%,Mn0.34wt.%,C 0.34wt.%,Nb 1.23wt.%,HfO2 0.8wt.%与TiB22.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为15:1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后铜铁基合金粉末粒径为30μm;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的偏晶合金;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成尺寸达150mm×150mm×150mm或Φ150mm×150mm偏晶合金零件制造。

Claims (1)

1.一种激光选区熔化成形大尺寸高性能偏晶合金的方法,其方法与步骤为:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末化学成分为:Cu 58.3wt.%,Fe 22.2wt.%,P 5.07wt.%,W3.07wt.%,Mo 1.02wt.%,Cr 2.05wt.%,Ni 2.06wt.%,Si 1.02wt.%,Mn 0.34wt.%,C0.34wt.%,Nb 1.23wt.%,HfO2 0.8wt.%与TiB2 2.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为15:1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后铜铁基合金粉末粒径为30μm;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷砂处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成尺寸达150mm×150mm×150mm或Φ150mm×150mm三维实体的偏晶合金;
制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造;
偏晶合金的结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;偏晶合金的性能特征为:硬度是黄铜7倍,耐磨性是黄铜的5倍,电导率为65%IACS,室温最大饱和磁化强度为150emu/g,矫顽力为15Oe。
CN201711389074.9A 2017-12-18 2017-12-18 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 Active CN107900341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711389074.9A CN107900341B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形大尺寸高性能偏晶合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711389074.9A CN107900341B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形大尺寸高性能偏晶合金的方法

Publications (2)

Publication Number Publication Date
CN107900341A CN107900341A (zh) 2018-04-13
CN107900341B true CN107900341B (zh) 2019-08-30

Family

ID=61869449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711389074.9A Active CN107900341B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形大尺寸高性能偏晶合金的方法

Country Status (1)

Country Link
CN (1) CN107900341B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523986A (zh) * 2019-09-25 2019-12-03 华南理工大学 一种基于选区激光熔化成形大块体铁基非晶的方法
CN112643023B (zh) * 2020-12-09 2022-08-09 暨南大学 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法
CN112643021B (zh) * 2020-12-09 2022-06-21 暨南大学 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末
CN112643022B (zh) * 2020-12-09 2021-11-26 暨南大学 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末
CN112605396B (zh) * 2020-12-09 2022-07-12 暨南大学 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
CN114000008B (zh) * 2021-09-29 2022-06-24 宁波兴业盛泰集团有限公司 一种亚稳态难混溶铜铁合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604861A1 (de) * 1986-02-15 1987-08-20 Battelle Development Corp Verfahren zur pulvermetallurgischen herstellung von feindispersen legierungen
CN102978427B (zh) * 2012-12-26 2014-09-17 南昌航空大学 一种激光-强磁场复合熔铸制备偏晶合金的方法
CN103071783B (zh) * 2012-12-26 2015-05-06 南昌航空大学 一种激光-强磁场复合熔铸制备偏晶合金的装置
CN104109823B (zh) * 2014-07-04 2016-05-11 南昌航空大学 一种激光-感应复合熔覆碳纳米管增强富铁多孔复合材料的方法
CN104399978B (zh) * 2014-11-27 2017-02-08 华南理工大学 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法
CN106048605B (zh) * 2016-08-09 2018-05-29 天津工业大学 一种激光-感应复合熔覆Cu-Fe-Si软磁高导铜基复合材料

Also Published As

Publication number Publication date
CN107900341A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
CN107900341B (zh) 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
Guo et al. Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties
Tan et al. Selective laser melting of tungsten-copper functionally graded material
Mao et al. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze
Gu et al. Effects of laser scanning strategies on selective laser melting of pure tungsten
Jia et al. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties
CN108080636B (zh) 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN109175391B (zh) 一种原位合成纳米氧化物颗粒弥散强化合金的方法
Gan et al. Simulation, forming process and mechanical property of Cu-Sn-Ti/diamond composites fabricated by selective laser melting
Gao et al. Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting
Ivanov et al. Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment
Chen et al. Formation and beneficial effects of the amorphous/nanocrystalline phase in laser remelted (FeCoCrNi) 75Nb10B8Si7 high-entropy alloy coatings fabricated by plasma cladding
Li et al. Effects of WC particles on microstructure and mechanical properties of 316L steel obtained by laser melting deposition
Guo et al. Microstructure and surface oxides of rapidly solidified Nb-Si based alloy powders
Singh et al. Experimental study pertaining to microwave sintering (MWS) of Al-metal matrix composite-a review
CN112605396A (zh) 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
Braszczyńska-Malik et al. The role of Ni-P coating structure on fly ash cenospheres in the formation of magnesium matrix composites
Li et al. Structure and mechanical properties of the AlSi10Mg alloy samples manufactured by selective laser melting
Shi et al. Pure Tungsten Fabricated by Laser Powder Bed Fusion with Subsequent Hot Isostatic Pressing: Microstructural Evolution, Mechanical Properties, and Thermal Conductivity
Nová et al. The effect of production process on properties of FeAl20Si20
Kula et al. Structural and mechanical features of rapidly solidified Al-2Fe-2Ni-5Mg alloy
Xu et al. Preparation and properties of copper matrix composite reinforced with SLM Fe alloy lattice
Zhang et al. Selective laser melting: on the study of microstructure of K220
Valikhov et al. Investigation of structure, mechanical properties and crystallization of aluminum alloys containing aluminum oxide nanoparticles
Loginova et al. Peculiarities of the microstructure and properties of parts produced by the direct laser deposition of 316L steel powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190606

Address after: 510632 Whampoa Avenue, Guangzhou, Guangzhou, Guangdong Province, No. 601

Applicant after: Jinan University

Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin

Applicant before: Tianjin Polytechnic University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant