CN112640124A - 氮化镓器件和集成电路的栅极驱动电路及电压调节器 - Google Patents

氮化镓器件和集成电路的栅极驱动电路及电压调节器 Download PDF

Info

Publication number
CN112640124A
CN112640124A CN201980056656.6A CN201980056656A CN112640124A CN 112640124 A CN112640124 A CN 112640124A CN 201980056656 A CN201980056656 A CN 201980056656A CN 112640124 A CN112640124 A CN 112640124A
Authority
CN
China
Prior art keywords
voltage
ehemt
dhemt
hemt
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980056656.6A
Other languages
English (en)
Other versions
CN112640124B (zh
Inventor
李湛明
傅玥
刘雁飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Liangxin Microelectronics Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/CN2019/093350 external-priority patent/WO2020001553A1/zh
Publication of CN112640124A publication Critical patent/CN112640124A/zh
Application granted granted Critical
Publication of CN112640124B publication Critical patent/CN112640124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • H03F1/523Circuit arrangements for protecting such amplifiers for amplifiers using field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/426Indexing scheme relating to amplifiers the amplifier comprising circuitry for protection against overload

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明实施例提供一种氮化镓器件和集成电路的栅极驱动电路及电压调节器,采用氮化镓HEMT技术实现的电压稳定和调压电路能够提供稳定的输出电压,适用于氮化镓功率晶体管栅极驱动器和氮化镓集成电路的低压辅助电源等应用。栅极驱动器和电压调节器模块包括至少一个串联连接在一起的DHEMT和至少两个EHEMTs,以便至少一个DHEMT作为可变电阻工作,并且至少两个EHEMTs作为限制输出的齐纳二极管工作。栅极驱动器和电压调节器模块可以实现作为一个氮化镓集成电路,并且可以在单个芯片上与放大器和功率HEMT等其他组件整体集成,以提供氮化镓HEMT功率模块集成电路。

Description

PCT国内申请,说明书已公开。

Claims (40)

  1. PCT国内申请,权利要求书已公开。
CN201980056656.6A 2018-06-27 2019-06-27 氮化镓器件和集成电路的栅极驱动电路及电压调节器 Active CN112640124B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862690378P 2018-06-27 2018-06-27
US62/690,378 2018-06-27
US201862694663P 2018-07-06 2018-07-06
US62/694,663 2018-07-06
US16/449,356 US10686411B2 (en) 2018-06-27 2019-06-22 Gate drivers and voltage regulators for gallium nitride devices and integrated circuits
US16/449,356 2019-06-22
PCT/CN2019/093350 WO2020001553A1 (zh) 2018-06-27 2019-06-27 氮化镓器件和集成电路的栅极驱动电路及电压调节器

Publications (2)

Publication Number Publication Date
CN112640124A true CN112640124A (zh) 2021-04-09
CN112640124B CN112640124B (zh) 2024-02-20

Family

ID=69055459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980056656.6A Active CN112640124B (zh) 2018-06-27 2019-06-27 氮化镓器件和集成电路的栅极驱动电路及电压调节器

Country Status (2)

Country Link
US (1) US10686411B2 (zh)
CN (1) CN112640124B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012151466A2 (en) * 2011-05-05 2012-11-08 Arctic Sand Technologies, Inc. Dc-dc converter with modular stages
US10720913B1 (en) * 2019-05-28 2020-07-21 Infineon Technologies Austria Ag Integrated failsafe pulldown circuit for GaN switch
US10958268B1 (en) 2019-09-04 2021-03-23 Infineon Technologies Austria Ag Transformer-based driver for power switches
US10979032B1 (en) 2020-01-08 2021-04-13 Infineon Technologies Austria Ag Time-programmable failsafe pulldown circuit for GaN switch
CN112311211B (zh) * 2020-10-22 2021-10-15 浙江大学 一种用于GaN HEMT功率器件的驱动控制芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235347A (ja) * 2007-03-16 2008-10-02 Sharp Corp リセスゲート型hfetの製造方法
WO2015122483A1 (ja) * 2014-02-14 2015-08-20 ローム株式会社 ゲート駆動回路および電源装置
EP2999118A1 (en) * 2014-09-19 2016-03-23 Kabushiki Kaisha Toshiba Gate control device, semiconductor device, and method for controlling semiconductor device
US20160373106A1 (en) * 2015-06-16 2016-12-22 Tagore Technology, Inc. High performance radio frequency switch
US9735771B1 (en) * 2016-07-21 2017-08-15 Hella Kgaa Hueck & Co. Hybrid switch including GaN HEMT and MOSFET

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767946A (en) * 1987-01-12 1988-08-30 Tektronix, Inc. High-speed supply independent level shifter
US6313705B1 (en) * 1999-12-20 2001-11-06 Rf Micro Devices, Inc. Bias network for high efficiency RF linear power amplifier
JP3641184B2 (ja) * 2000-03-28 2005-04-20 株式会社東芝 バイポーラトランジスタを用いた高周波電力増幅器
JP4519659B2 (ja) * 2005-01-06 2010-08-04 ルネサスエレクトロニクス株式会社 バイアス回路
JP2009290490A (ja) * 2008-05-28 2009-12-10 Micronics Japan Co Ltd 増幅回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235347A (ja) * 2007-03-16 2008-10-02 Sharp Corp リセスゲート型hfetの製造方法
WO2015122483A1 (ja) * 2014-02-14 2015-08-20 ローム株式会社 ゲート駆動回路および電源装置
EP2999118A1 (en) * 2014-09-19 2016-03-23 Kabushiki Kaisha Toshiba Gate control device, semiconductor device, and method for controlling semiconductor device
US20160373106A1 (en) * 2015-06-16 2016-12-22 Tagore Technology, Inc. High performance radio frequency switch
US9735771B1 (en) * 2016-07-21 2017-08-15 Hella Kgaa Hueck & Co. Hybrid switch including GaN HEMT and MOSFET

Also Published As

Publication number Publication date
US20200007091A1 (en) 2020-01-02
CN112640124B (zh) 2024-02-20
US10686411B2 (en) 2020-06-16

Similar Documents

Publication Publication Date Title
US10686436B2 (en) Gate drivers and voltage regulators for gallium nitride devices and integrated circuits
CN112640124B (zh) 氮化镓器件和集成电路的栅极驱动电路及电压调节器
US9293458B2 (en) Semiconductor electronic components and circuits
US9048119B2 (en) Semiconductor device with normally off and normally on transistors
US9660108B2 (en) Bootstrap MOS for high voltage applications
US9496388B2 (en) Trench MOSFET having reduced gate charge
JP2012517699A (ja) Iii族窒化物デバイスおよび回路
CN110168936B (zh) 晶体管单元
JP2005033650A (ja) カスコード接続回路及びその集積回路
CN106024878B (zh) 具有集成到栅极结构中的rc网络的高电子迁移率晶体管
US11631741B2 (en) Semiconductor device
US10388782B2 (en) Scalable current sense transistor
CN111415916A (zh) 半导体装置以及半导体封装
CN110137172A (zh) 静电防护电路及电子装置
CN102939650A (zh) 半导体装置
De Lima et al. Modeling and characterization of overlapping circular-gate MOSFET and its application to power devices
TWI546935B (zh) 遮蔽位準轉移電晶體
US11011512B2 (en) Semiconductor device including a nitride layer
US10348295B2 (en) Packaged unidirectional power transistor and control circuit therefore
US8339189B2 (en) High voltage current source and voltage expander in low voltage process
US9728530B1 (en) Bipolar transistor device
US9929151B2 (en) Self-balanced diode device
CN108735730B (zh) 电力开关及其半导体装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210802

Address after: Room f405, No. 388, Ruoshui Road, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu

Applicant after: Suzhou Quantum Semiconductor Co.,Ltd.

Address before: 1064 enhart Road, Kingston, Ontario

Applicant before: Li Zhanming

Applicant before: Fu Yue

Applicant before: Liu Yanfei

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240522

Address after: Room 601-2, Building 1, Suzhou Nanocity, No. 99 Jinjihu Avenue, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215000

Patentee after: Suzhou Liangxin Microelectronics Co.,Ltd.

Country or region after: China

Address before: 215125 room f405, No. 388 Ruoshui Road, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu

Patentee before: Suzhou Quantum Semiconductor Co.,Ltd.

Country or region before: China