CN107900341A - 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 - Google Patents
一种激光选区熔化成形大尺寸高性能偏晶合金的方法 Download PDFInfo
- Publication number
- CN107900341A CN107900341A CN201711389074.9A CN201711389074A CN107900341A CN 107900341 A CN107900341 A CN 107900341A CN 201711389074 A CN201711389074 A CN 201711389074A CN 107900341 A CN107900341 A CN 107900341A
- Authority
- CN
- China
- Prior art keywords
- monotectic alloy
- monotectic
- selective laser
- alloy
- special purpose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/08—Metallic powder characterised by particles having an amorphous microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/17—Auxiliary heating means to heat the build chamber or platform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Laser Beam Processing (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Powder Metallurgy (AREA)
Abstract
一种激光选区熔化成形大尺寸高性能偏晶合金的方法,该方法的特点为:专用铜铁基合金粉末进行机械合金化处理后粒径为30μm;采用激光选区熔化的方法制备大尺寸高性能偏晶合金;其中,专用铜铁基合金粉末化学成分为:Cu 58.3,Fe 22.2wt.%,P 5.07wt.%,W 3.07wt.%,Mo 1.02,Cr 2.05wt.%,Ni 2.06wt.%,Si 1.02wt.%,Mn 0.34wt.%,C 0.34wt.%,Nb 1.23wt.%,HfO20.8wt.%与TiB2 2.5wt.%;采用该方法制备的偏晶合金尺寸可达150mm×150mm×150mm或Φ150mm×150mm,TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;硬度约是黄铜7倍,耐磨性约是黄铜的5倍,电导率约为65%IACS,室温最大饱和磁化强度约为150emu/g,矫顽力约为15Oe。
Description
技术领域
本发明涉及一种激光选区熔化成形大尺寸高性能偏晶合金的方法,属于激光增材制造或激光3D打印技术领域。
背景技术
当具有亚稳态难混溶区间的偏晶合金处于过冷液相区时,可自发地分离成两种熔体:L1是少量熔体,L2是主要熔体。当凝固后,球状微量相颗粒弥散分布在主体相金属基体内而形成难混溶合金,这些合金具有许多新性能,如高强度、高导电性、优异的软磁性能和巨磁电阻效应,因此被用作结晶器、电源插头、磁带、光学仪器和传感器等。尤其是Cu-Fe偏晶合金,因Fe与Cr、Nb和Ag等相比,具有成本较低的特点,在工业领域中具有巨大的发展前景。
但是,采用传统凝固技术制备的Cu-Fe偏晶合金,由于受到具有不同密度的两种液态熔体的影响,极易发生组织偏析,因而成为Cu-Fe偏晶合金在工业领域广泛应用的主要难点。为了克服这一难题,得到由弥散分布于金属基体中的少量球形颗粒组成的结构,研究者提出了诸如落管技术、无容器超过冷技术、气雾化、电磁悬浮技术等方法。但是,这些方法并不能有效解决由Marangoni运动与Stokes运动导致的颗粒之间的碰撞、合并与长大,很难获得结构尺寸较大且第二相颗粒弥散分布的偏晶合金,极大地限制了偏晶合金的大规模制备及应用领域。
激光选区熔化技术是采用精细激光束快速熔化预置粉末材料,几乎可以直接获得任意形状以及具有完全冶金结合的功能零件,致密度可达到几乎100%,尺寸精度达20~50微米,表面粗糙度达20~30微米,是一种极具发展前景的快速成形技术,尤其是其超快加热与超快冷却速度以及超高过冷度的特征,为常规方法难以生产的材料开辟了一个全新的增材制造方法,受到了研究者的广泛关注。但是,关于激光选区熔化成形大尺寸高性能偏晶合金的方法并未见文献报道。
发明内容
本发明的目的在于提供一种激光选区熔化成形大尺寸高性能偏晶合金的方法。本发明是这样来实现的,其方法与步骤为:
(1)将专用铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的偏晶合金。
本发明在进行所述的步骤(1)时,专用铜铁基合金粉末化学成分为:Cu58.3,Fe22.2wt.%,P5.07wt.%,W3.07wt.%,Mo1.02,Cr2.05wt.%,Ni2.06wt.%,Si1.02wt.%,Mn0.34wt.%,C0.34wt.%,Nb1.23wt.%,HfO20.8wt.%与TiB22.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与专用铜铁基合金粉质量比为15∶1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后专用铜铁基合金粉末粒径为30μm。
本发明在进行所述的步骤(2)时,制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成尺寸达150mm×150mm×150mm或Φ150mm×150mm偏晶合金零件制造。
本发明在进行所述的步骤(2)时,偏晶合金的结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;偏晶合金的性能特征为:硬度约是黄铜7倍,耐磨性约是黄铜的5倍,电导率约为65%IACS,室温最大饱和磁化强度约为150emu/g,矫顽力约为15Oe。
本发明的优点是:(1)可以制备形状复杂与结构尺寸大的偏晶合金;(2)非晶球状富Fe颗粒均匀分布于富铜基体内;(3)偏晶合金的力学性能得到大幅度提高,硬度约是黄铜7倍,耐磨性约是黄铜的5倍;(4)偏晶合金还表现出优异的软磁性能与导电性能,如电导率约为65%IACS,室温最大饱和磁化强度约为150emu/g,矫顽力约为15Oe。
具体实施方式
在基材为A3钢表面,采用激光选区熔化的方法制备大尺寸高性能偏晶合金,制备的尺寸为150mm×150mm×150mm(长×宽×高)或Φ150mm×150mm,显微结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;检测的性能为:硬度约是黄铜7倍,耐磨性约是黄铜的5倍;电导率约为65%IACS,室温最大饱和磁化强度约为150emu/g,矫顽力约为15Oe。具体实施过程如下:
(1)将专用铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,专用铜铁基合金粉末化学成分为:Cu58.3,Fe22.2wt.%,P5.07wt.%,W3.07wt.%,Mo1.02,Cr2.05wt.%,Ni2.06wt.%,Si1.02wt.%,Mn0.34wt.%,C0.34wt.%,Nb1.23wt.%,HfO20.8wt.%与TiB22.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与专用铜铁基合金粉质量比为15∶1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后专用铜铁基合金粉末粒径为30μm;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成三维实体的偏晶合金;制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成尺寸达150mm×150mm×150mm或Φ150mm×150mm偏晶合金零件制造。
Claims (1)
1.一种激光选区熔化成形大尺寸高性能偏晶合金的方法,其方法与步骤为:
(1)将专用铜铁基合金粉末在高能球磨机内进行机械合金化处理,然后放置于自动刮粉器的装料斗内,专用铜铁基合金粉末化学成分为:Cu 58.3,Fe 22.2wt.%,P 5.07wt.%,W 3.07wt.%,Mo 1.02,Cr 2.05wt.%,Ni 2.06wt.%,Si 1.02wt.%,Mn 0.34wt.%,C0.34wt.%,Nb 1.23wt.%,HfO20.8wt.%与TiB22.5wt.%;机械合金化工艺参数为:高能球磨机转速为240转/分,球磨气氛为氩气,不锈钢球与专用铜铁基合金粉质量比为15∶1,不锈钢球直径为8mm,采用球磨40分钟然后暂停10分钟的方法球磨60小时,球磨后专用铜铁基合金粉末粒径为30μm;
(2)将带有支撑结构的偏晶合金零件CAD模型分层切片,根据切片轮廓信息生成一系列激光选区熔化成形轨迹;将激光选区熔化工作室抽成真空,将表面经过除锈与喷沙处理的基材加热到200℃;根据生成的成形轨迹,采用激光选区熔化的方法逐层堆积成尺寸达150mm×150mm×150mm或Φ150mm×150mm三维实体的偏晶合金;
制备支撑结构的工艺参数为:光纤激光器波长为1060nm,激光功率P=200W,支撑结构高度为2mm,激光扫描速度为500mm/s,分层切片厚度为50μm,搭接率为50%;制备偏晶合金零件的工艺参数:激光功率P=200W,激光扫描速度为2500mm/s,分层切片厚度为50μm,搭接率为50%,采用连续两层间激光扫描方向相互垂直的路径方式成形切片,直到完成偏晶合金零件制造。
偏晶合金的结构特征为:TiB2颗粒与由于液相分离而自组装生成的非晶富铁颗粒均匀分布于富铜基体内;偏晶合金的性能特征为:硬度约是黄铜7倍,耐磨性约是黄铜的5倍,电导率约为65%IACS,室温最大饱和磁化强度约为150emu/g,矫顽力约为15Oe。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711389074.9A CN107900341B (zh) | 2017-12-18 | 2017-12-18 | 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711389074.9A CN107900341B (zh) | 2017-12-18 | 2017-12-18 | 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107900341A true CN107900341A (zh) | 2018-04-13 |
CN107900341B CN107900341B (zh) | 2019-08-30 |
Family
ID=61869449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711389074.9A Active CN107900341B (zh) | 2017-12-18 | 2017-12-18 | 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107900341B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110523986A (zh) * | 2019-09-25 | 2019-12-03 | 华南理工大学 | 一种基于选区激光熔化成形大块体铁基非晶的方法 |
CN112605396A (zh) * | 2020-12-09 | 2021-04-06 | 暨南大学 | 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法 |
CN112643023A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法 |
CN112643022A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末 |
CN112643021A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末 |
CN114000008A (zh) * | 2021-09-29 | 2022-02-01 | 宁波兴业盛泰集团有限公司 | 一种亚稳态难混溶铜铁合金及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3604861A1 (de) * | 1986-02-15 | 1987-08-20 | Battelle Development Corp | Verfahren zur pulvermetallurgischen herstellung von feindispersen legierungen |
CN102978427A (zh) * | 2012-12-26 | 2013-03-20 | 南昌航空大学 | 一种激光-强磁场复合熔铸制备偏晶合金的方法 |
CN103071783A (zh) * | 2012-12-26 | 2013-05-01 | 南昌航空大学 | 一种激光-强磁场复合熔铸制备偏晶合金的装置 |
CN104109823A (zh) * | 2014-07-04 | 2014-10-22 | 南昌航空大学 | 一种激光-感应复合熔覆碳纳米管增强富铁多孔复合材料的方法 |
CN104399978A (zh) * | 2014-11-27 | 2015-03-11 | 华南理工大学 | 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法 |
CN106048605A (zh) * | 2016-08-09 | 2016-10-26 | 天津工业大学 | 一种激光与感应复合熔覆Cu‑Fe‑Si软磁高导铜基复合材料 |
-
2017
- 2017-12-18 CN CN201711389074.9A patent/CN107900341B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3604861A1 (de) * | 1986-02-15 | 1987-08-20 | Battelle Development Corp | Verfahren zur pulvermetallurgischen herstellung von feindispersen legierungen |
CN102978427A (zh) * | 2012-12-26 | 2013-03-20 | 南昌航空大学 | 一种激光-强磁场复合熔铸制备偏晶合金的方法 |
CN103071783A (zh) * | 2012-12-26 | 2013-05-01 | 南昌航空大学 | 一种激光-强磁场复合熔铸制备偏晶合金的装置 |
CN104109823A (zh) * | 2014-07-04 | 2014-10-22 | 南昌航空大学 | 一种激光-感应复合熔覆碳纳米管增强富铁多孔复合材料的方法 |
CN104399978A (zh) * | 2014-11-27 | 2015-03-11 | 华南理工大学 | 一种大尺寸复杂形状多孔非晶合金零件的3d成形方法 |
CN106048605A (zh) * | 2016-08-09 | 2016-10-26 | 天津工业大学 | 一种激光与感应复合熔覆Cu‑Fe‑Si软磁高导铜基复合材料 |
Non-Patent Citations (4)
Title |
---|
SHENGFENG ZHOU: "Synthesis of Fep/Cu-Cup/Fe duplex composite coating by laser cladding", 《MATERIALS AND DESIGN》 * |
吴超: "激光熔覆Cup增强Fe基复合涂层微结构转变机制的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
周圣丰等: "激光−感应复合熔覆Cu-Fe合金涂层的结构与性能", 《中国有色金属学报 》 * |
帅歌旺等: "机械合金化制备Cu-Fe过饱和固溶体及其时效分解", 《材料工程》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110523986A (zh) * | 2019-09-25 | 2019-12-03 | 华南理工大学 | 一种基于选区激光熔化成形大块体铁基非晶的方法 |
CN112605396A (zh) * | 2020-12-09 | 2021-04-06 | 暨南大学 | 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法 |
CN112643023A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形高强高韧铜铁基偏晶合金的方法 |
CN112643022A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末 |
CN112643021A (zh) * | 2020-12-09 | 2021-04-13 | 暨南大学 | 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末 |
CN112605396B (zh) * | 2020-12-09 | 2022-07-12 | 暨南大学 | 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法 |
CN114000008A (zh) * | 2021-09-29 | 2022-02-01 | 宁波兴业盛泰集团有限公司 | 一种亚稳态难混溶铜铁合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107900341B (zh) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107900341A (zh) | 一种激光选区熔化成形大尺寸高性能偏晶合金的方法 | |
Geng et al. | Fe-Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering | |
CN108080636B (zh) | 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法 | |
TWI784159B (zh) | Cu基合金粉末 | |
Kolb et al. | Laser Beam Melting of NdFeB for the production of rare-earth magnets | |
CN109175391B (zh) | 一种原位合成纳米氧化物颗粒弥散强化合金的方法 | |
JP6511832B2 (ja) | 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア | |
JP6511831B2 (ja) | 軟磁性金属粉末、およびその粉末を用いた軟磁性金属圧粉コア | |
CN112605396B (zh) | 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法 | |
Monastyrsky | Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids | |
CN116114038B (zh) | 用于定制磁性的方法及由此获得的结构 | |
Singh et al. | Experimental study pertaining to microwave sintering (MWS) of Al-metal matrix composite-a review | |
TW201817898A (zh) | 鐵基軟磁非晶合金塊材與製備方法及其應用 | |
Guo et al. | Microstructure and surface oxides of rapidly solidified Nb-Si based alloy powders | |
Mohammed et al. | Investigate the effect of process parameters of magnetic inductively assisted spark plasma sintering (SPS) of iron oxide (Fe3O4) on microstructure behaviour–Part I | |
Urban et al. | Evaluation of soft magnetic ferrosilicon FeSi 6.5 for laser beam melting | |
CN111785469A (zh) | 软磁合金粉末及其制备方法 | |
郑聃 et al. | Effect of NiTi Powder Gas Atomization Process on the Selective Laser Melting Moldability and Alloys' Superelastic | |
US20200063250A1 (en) | Iron-copper alloy having high thermal conductivity and method for manufacturing the same | |
Mostaan et al. | Response of structural and magnetic properties of ultra-thin FeCo–V foils to high-energy beam welding processes | |
Rimal et al. | Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi 2 Te 2.7 Se 0.3 Material | |
Harada et al. | Production of amorphous bulk materials of an Nd15Fe77B8 magnetic alloy and their magnetic properties | |
Saito et al. | Production of bulk nanocomposite magnets of an Nd/sub 4/Fe/sub 77.5/B/sub 18.5/alloy by compression shearing method | |
Zhu | New Technology of Making NdFeB by Sintering | |
Zhang et al. | Microstructure and Mechanical Properties of Cu-Fe Alloys via Powder Metallurgy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190606 Address after: 510632 Whampoa Avenue, Guangzhou, Guangzhou, Guangdong Province, No. 601 Applicant after: Jinan University Address before: No. 399 Bingshui Road, Xiqing District, Tianjin, Tianjin Applicant before: Tianjin Polytechnic University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |