CN108080636B - 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法 - Google Patents

一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法 Download PDF

Info

Publication number
CN108080636B
CN108080636B CN201711389073.4A CN201711389073A CN108080636B CN 108080636 B CN108080636 B CN 108080636B CN 201711389073 A CN201711389073 A CN 201711389073A CN 108080636 B CN108080636 B CN 108080636B
Authority
CN
China
Prior art keywords
copper
iron
hollow
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711389073.4A
Other languages
English (en)
Other versions
CN108080636A (zh
Inventor
周圣丰
戴晓琴
谢敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN201711389073.4A priority Critical patent/CN108080636B/zh
Publication of CN108080636A publication Critical patent/CN108080636A/zh
Application granted granted Critical
Publication of CN108080636B publication Critical patent/CN108080636B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法,该方法的特点为:将铜铁基合金粉末进行机械合金化处理,获得粒径为35~50μm、由具有面心立方晶体结构的过饱和铜铁固溶体组成的复合粉末作为成形材料;基于液相分离原理与Kirkandall效应,采用激光选区熔化法在基材表面制备中空富铁颗粒增强铜基偏晶合金,其中,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为95:5或92:8或88:12组成,铁基合金粉末化学成分为:Fe 72.5wt.%,Ni 12wt.%,Nb 5.0wt.%,Cr 5.0wt.%,Si 0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O30.2wt.%;中空富铁α‑Fe颗粒均匀分布于富铜ε‑Cu基体内,富铁颗粒中空直径为100nm~1000nm,富铁颗粒直径为0.5μm~10μm;中空富铁颗粒增强铜基偏晶合金的硬度是黄铜的1~3倍,电导率为60~70%IACS,冲击韧性是黄铜的2~5倍,抗压强度是黄铜的3~6倍,室温最大饱和磁化强度为80~120emu/g,矫顽力为0.5~10Oe。采用该方法制备的中空富铁颗粒增强铜基偏晶合金在软磁材料、高强高导以及吸波或抗震材料等领域具有广阔的应用前景。

Description

一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的 方法
技术领域
本发明涉及一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法,属于激光增材制造技术领域。
背景技术
偏晶合金独特的凝固机理:液态不相溶体系的相分离及第二相的析出、粗化和迁移等相变动力学,以及均质偏晶合金独特的组织和性能特点,引起了材料科学界的广泛关注。例如,具有独特物理和力学性能的均质偏晶合金,可用作自润滑材料,并已成为汽车工业中理想的新型轴瓦合金;具有弥散分布第二相粒子的偏晶合金具有超导性能,可用于制造超导材料,制作交流超导发电机、磁流体发电机和超导输电线路等;第二相以颗粒状或纤维状均匀分布的偏晶合金,可以制成具有良好导热导电性的电接触材料与高矫顽力永磁体。
然而,偏晶合金属于难混溶合金,在常规凝固条件下,合金组元间的混溶十分困难,这是因为偏晶合金相图存在液相不相溶区间,当温度降低至某一特定温度时进入此区间,均一的偏晶合金熔体将发生液相分离(L→L1+L2),由单一液相分解成为两个富集不同组元的液相。通常,在液相分离过程中,含量较少的弥散相液滴首先形核,然后在溶质扩散作用下长大;在温度梯度和重力作用下进行Marangani迁移和Stokes运动,液滴间发生碰撞凝并长大。因此,在常规凝固条件下,该类合金极易发生严重偏析,很难获得第二相颗粒弥散分布的偏晶合金,极大地限制了偏晶合金的大规模制备及应用领域。
基于此,为了制备组织均匀的偏晶合金,研究者提出了许多方法:微重力法、落管法、强磁场法、定向凝固法等。尽管这些方法在一定程度可以抑制分层组织的形成,但均未能获得性能优异的偏晶合金。激光选区熔化成形技术是近年来发展起来的一种新型增材制造技术或3D打印技术,具有凝固速度快、加工效率高与过冷度大等特点,受到了研究者的关注。但是,采用激光选区熔化成形技术制备具有优异力学性能、电学性能与磁学性能的中空富铁颗粒增强铜基偏晶合金并未见文献报道。
发明内容
本发明的目的在于提供一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法。本发明是这样来实现的,其方法与步骤为:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200~600℃;根据生成的成形轨迹,逐层堆积成三维实体,由于合金元素之间扩散速度相差较大,基于液相分离原理与Kirkandall效应,在偏晶合金内形成中空富铁颗粒均匀分布于富铜基体内的结构特征。
本发明在进行所述的步骤(1)时,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为95:5或92:8或88:12组成,其中铁基合金粉末化学成分为:Fe 72.5wt.%,Ni12wt.%,Nb 5.0wt.%,Cr 5.0wt.%,Si 0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O30.2wt.%;机械合金化工艺参数为:高能球磨机转速为300~500转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为12:1,不锈钢球直径为5~15mm,采用球磨30分钟然后暂停10分钟的方法球磨16~32小时,球磨后铜铁基合金粉末粒径为35~50μm,由具有面心立方晶体结构的过饱和铜铁固溶体组成。
本发明在进行所述的步骤(2)时,制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200~500W,支撑结构高度为2~5mm,激光扫描速度为500~750mm/s,分层切片厚度为50~100μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200~500W,激光扫描速度为1500~5000mm/s,分层切片厚度为50~100μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造。
本发明在进行所述的步骤(2)时,获得的富铁颗粒中空直径为100nm~1000nm,富铁颗粒直径为0.5μm~10μm,中空富铁颗粒为体心立方的α-Fe相,富铜基体为面心立方的ε-Cu相;中空富铁颗粒增强铜基偏晶合金的硬度是黄铜的1~3倍,电导率为60~70%IACS,冲击韧性是黄铜的2~5倍,抗压强度是黄铜的3~6倍,室温最大饱和磁化强度为80~120emu/g,矫顽力为0.5~10Oe。
本发明的优点是:(1)铜基偏晶合金的强化相富铁颗粒具有中空结构,不但可以增强富铜基体,而且还可以吸收冲击力,具有优异的冲击韧性;(2)球状中空体心立方的α-Fe颗粒均匀布于面心立方的富铜ε-Cu基体内;(3)制备的铜基偏晶合金不仅具有优异的力学性能,还具有良好的电学性能与软磁性能。
具体实施方式
实施例1
采用激光选区熔化的方法制备中空富铁颗粒增强铜基偏晶合金,制备的尺寸为10mm×10mm×10mm(长×宽×高),显微结构特征为:富铁颗粒粒径为0.5μm均匀镶嵌于面心立方ε-Cu基体内,中空直径100nm;检测的性能为:硬度为黄铜的1.2倍,冲击韧性是黄铜的4.8倍,抗压强度是黄铜的3倍,在室温与±20kOe条件下,最大饱和磁化强度为80emu/g,矫顽力为0.5Oe,电导率为70%IACS。具体实施过程如下:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为95:5组成,其中铁基合金粉末化学成分为:Fe 72.5wt.%,Ni 12wt.%,Nb5.0wt.%,Cr 5.0wt.%,Si0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O3 0.2wt.%;机械合金化工艺参数为:高能球磨机转速为300转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为12:1,不锈钢球直径为5mm,采用球磨30分钟然后暂停10分钟的方法球磨32小时,球磨后铜铁基合金粉末粒径为35μm,由具有面心立方晶体结构的过饱和铜铁固溶体组成;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200℃;根据生成的成形轨迹,逐层堆积成三维实体,由于合金元素之间扩散速度相差较大,基于液相分离原理与Kirkandall效应,在偏晶合金内形成中空富铁颗粒均匀分布于富铜基体内的结构特征;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为1500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造;
实施例2
采用激光选区熔化的方法制备中空富铁颗粒增强铜基偏晶合金,制备的尺寸为20mm×20mm×20mm(长×宽×高),显微结构特征为:富铁颗粒粒径为5μm均匀镶嵌于面心立方ε-Cu基体内;中空直径500nm;检测的性能为:硬度为黄铜的2倍,冲击韧性是黄铜的3.2倍,抗压强度是黄铜的4.5倍,在室温与±20kOe条件下,最大饱和磁化强度为100emu/g,矫顽力为5Oe,电导率为65%IACS。具体实施过程如下:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为92:8组成,其中铁基合金粉末化学成分为:Fe 72.5wt.%,Ni 12wt.%,Nb5.0wt.%,Cr 5.0wt.%,Si0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O3 0.2wt.%;机械合金化工艺参数为:高能球磨机转速为400转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为12:1,不锈钢球直径为10mm,采用球磨30分钟然后暂停10分钟的方法球磨24小时,球磨后铜铁基合金粉末粒径为42μm,由具有面心立方晶体结构的过饱和铜铁固溶体组成;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到350℃;根据生成的成形轨迹,逐层堆积成三维实体,由于合金元素之间扩散速度相差较大,基于液相分离原理与Kirkandall效应,在偏晶合金内形成中空富铁颗粒均匀分布于富铜基体内的结构特征;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=350W,支撑结构高度为3.5mm,激光扫描速度为600mm/s,分层切片厚度为75μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=350W,激光扫描速度为3000mm/s,分层切片厚度为75μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造;
实施例3
采用激光选区熔化的方法制备中空富铁颗粒增强铜基偏晶合金,制备的尺寸为Φ30mm×300mm(直径×高),显微结构特征为:富铁颗粒粒径为10μm均匀镶嵌于面心立方ε-Cu基体内;中空直径800nm;检测的性能为:硬度为黄铜的2.8倍,冲击韧性是黄铜的2.2倍,抗压强度是黄铜的6倍,在室温与±20kOe条件下,最大饱和磁化强度为120emu/g,矫顽力为10Oe,电导率为60%IACS。具体实施过程如下:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为88:12组成,其中铁基合金粉末化学成分为:Fe 72.5wt.%,Ni 12wt.%,Nb 5.0wt.%,Cr 5.0wt.%,Si0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O3 0.2wt.%;机械合金化工艺参数为:高能球磨机转速为500转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为12:1,不锈钢球直径为15mm,采用球磨30分钟然后暂停10分钟的方法球磨16小时,球磨后铜铁基合金粉末粒径为50μm,由具有面心立方晶体结构的过饱和铜铁固溶体组成;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到600℃;根据生成的成形轨迹,逐层堆积成三维实体,由于合金元素之间扩散速度相差较大,基于液相分离原理与Kirkandall效应,在偏晶合金内形成中空富铁颗粒均匀分布于富铜基体内的结构特征;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=500W,支撑结构高度为5mm,激光扫描速度为750mm/s,分层切片厚度为100μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=500W,激光扫描速度为5000mm/s,分层切片厚度为100μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造。

Claims (1)

1.一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法,其方法与步骤为:
(1)将铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,铜铁基合金粉末由纯铜粉与铁基合金粉末按质量比为95:5或92:8或88:12组成,其中铁基合金粉末化学成分为:Fe 72.5wt.%,Ni 12wt.%,Nb 5.0wt.%,Cr5.0wt.%,Si 0.6wt.%,B 2.5wt.%,C 0.2wt.%与Ce2O3 0.2wt.%;机械合金化工艺参数为:高能球磨机转速为300~500转/分,球磨气氛为氩气,不锈钢球与铜铁基合金粉质量比为12:1,不锈钢球直径为5~15mm,采用球磨30分钟然后暂停10分钟的方法球磨16~32小时,球磨后铜铁基合金粉末粒径为35~50μm,由具有面心立方晶体结构的过饱和铜铁固溶体组成;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200~600℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体,由于合金元素之间扩散速度相差较大,基于液相分离原理与Kirkandall效应,在偏晶合金内形成中空富铁颗粒均匀分布于富铜基体内的结构特征;
制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200~500W,支撑结构高度为2~5mm,激光扫描速度为500~750mm/s,分层切片厚度为50~100μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200~500W,激光扫描速度为1500~5000mm/s,分层切片厚度为50~100μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造;
富铁颗粒中空直径为100nm~1000nm,富铁颗粒直径为0.5μm~10μm,中空富铁颗粒为体心立方的α-Fe相,富铜基体为面心立方的ε-Cu相;中空富铁颗粒增强铜基偏晶合金的硬度是黄铜的1~3倍,电导率为60~70%IACS,冲击韧性是黄铜的2~5倍,抗压强度是黄铜的3~6倍,室温最大饱和磁化强度为80~120emu/g,矫顽力为0.5~10 Oe。
CN201711389073.4A 2017-12-18 2017-12-18 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法 Active CN108080636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711389073.4A CN108080636B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711389073.4A CN108080636B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法

Publications (2)

Publication Number Publication Date
CN108080636A CN108080636A (zh) 2018-05-29
CN108080636B true CN108080636B (zh) 2019-09-27

Family

ID=62177698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711389073.4A Active CN108080636B (zh) 2017-12-18 2017-12-18 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法

Country Status (1)

Country Link
CN (1) CN108080636B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296335B (zh) * 2019-07-23 2022-06-07 暨南大学 一种激光选区熔化成形块体纳米孪晶铜基复合材料的方法
WO2021043941A1 (en) * 2019-09-06 2021-03-11 Basf Se Iron-based alloy powder
CN111203539B (zh) * 2020-04-22 2020-07-28 中国航发上海商用航空发动机制造有限责任公司 预制气孔缺陷、内置气孔缺陷的制备方法及预制件
CN111607717B (zh) * 2020-07-16 2021-07-30 宁波博威合金材料股份有限公司 一种增材制造的铜铁合金及其制备方法
CN112647075B (zh) * 2020-12-09 2022-05-27 暨南大学 一种激光选区熔化成形高强韧高耐蚀铜基合金的方法
CN112643023B (zh) * 2020-12-09 2022-08-09 暨南大学 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法
CN112643021B (zh) * 2020-12-09 2022-06-21 暨南大学 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末
CN112605396B (zh) * 2020-12-09 2022-07-12 暨南大学 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
CN112643022B (zh) * 2020-12-09 2021-11-26 暨南大学 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末
CN114032410B (zh) * 2021-11-22 2023-04-18 昆明理工大学 一种高硬度高导热铁铜材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604861A1 (de) * 1986-02-15 1987-08-20 Battelle Development Corp Verfahren zur pulvermetallurgischen herstellung von feindispersen legierungen
CN102978427B (zh) * 2012-12-26 2014-09-17 南昌航空大学 一种激光-强磁场复合熔铸制备偏晶合金的方法
CN103071783B (zh) * 2012-12-26 2015-05-06 南昌航空大学 一种激光-强磁场复合熔铸制备偏晶合金的装置
CN104109823B (zh) * 2014-07-04 2016-05-11 南昌航空大学 一种激光-感应复合熔覆碳纳米管增强富铁多孔复合材料的方法
CN104399978B (zh) * 2014-11-27 2017-02-08 华南理工大学 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法
CN106048605B (zh) * 2016-08-09 2018-05-29 天津工业大学 一种激光-感应复合熔覆Cu-Fe-Si软磁高导铜基复合材料

Also Published As

Publication number Publication date
CN108080636A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN108080636B (zh) 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
CN107900341B (zh) 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
CN112605396B (zh) 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
US20140132376A1 (en) Nanostructured high-strength permanent magnets
US20140328710A1 (en) System and process for friction consolidation fabrication of permanent magnets and other extrusion and non-extrusion structures
Liu et al. Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients
Hinz et al. Near net shape production of radially oriented NdFeB ring magnets by backward extrusion
CN104384504A (zh) 一种铜基粉末冶金摩擦材料及其制备方法
JP3967728B2 (ja) 複合磁性材料及びその製造方法
Urban et al. Influences of process parameters on rare earth magnets produced by laser beam melting
US20220044870A1 (en) Methods for tailoring magnetism, and structures obtained therefrom
CN111154997B (zh) 铜铁合金、铜铁合金微纳米复合多孔材料及其制备方法
US20190304647A1 (en) Near net shape bulk laminated silicon iron electric steel for improved electrical resistance and low high frequency loss
Lu et al. First-order phase transition la-fe-si bulk materials with small hysteresis by laser powder bed fusion: Microstructure and magnetocaloric effect
Wang et al. Fabrication of diamond/AlSi10Mg composite using SLM: Effects of processing parameters and pre−/post-treatments
Li et al. Structure and mechanical properties of the AlSi10Mg alloy samples manufactured by selective laser melting
CN106048605A (zh) 一种激光与感应复合熔覆Cu‑Fe‑Si软磁高导铜基复合材料
Nersessian et al. Hollow and solid spherical magnetostrictive particulate composites
Yao et al. Toward understanding the microstructure characteristics, phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets
CN112201429B (zh) 一种纳米级梯度结构的永磁体及其制备方法
CN112643023B (zh) 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法
Gao et al. Finished surface morphology, microstructure and magnetic properties of selective laser melted Fe-50wt% Ni permalloy
CN112643021B (zh) 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末
Lyu et al. Interfacial Heat Transfer Behavior Between Liquid Steel and Mold of Non-oriented Electrical Steel Containing Manganese in Thin Strip Continuous Casting
Dugdale et al. Metallic glasses: properties and applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190610

Address after: 510632 Whampoa Avenue, Guangzhou, Guangzhou, Guangdong Province, No. 601

Applicant after: Jinan University

Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin

Applicant before: Tianjin Polytechnic University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant