CN112643021A - 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末 - Google Patents

一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末 Download PDF

Info

Publication number
CN112643021A
CN112643021A CN202011427314.1A CN202011427314A CN112643021A CN 112643021 A CN112643021 A CN 112643021A CN 202011427314 A CN202011427314 A CN 202011427314A CN 112643021 A CN112643021 A CN 112643021A
Authority
CN
China
Prior art keywords
copper
composite powder
selective laser
based composite
laser melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011427314.1A
Other languages
English (en)
Other versions
CN112643021B (zh
Inventor
易艳良
周圣丰
王小健
杨俊杰
张治国
李卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202011427314.1A priority Critical patent/CN112643021B/zh
Publication of CN112643021A publication Critical patent/CN112643021A/zh
Application granted granted Critical
Publication of CN112643021B publication Critical patent/CN112643021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末,该复合粉末的特点为:将粒径为40~50μm的铜基复合粉末作为成形材料,采用激光选区熔化成形的方法制备高强高耐腐铜基偏晶合金。本发明的优点在于:铜基复合粉末适合于激光选区熔化成形超高冷速的工艺特征,能够在高效率条件下,激光选区熔化成形形状复杂、结构尺寸大、高强高耐腐蚀、无裂纹均质铜基偏晶合金,在电磁炮导轨、受电弓等领域具有广阔的应用前景。

Description

一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合 粉末
技术领域
本发明属于激光增材制造(3D打印)技术领域,特别涉及一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末。
背景技术
目前,具有两液相不混溶区的难混溶合金系有500多种,这类合金熔体在过冷至两相不混溶区时,可自发地分离成两种熔体:次生相 L1,主体相L2。其中,铜合金如Cu-Fe、Cu-Ag、Cu-Sn、Cu-Pb等,因具有较好的塑性与韧性,良好的导电和导热性,引起了人们的广泛关注。
然而,在凝固过程中,组织偏析仍然是偏晶合金存在的本质缺陷。为了克服这一难题,国内外研究者提出了许多方法,用于制备显微组织结构呈现次生相球状颗粒弥散分布于主体相金属基体特征的偏晶合金。一般而言,通过利用附加外场消除重力引起的Stokes沉降,如落管法、声悬浮法、电磁悬浮法、气动悬浮法等。但是,由于Marangoni 迁移仍然存在,这些方法并不能有效解决凝固过程中颗粒之间的碰撞、合并与长大,很难获得第二相颗粒弥散分布的均质偏晶合金,极大地限制了偏晶合金的大规模制备及应用领域。
激光选区熔化成形技术是一种新型增材制造技术或3D打印技术,是利用金属粉末在激光束的热作用下完全熔化、经冷却凝固而成形的一种新型技术。该技术具有加热速度快、加工效率高与冷却速度大等特点,能直接成形出接近完全致密、力学性能良好的金属零件。尤其是在激光选区熔化成形过程中,冷却速度可达108K/s,可大大缩短 Stokes沉降和Marangoni迁移时间,获得均质偏晶合金。目前,没有完全适用于激光选区熔化成形特点,能够成功用于制备大尺寸、高强韧高耐蚀、无裂纹、均质铜基偏晶合金的铜基复合粉末。
发明内容
在高效率条件下,采用激光选区熔化成形技术制备大尺寸、高强韧高耐蚀、无裂纹、均质铜基偏晶合金,从而实现电磁炮导轨、受电弓等复杂结构关键零件的快速制造。因此,需要针对激光选区熔化成形的工艺特点、铜基偏晶合金液相分离与自组装特征与铜基偏晶合金服役性能的要求,开发的铜基复合粉末。因此,本发明的目的是提供一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末,该铜基复合粉末化学成分为:C≤0.05wt.%;Cr 12.0~15.0wt.%;Ni 4.0~8.0wt.%;Mn≤2.0wt.%;P≤3.5wt.%;S≤0.03wt.%;Si≤1.0 wt.%;Fe 10.0~15.8wt.%;CeO2 0.5~4.0wt.%;石墨烯0.2~3.5wt.%;余量为Cu。
本发明所述的铜基复合粉末通过以下三个工序制备:(1)按化学成分配比(C0.04wt.%;Cr 14.5wt.%;Ni 6.0wt.%;Mn 1.2wt.%;P 2.5wt.%;S 0.01wt.%;Si0.8wt.%;Fe 12.5wt.%;CeO2 1.2wt.%; Cu 59.75wt.%)进行真空高频感应熔炼-雾化-筛选-活化-水洗-干燥,制成铜基合金粉末;(2)将石墨烯进行除胶-粗化-敏化-活化-化学镀镍-水洗-干燥,制成具有核-壳结构的镀镍型石墨烯; (3)将铜基合金粉末与镀镍型石墨烯按质量比装入高能球磨机内混合均匀,制成铜基复合粉末,其中石墨烯含量为1.5wt.%,铜基复合粉末粒度为40~50μm。
与现有技术相比,本发明提供的一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末具有以下优点:常规铸造与粉末冶金工艺制备的偏晶合金,由于冷却速度较慢(~20K/s),极易形成偏析或分层组织,使偏晶合金优异性能丧失。此外,由于工艺本质特征所限,常规工艺很难制备形状复杂与结构尺寸大的均质偏晶合金。基于激光选区熔化成形工艺具有高达~108K/s冷却速度,不能再采用适用于铸造与粉末冶金这两种近乎于平衡凝固的合金粉末,必须结合液相分离自组装特征,以及分层累积增材制造的思想,开发适合于激光选区熔化成形工艺这种超快冷却速度的铜基复合粉末,从而极大地缩减液滴碰撞、凝并与粗化时间,缩短液滴迁移距离致使可以忽略液滴的 Stokes运动,从而获得第二相颗粒在金属基体内均匀分布、形状复杂与结构尺寸大的均质铜基偏晶合金,其抗拉强度达1.2GPa,在 5wt.%NaCl溶液中的抗腐蚀性能是黄铜的1倍。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
本发明的铜基复合粉末的化学成分为:C 0.04wt.%;Cr 14.5wt.%; Ni6.0wt.%;Mn 1.2wt.%;P 2.5wt.%;S 0.01wt.%;Si 0.8wt.%;Fe 12.5wt.%;CeO21.2wt.%;石墨烯1.5wt.%;余量为Cu。
本发明制备工序如下:(1)按化学成分配比(C 0.04wt.%;Cr 14.5 wt.%;Ni6.0wt.%;Mn 1.2wt.%;P 2.5wt.%;S 0.01wt.%;Si 0.8wt.%; Fe 12.5wt.%;CeO21.2wt.%;Cu 59.75wt.%)进行真空高频感应熔炼-雾化-筛选-活化-水洗-干燥,制成铜基合金粉末;(2)将石墨烯进行除胶-粗化-敏化-活化-化学镀镍-水洗-干燥,制成具有核-壳结构的镀镍型石墨烯;(3)将铜基合金粉末与镀镍型石墨烯按质量比装入高能球磨机内混合均匀,制成铜基复合粉末,其中石墨烯含量为1.5wt.%,铜基复合粉末粒度为40~50μm。
采用本发明的铜基复合粉末,使用的激光选区熔化成形工艺参数为:Yb:YAG光纤激光器的功率为0.2kW,光斑直径为80μm,激光扫描速度为2000mm/s,层厚为100μm,搭接距离为50μm,获得的无裂纹高强韧高耐蚀铜基偏晶合金主要性能指标为:抗压强度为1.2GPa,在5wt.%NaCl溶液中的抗腐蚀性能是黄铜的1倍。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末,其特征在于:铜基复合粉末的化学成分为:C≤0.05wt.%;Cr 12.0~15.0wt.%;Ni 4.0~8.0wt.%;Mn≤2.0wt.%;P≤3.5wt.%;S≤0.03wt.%;Si≤1.0wt.%;Fe 10.0~15.8wt.%;CeO2 0.5~4.0wt.%;石墨烯0.2~3.5wt.%;余量为Cu。所述的铜基复合粉末中的Ni是以化学镀Ni处理方式在石墨烯外表面包覆而存在。
2.根据权利要求书1所述的一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末,其特征在于:铜基复合粉末的化学成分为:C 0.04wt.%;Cr 14.5wt.%;Ni6.0wt.%;Mn 1.2wt.%;P 2.5wt.%;S 0.01wt.%;Si 0.8wt.%;Fe 12.5wt.%;CeO21.2wt.%;石墨烯1.5wt.%;余量为Cu。
3.根据权利要求书1所述的一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末,其特征在于:所述的铜基复合粉末的粒度为40~50μm。
CN202011427314.1A 2020-12-09 2020-12-09 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末 Active CN112643021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011427314.1A CN112643021B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011427314.1A CN112643021B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末

Publications (2)

Publication Number Publication Date
CN112643021A true CN112643021A (zh) 2021-04-13
CN112643021B CN112643021B (zh) 2022-06-21

Family

ID=75350454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011427314.1A Active CN112643021B (zh) 2020-12-09 2020-12-09 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末

Country Status (1)

Country Link
CN (1) CN112643021B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806263A1 (en) * 1996-05-06 1997-11-12 Ford Motor Company Limited Method of using copper based electrodes to spot-weld aluminium
CN106048605A (zh) * 2016-08-09 2016-10-26 天津工业大学 一种激光与感应复合熔覆Cu‑Fe‑Si软磁高导铜基复合材料
CN107900341A (zh) * 2017-12-18 2018-04-13 天津工业大学 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法
WO2018228640A1 (de) * 2017-06-15 2018-12-20 Zollern Bhw Gleitlager Gmbh & Co. Kg Monotektische aluminium-gleitlagerlegierung und verfahren zu seiner herstellung und damit hergestelltes gleitlager

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0806263A1 (en) * 1996-05-06 1997-11-12 Ford Motor Company Limited Method of using copper based electrodes to spot-weld aluminium
CN106048605A (zh) * 2016-08-09 2016-10-26 天津工业大学 一种激光与感应复合熔覆Cu‑Fe‑Si软磁高导铜基复合材料
WO2018228640A1 (de) * 2017-06-15 2018-12-20 Zollern Bhw Gleitlager Gmbh & Co. Kg Monotektische aluminium-gleitlagerlegierung und verfahren zu seiner herstellung und damit hergestelltes gleitlager
CN107900341A (zh) * 2017-12-18 2018-04-13 天津工业大学 一种激光选区熔化成形大尺寸高性能偏晶合金的方法
CN108080636A (zh) * 2017-12-18 2018-05-29 天津工业大学 一种激光选区熔化成形中空富铁颗粒增强铜基偏晶合金的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIN XIE ET AL.: "Microstructure and properties of homogeneous Cu90Fe10 immiscible composites with nanotwins by laser powder deposition_ Effect of spot size", 《JOURNAL OF ALLOYS AND COMPOUNDS》, 2 December 2019 (2019-12-02), pages 1 - 12 *
SHENGFENG ZHOU ET AL.: "Phase separation and properties of Cu-Fe-Cr-Si-C immiscible nanocomposite by laser induction hybrid cladding", 《JOURNAL OF ALLOYS AND COMPOUNDS》, 31 January 2018 (2018-01-31), pages 482 - 488 *
SHUZHEN ZHAO ET AL.: "Phase separation and enhanced wear resistance of Cu88Fe12 immiscible coating prepared by laser cladding", 《JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY》, 18 March 2019 (2019-03-18), pages 2001 - 2010 *
XIAOQIN DAI ET AL.: "Formation and properties of a self-assembled Cu-Fe-Ni-Cr-Si immiscible composite by laser induction hybrid cladding", 《JOURNAL OF ALLOYS AND COMPOUNDS》, 1 February 2018 (2018-02-01), pages 910 - 917 *
谢敏等: "激光熔覆自组装Cu92Fe8偏晶复合涂层的相分离特征与性能", 《中国激光》, no. 07, 28 March 2018 (2018-03-28), pages 1 - 7 *

Also Published As

Publication number Publication date
CN112643021B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN108486433B (zh) 选区激光熔化技术用Al-Mg-Sc-Zr系铝合金组合物及成型件制备方法
CN111168057B (zh) 一种增材制造用纳米陶瓷增强高熵合金复合粉末及其制备方法和应用
CN112605396B (zh) 一种激光选区熔化成形铁基非晶增强铜基偏晶复合材料的方法
CN110923693B (zh) 一种冷喷涂工艺制备Cu-Fe合金的方法
CN113136505B (zh) 一种高强韧耐热铝合金电枢材料及其制备方法
CN111440963B (zh) 一种高耐热高导电CuCrNb系铜合金及其制备方法
CN110315076B (zh) 一种基于预合金粉末的高比重钨基合金的成形方法
CN113005448A (zh) 一种铜合金表面激光熔覆制备钨铜或钼铜复合层的方法
CN107012356A (zh) 一种含石墨烯的高强度高导电铜基合金坯料及其制备方法
CN112643021B (zh) 一种激光选区熔化成形高强高耐蚀铜基偏晶合金的铜基复合粉末
CN111570813B (zh) 一种铍铝合金粉及其制备方法、应用
Geng et al. Metal matrix composites
CN113481405A (zh) 一种铜铁合金的制备方法
CN112222552B (zh) 一种伽马电极丝及其制备方法
CN115821123A (zh) 石墨烯增强纳米双连续耐磨铝基复合材料导体及制备方法
CN112643022A (zh) 一种激光选区熔化成形铁基非晶增强铜基合金的铜基复合粉末
CN113976910B (zh) 一种制备高熵非晶微叠层复合材料的方法
CN115780798A (zh) 一种纳米碳化硼/铜复合材料及其制备方法
CN105543514B (zh) 一种纳米强化铜合金制备方法
CN100462184C (zh) 用于点焊电极的表面改性的颗粒增强铜基复合材料
Wan et al. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel
CN115418515B (zh) 一种强化复合铝铜合金的方法
CN117026071A (zh) 一种激光选区熔化成形高性能铝型材挤压模具的铁基合金粉末
CN115846931B (zh) 一种镁合金焊丝及其制备方法和zm6镁合金焊接的方法
CN112981221B (zh) 碳化钛增强铸铁材料及其铸件制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhou Shengfeng

Inventor after: Yi Yanliang

Inventor after: Wang Xiaojian

Inventor after: Yang Junjie

Inventor after: Zhang Zhiguo

Inventor after: Li Wei

Inventor before: Yi Yanliang

Inventor before: Zhou Shengfeng

Inventor before: Wang Xiaojian

Inventor before: Yang Junjie

Inventor before: Zhang Zhiguo

Inventor before: Li Wei

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant