CN112201429B - 一种纳米级梯度结构的永磁体及其制备方法 - Google Patents

一种纳米级梯度结构的永磁体及其制备方法 Download PDF

Info

Publication number
CN112201429B
CN112201429B CN202011093400.3A CN202011093400A CN112201429B CN 112201429 B CN112201429 B CN 112201429B CN 202011093400 A CN202011093400 A CN 202011093400A CN 112201429 B CN112201429 B CN 112201429B
Authority
CN
China
Prior art keywords
permanent magnet
quartz tube
gradient structure
gradient
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011093400.3A
Other languages
English (en)
Other versions
CN112201429A (zh
Inventor
李晓红
王敬东
娄理
张湘义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
CETC 9 Research Institute
Original Assignee
Yanshan University
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University, CETC 9 Research Institute filed Critical Yanshan University
Priority to CN202011093400.3A priority Critical patent/CN112201429B/zh
Publication of CN112201429A publication Critical patent/CN112201429A/zh
Application granted granted Critical
Publication of CN112201429B publication Critical patent/CN112201429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了一种纳米级梯度结构的永磁体及其制备方法,该永磁体材料在三维某一方向上具有不同尺寸的梯度结构,呈层状分布,层状由永磁纳米晶和软磁纳米晶相互分散而成;制备方法大致为,采用高纯度的Nd,Fe,B铁块状在真空氩弧炉中熔炼,所得毫米级熔块经感应线圈熔炼成高温熔液后经辊轮快淬甩出,所得条带即为具有梯度结构的永磁体条带;该梯度结构解决了磁体隆起度差的问题,且梯度磁体滞回线方形度好,成本低适合商业化应用。

Description

一种纳米级梯度结构的永磁体及其制备方法
技术领域
本发明涉及磁性材料制造领域领域,尤其是一种纳米级梯度结构的永磁体及其制备方法。
背景技术
稀土永磁材料主要由稀土元素和过渡族金属元素组成的合金或者化合物或者二者的组合,是目前磁性能最好的一类永磁材料,稀土永磁材料经过三代发展过程:第一代SmCo5磁体、第二代Sm2Co17磁体和第三代NdFeB磁体,NdFeB磁体由于最高的磁性能被称为“永磁王”;随着三类永磁材料的磁能积已接近理论极限和目前社会生活、国防航天等领域对高性能永磁材料需求量的迫切增长以及对稀土资源节约利用和磁体降低成本的迫切需求,发展高性能低稀土的新一代永磁材料成为迫切需要。
人们实际制备的磁体的磁能积还不高,比如NdFeB体系当软磁含量超过20%以后目前最高的磁能积只有25MGOe,要获得高磁能积的纳米复合磁体需要同时获得高的矫顽力、高的剩磁和好的磁滞回线隆起度,而目前该类磁体由于大量软磁材料加入导致矫顽力低、很难获得晶体织构导致剩磁低、交换耦合和均匀性不好导致回线隆起度差都是制约该类磁体获得高磁能积的关键问题,这些都是要获得高性能纳米复合永磁材料必须解决的问题。
发明内容
本发明提供一种纳米级梯度结构的永磁体及其制备方法,解决该类磁体隆起度差的问题。
为解决上述技术问题,本发明所采用的技术方案是:
一种纳米级梯度结构的永磁体,所述永磁体是在三维材料的某一个方向的一定长度范围内具有不同晶粒尺寸和不同相含量的梯度结构,所述长度范围为25um-50um,所述晶粒尺寸沿着上述方向在10nm-100nm的尺寸范围内呈连续单调变化;所述永磁体在上述方向的垂直面内呈层状分布,每层由永磁纳米晶和软磁纳米晶相互分散而成;两相的含量随晶粒呈单向变化,两相的含量变化范围Nd2Fe14B74.4%-68.9%,Fe25.6%-31.1%。
该纳米级梯度结构永磁体制备步骤如下:
S1,采用高纯度的Nd,Fe,B铁块状,按照质量比Nd:Fe:B=8.5-9.5: 84.5-85.5:6的比例在氩弧炉上进行真空熔炼;
S2,将熔炼出来的合金锭去皮,破碎成数个毫米大小的小块,装入底部带有小孔的石英管中,石英管外壁与铜线圈隔空,石英管底部与辊轮距离为8mm-10mm;
S3,采用感应加热将石英管内部的合金加热融化,利用石英管内外压力差将融化的合金熔液吹落到转动的辊轮上,所甩出的条带即为具有梯度结构的永磁体条带。
本发明技术方案的进一步改进在于:所述步骤S2中石英管1的直径为14mm,底部小孔直径为0.4mm-0.6mm。
本发明技术方案的进一步改进在于:所述步骤S3中感应加热温度范围为1300℃-1400℃,所述辊轮转速为13m/s-19m/s。
由于采用了上述技术方案,本发明取得的技术进步是:
利用熔体快淬过程中接触铜辊面和远离铜辊面之间的温度梯度可以生长出具有梯度结构的纳米晶复合材料,该复合磁体磁滞回线方形度好,磁能积高,软相含量高,稀土含量少,成本较低,耐蚀性好,且该类复合磁体的制备方法简单,易于实现,适合商业化应用。
附图说明
图1是一种梯度磁体结构的制备方法的熔液快淬装置示意图;
图2是本发明制备出的梯度永磁体材料沿着梯度方向的透射电子显微镜观察示意图;
图3是本发明制备出的梯度永磁体材料沿着梯度方向的X射线衍射图;
图4是本发明制备出的梯度永磁体材料磁性能参数图;
图5是没有梯度结构相同成分磁体的磁性能参数图;
其中,1、石英管,2、熔炼合金,3、永磁体条带,4、感应线圈,5、辊轮。
具体实施方式
一种纳米级梯度结构的永磁体,所述永磁体是在一定长度内具有不同晶粒尺寸和相含量的梯度结构,所述永磁体长度为25um-50um,所述晶粒尺寸长度范围为10nm-100nm;所述永磁体呈层状分布,所述层状由永磁纳米晶和软磁纳米晶相互分散而成;两相的含量随晶粒呈单向变化,两相的含量变化范围Nd2Fe14B74.4%-68.9%,Fe25.6%-31.1%;下面介绍制造纳米级梯度结构永磁体的方法具体步骤:
实施例1,采用高纯的块状Nd,Fe,B铁,按照质量比Nd:Fe:B=9:85:6的比例在氩弧炉上进行真空氩弧熔炼,然后将熔炼出来的合金锭去皮,破碎成数个毫米大小的小块,装入底部带有0.5mm小孔的直径为14mm的石英管1中;把装有合金石英管1放置于感应线圈4中,感应线圈4内部且与石英管1不能直接接触,石英管1底部距离辊轮5为10mm;整个装置处在在真空甩带机内部,抽好真空用氩气洗三遍气体,采用感应加热将石英管内部的合金加热到1350oC左右,使合金融化,利用石英管内外压力差将融化的合金吹落到转速为17m/s的辊轮上,所甩出的条带即为具有梯度结构的永磁体条带。
实施例2,采用高纯的块状Nd,Fe,B铁,按照质量比Nd:Fe:B=9.5:84.5:6的比例在氩弧炉上进行真空氩弧熔炼,然后将熔炼出来的合金锭去皮,破碎成数个毫米大小的小块,装入底部带有0.4mm小孔的直径为13mm的石英管1中;把装有合金石英管1放置于感应线圈4中,感应线圈4内部且与石英管1不能直接接触,石英管1底部距离辊轮5为9mm;整个装置处在在真空甩带机内部,抽好真空用氩气洗三遍气体,采用感应加热将石英管内部的合金加热到1380oC左右,使合金融化,利用石英管内外压力差将融化的合金吹落到转速为15m/s的辊轮上,所甩出的条带即为具有梯度结构的永磁体条带。

Claims (1)

1.一种纳米级梯度结构的永磁体的制备方法,其特征在于: 所制备的永磁体是在三维材料的某一个方向的一定长度范围内具有不同晶粒尺寸和不同相含量的梯度结构,所述长度范围为25um-50um,所述晶粒尺寸沿着上述方向在10nm-100nm的尺寸范围内呈连续单调变化;所述永磁体在上述方向的垂直面内呈层状分布,每层由永磁纳米晶和软磁纳米晶相互分散而成;两相的含量随晶粒呈单向变化,两相的含量变化范围Nd2Fe14B74.4%-68.9%,Fe25.6%-31.1%;
包括以下步骤如下:
S1,采用高纯度的块状 Nd,Fe,B铁,按照质量比Nd:Fe:B=8.5-9.5: 84.5-85.5:6的比例在氩弧炉上进行真空熔炼;
S2,将熔炼出来的合金锭去皮,破碎成数个毫米大小的小块,装入底部带有小孔的石英管(1)中,石英管(1)外壁与铜线圈(4)不能接触,石英管(1)底部与辊轮(5)距离为8mm-10mm;石英管(1)的直径为12mm-14mm,底部小孔直径为0.4mm-0.6mm;
S3,整个装置处在真空甩带机内部,抽好真空用氩气洗三遍气体,采用感应加热将石英管内部的合金加热熔化,利用石英管(1)内外压力差将融化的合金熔液吹落到转动的辊轮(5)上,所甩出的条带即为具有梯度结构的永磁体条带(3);感应加热温度范围为1300℃-1400℃,所述辊轮(5)转速为13m/s-19m/s。
CN202011093400.3A 2020-10-14 2020-10-14 一种纳米级梯度结构的永磁体及其制备方法 Active CN112201429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011093400.3A CN112201429B (zh) 2020-10-14 2020-10-14 一种纳米级梯度结构的永磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011093400.3A CN112201429B (zh) 2020-10-14 2020-10-14 一种纳米级梯度结构的永磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN112201429A CN112201429A (zh) 2021-01-08
CN112201429B true CN112201429B (zh) 2021-12-21

Family

ID=74010390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011093400.3A Active CN112201429B (zh) 2020-10-14 2020-10-14 一种纳米级梯度结构的永磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN112201429B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216599A (zh) * 2022-07-06 2022-10-21 中国航发北京航空材料研究院 控制纳米金属表层粗晶组织厚度的感应加热装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238062A (zh) * 1996-10-18 1999-12-08 住友特殊金属株式会社 具有微晶组织的薄带磁体及其制造方法以及各向同性永久磁体粉末的制造方法
CN101894644A (zh) * 2010-06-29 2010-11-24 上海大学 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN102568729A (zh) * 2012-01-10 2012-07-11 福州大学 一种制备块体纳米晶复合稀土永磁材料的方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法
CN109065311A (zh) * 2018-06-25 2018-12-21 江西理工大学 一种高矫顽力钕铈铁硼永磁合金及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101908396A (zh) * 2010-06-29 2010-12-08 上海大学 一种具有较好温度稳定性的纳米晶复合NdFeB永磁合金及其制备方法
JP2014216340A (ja) * 2013-04-22 2014-11-17 Tdk株式会社 R−t−b系焼結磁石
CN106531385B (zh) * 2016-12-19 2019-04-16 烟台首钢磁性材料股份有限公司 一种梯度型烧结钕铁硼磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238062A (zh) * 1996-10-18 1999-12-08 住友特殊金属株式会社 具有微晶组织的薄带磁体及其制造方法以及各向同性永久磁体粉末的制造方法
CN101894644A (zh) * 2010-06-29 2010-11-24 上海大学 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN102568729A (zh) * 2012-01-10 2012-07-11 福州大学 一种制备块体纳米晶复合稀土永磁材料的方法
CN106024244A (zh) * 2016-07-21 2016-10-12 江西理工大学 一种高热稳定性的纳米晶稀土永磁材料及其制备方法
CN109065311A (zh) * 2018-06-25 2018-12-21 江西理工大学 一种高矫顽力钕铈铁硼永磁合金及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热变形制备块体Nd2Fe14B/α-Fe纳米晶复合磁体;周立鹏;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20111115;第2章以及正文第30页 *

Also Published As

Publication number Publication date
CN112201429A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN106935350B (zh) 一种各向异性SmCo5型稀土永磁材料及制备方法
CN106448986B (zh) 一种各向异性纳米晶稀土永磁体及其制备方法
CN104576028A (zh) 富铈各向异性纳米晶稀土永磁体的制备方法
CN105989983B (zh) 永久磁铁
CN112853234B (zh) 一种梯度结构非晶纳米晶软磁合金及其制备方法
CN102568729B (zh) 一种制备块体纳米晶复合稀土永磁材料的方法
CN101894644A (zh) 各向异性的纳米晶复合NdFeB永磁合金及其制备方法
CN112201429B (zh) 一种纳米级梯度结构的永磁体及其制备方法
Tang et al. Engineering microstructure to improve coercivity of bulk MnBi magnet
CN101673605B (zh) 各向异性纳米/非晶复相块体永磁材料及其制备方法
CN1198292C (zh) Sm(Co,Fe,Cu,Zr,C)组合物及其制造方法
Ishihara et al. Consolidation of Fe-Co-Nd-Dy-B glassy powders by spark-plasma sintering and magnetic properties of the consolidated alloys
JP2013021015A (ja) 希土類ナノコンポジット磁石およびその製造方法
Saito et al. High-coercivity Sm (Fe, V, Ti) 12 bulk magnets
Jun et al. Microstructure and magnetic properties of bulk Nd2Fe14B/α-Fe nano-composite prepared by chemical vapor deposition
CN112103022A (zh) 一种ThMn12基稀土永磁体及其制备方法
CN112071543A (zh) 一种高矫顽力稀土永磁体及其制备方法
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
TW202235640A (zh) 主輔合金系釹鐵硼磁體材料及其製備方法
CN105280320B (zh) 一种易面各向异性高频微波磁性材料及其制备方法
CN115938771A (zh) 一种SmFexM12-x纳米晶永磁材料的制备方法
CN105938747B (zh) 一种高矫顽力高性能纳米复合永磁体及其制备方法
Saito et al. Structures and magnetic properties of Nd–Fe–B bulk nanocomposite magnets produced by the spark plasma sintering method
JP2003334643A (ja) 希土類合金の製造方法、r−t−b系磁石用合金塊、r−t−b系磁石、r−t−b系ボンド磁石、r−t−b系交換スプリング磁石用合金塊、r−t−b系交換スプリング磁石、およびr−t−b系交換スプリングボンド磁石
CN1385869A (zh) α-Fe/Nd2Fe14B各向异性复合纳米晶永磁材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant