CN112639977B - 具有电容耦合到浮栅的栅极的存储器单元的编程 - Google Patents

具有电容耦合到浮栅的栅极的存储器单元的编程 Download PDF

Info

Publication number
CN112639977B
CN112639977B CN201980054776.2A CN201980054776A CN112639977B CN 112639977 B CN112639977 B CN 112639977B CN 201980054776 A CN201980054776 A CN 201980054776A CN 112639977 B CN112639977 B CN 112639977B
Authority
CN
China
Prior art keywords
voltage
gate
memory cells
erase
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980054776.2A
Other languages
English (en)
Other versions
CN112639977A (zh
Inventor
V·马克夫
A·柯多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Storage Technology Inc
Original Assignee
Silicon Storage Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Storage Technology Inc filed Critical Silicon Storage Technology Inc
Publication of CN112639977A publication Critical patent/CN112639977A/zh
Application granted granted Critical
Publication of CN112639977B publication Critical patent/CN112639977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0652Erasing, e.g. deleting, data cleaning, moving of data to a wastebasket
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0425Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a merged floating gate and select transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/02Structural aspects of erasable programmable read-only memories
    • G11C2216/04Nonvolatile memory cell provided with a separate control gate for erasing the cells, i.e. erase gate, independent of the normal read control gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种存储器设备,该存储器设备具有存储器单元,每个存储器单元包括:源极区和漏极区,该源极区和漏极区之间具有沟道区;浮栅,该浮栅处于第一沟道区部分上方;选择栅,该选择栅处于第二沟道区部分上方;控制栅,该控制栅处于浮栅上方;和擦除栅,该擦除栅处于源极区上方。控制电路被配置为针对存储器单元中的一个存储器单元:施加第一编程电压脉冲,该第一编程电压脉冲包括施加到控制栅的第一电压;执行读取操作,该读取操作包括针对不同的控制栅电压检测通过沟道区的电流,以使用对应于通过沟道区的目标电流的所检测到的电流来确定目标控制栅电压;以及施加第二编程电压脉冲,该第二编程电压脉冲包括施加到控制栅的第二电压,该第二电压由第一电压、标称电压和目标电压确定。

Description

具有电容耦合到浮栅的栅极的存储器单元的编程
相关专利申请
本申请要求于2018年8月24日提交的美国临时申请第62/722,776号、于2018年10月17日提交的美国临时申请第62/746,962号以及于2018年12月12日提交的美国专利申请第16/217,916号的权益。
技术领域
本发明涉及非易失性存储器阵列。
背景技术
分裂栅极非易失性存储器单元和此类单元阵列是熟知的。例如,图1中示出了具有四个栅极的常规分裂栅极存储器单元10。每个存储器单元10包括形成于半导体衬底12中的源极区14和漏极区16,沟道区18在其间延伸。浮栅20形成在沟道区18的第一部分上方并且与其绝缘(并且控制其导电性),并且优选地形成在源极区14的一部分上方。选择栅22(也称为字线栅极)设置在沟道区18的第二部分上方并且与其绝缘(并且控制其导电性),并且还与浮栅20横向地相邻。控制栅28设置在浮栅20上方并且与其绝缘。擦除栅30设置在源极区14上方并且与其绝缘。优选地,存储器单元10成对形成,其中每对共享共同擦除栅30和共同源极区14,并且这些对首尾相接地布置,使得每个漏极区16由两个相邻的存储器单元对共享。
通过将高正电压置于擦除栅30上来擦除存储器单元10(其中从浮栅20去除电子),这导致浮栅20上的电子经由福勒-诺德海姆隧穿从浮栅20通过中间绝缘体遂穿到擦除栅30(在图1中通过从浮栅20延伸到擦除栅30的箭头以图形方式示出)。通过使擦除栅30中的凹口包绕浮栅20的上边缘来提高擦除效率。
通过在选择栅22、控制栅28、擦除栅30和源极区14上施加适当的正电压以及在漏极16上施加电流源来对存储器单元10进行编程(其中电子被放置在浮栅20上)。电子将沿着沟道区18从漏极16流动到源极14。当电子到达选择栅22和浮栅20之间的间隙时,电子将加速并且变热。由于来自浮栅20的吸引静电力(这是由于控制栅28上的正电压电容耦合到浮栅20而引起的),因此受热电子中的一些受热电子将被注入通过浮栅下方的栅极氧化物绝缘体并且注入到浮栅20上,如图1所示。该编程技术被称为热电子注入,并且在图1中通过沿着沟道区18延伸并且进入浮栅20的箭头以图形方式示出。
通过在漏极区16、选择栅22(其接通选择栅22下方的沟道区部分)和控制栅28(其电容耦合到浮栅20)上施加正读取电压来读取存储器单元10。如果浮栅20带正电(即,电子被擦除以及电容耦合到控制栅28上的正电压),则沟道区在浮栅20下方的部分也通过电容耦合电压被接通,并且电流将流过沟道区18,该沟道区被感测为擦除状态或“1”状态。如果浮栅20带负电(即,通过电子进行了编程),则沟道区在浮栅20下方的部分被大部分或完全关断(即,来自控制栅28的电容耦合电压不足以克服存储在浮栅20上的负电荷),并且电流将不会(或者有很少的电流)流过沟道区18,该沟道区被感测为编程状态或“0”状态。
还能够操作存储器单元10,使得其具有多个程序状态(称为多级单元(MLC),其中存储器单元10具有两种以上不同的程序状态,诸如存储两位信息的四个状态11、10、01和00)。还能够以模拟方式操作存储器单元10(即,不具有离散编程状态以产生一系列模拟读取信号值)。在这两种情况下,重要的是不对存储器单元进行过编程(即,在浮栅上放置太多电子),这是因为存储器单元稍后将不会产生恰当地反映预期程序状态的读取操作结果。但是,同样重要的是确保存储器单元10被充分编程,使得其程序状态稍后可在读取操作期间可靠地被检测。同样,对于多级单元或模拟单元应用,对存储器单元进行欠编程也不会产生期望的读取操作结果。因此,传统上,已知的是在离散脉冲中施加编程电压,其中在编程脉冲之间具有居间读取操作。具体地讲,将电压的编程脉冲施加到存储器单元,并且然后执行读取操作以确定沟道上的读取电流是否低于期望阈值。如果不是,则施加另一编程电压脉冲,并且执行另一读取操作以查看沟道上的读取电流是否低于阈值。该过程继续进行直到沟道上的读取电流低于阈值。为了防止过编程,脉冲相对较短,并且需要许多脉冲来充分编程存储器单元而不会过编程。事实上,典型的存储器单元可能需要介于10个和30个之间或甚至更多个编程电压脉冲,以将存储器单元恰当地编程到其期望的“0”状态。之所以如此,是因为对于期望的编程状态,每个编程脉冲不能以超过目标窗口(即,目标范围)的增量递增地改变存储器单元的编程状态(否则可能出现不期望的过编程水平)。该技术的优点在于,存储器单元被递增地编程,直到其相当精确地实现期望的程序状态(这将在读取操作期间提供期望的读取电流,使得可以可靠地检测程序状态)。该技术的缺点在于,执行由多个读取操作分开的如此多的编程电压脉冲需要花费相对较长的时间(例如,数十微秒)。
需要一种存储器单元编程技术,该技术能够在减少的时间量内准确地和可靠地对存储器单元进行编程而不会对存储器单元进行过编程。
发明内容
前述问题和需要通过存储器设备得到解决,该存储器设备包括按行和列布置的存储器单元和控制电路。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。该控制电路被配置为针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到控制栅的第一电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到控制栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定控制栅的目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第二编程电压脉冲包括施加到控制栅的第二电压,该第二电压由第一电压、标称电压和目标电压确定;以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到控制栅的标称电压。
存储器设备可包括按行和列布置的存储器单元和控制电路。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。控制电路被配置为针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到擦除栅的第一电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到擦除栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定擦除栅的目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中该第二编程电压脉冲包括施加到擦除栅的第二电压,该第二电压由第一电压、标称电压和目标电压确定;以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅、擦除栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到擦除栅的标称电压。
存储器设备可包括按行和列布置的存储器单元和控制电路。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。控制电路被配置为针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到控制栅的第一电压和施加到擦除栅的第二电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到控制栅和擦除栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定控制栅的第一目标电压和擦除栅的第二目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅(其中该第二编程电压脉冲包括施加到控制栅的第三电压和施加到擦除栅的第四电压,该第三电压由第一电压、第一标称电压和第一目标电压确定,该第四电压由第二电压、第二标称电压和第二目标电压确定);以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅、擦除栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到控制栅的第一标称电压和施加到擦除栅的第二标称电压。
一种操作存储器设备的方法,该存储器设备包括按行和列布置的存储器单元。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。该方法包括,针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到控制栅的第一电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到控制栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定控制栅的目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第二编程电压脉冲包括施加到控制栅的第二电压,该第二电压由第一电压、标称电压和目标电压确定;以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到控制栅的标称电压。
一种操作存储器设备的方法,该存储器设备包括按行和列布置的存储器单元。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。该方法包括,针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到擦除栅的第一电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到擦除栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定擦除栅的目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中该第二编程电压脉冲包括施加到擦除栅的第二电压,该第二电压由第一电压、标称电压和目标电压确定;以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅、擦除栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到擦除栅的标称电压。
一种操作存储器设备的方法,该存储器设备包括按行和列布置的存储器单元。存储器单元中的每个存储器单元包括:源极区和漏极区,该源极区和该漏极区形成在半导体衬底中,其中衬底的沟道区在源极区与漏极区之间延伸;浮栅,该浮栅设置在沟道区的第一部分上方并且与其绝缘,以用于控制沟道区的第一部分的导电性;选择栅,该选择栅设置在沟道区的第二部分上方并且与其绝缘,以用于控制沟道区的第二部分的导电性;控制栅,该控制栅设置在浮栅上方并且与其绝缘;和擦除栅,该擦除栅设置在源极区上方并且与其绝缘,并且设置成与浮栅相邻并且与其绝缘。该方法包括,针对存储器单元中的一个存储器单元:将第一编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅,其中第一编程电压脉冲包括施加到控制栅的第一电压和施加到擦除栅的第二电压;在施加第一编程电压脉冲之后执行读取操作,该读取操作包括针对施加到控制栅和擦除栅的不同电压检测通过沟道区的电流,以及使用对应于通过沟道区的目标电流的所检测到的电流来确定控制栅的第一目标电压和擦除栅的第二目标电压;将第二编程电压脉冲施加到源极区、选择栅、擦除栅和控制栅(其中该第二编程电压脉冲包括施加到控制栅的第三电压和施加到擦除栅的第四电压,该第三电压由第一电压、第一标称电压和第一目标电压确定,该第四电压由第二电压、第二标称电压和第二目标电压确定);以及在施加第一编程电压脉冲和第二编程电压脉冲之后,通过将相应的读取电压施加到漏极区、选择栅、擦除栅和控制栅来确定一个存储器单元的程序状态,同时检测沟道区中的任何电流,其中读取电压包括施加到控制栅的第一标称电压和施加到擦除栅的第二标称电压。
通过查看说明书、权利要求书和附图,本发明的其他目的和特征将变得显而易见。
附图说明
图1是4栅极非易失性存储器单元的侧面剖视图。
图2是存储器设备架构的平面图。
图3是存储器单元阵列的示意图/布局图(其中为简单起见未示出浮栅)。
具体实施方式
本发明涉及一种新的编程技术,该技术涉及少至两个编程电压脉冲以准确地编程存储器单元,而没有过编程的过度风险。该编程技术利用了以下事实:在编程期间施加到控制栅28的电压的大小强烈地决定了编程脉冲最终对存储器单元进行编程的程度。
该编程技术从将第一编程电压脉冲施加到正被编程的存储器单元开始,其中在该第一脉冲期间施加到控制栅28的电压是初始值Vcg1。该第一编程电压脉冲将存储器单元编程到第一程序状态。然后,执行第一扫读操作,其中在测量或检测通过沟道区18的读取电流时,控制栅28上的读取电压在值范围内扫过。该读取操作的目的是确定控制栅28上的目标电压Vtcg,该目标电压产生通过沟道区18的目标读取电流It。一旦由读取操作确定了Vtcg,就通过擦除操作擦除存储器单元。然后,将第二编程电压脉冲施加到存储器单元,其中在该第二编程电压脉冲期间施加到控制栅28的电压Vcg2通过以下等式确定:
Vcg2=Vcg1+Vcgn–Vtcg 等式1
其中Vcgn是控制栅28的标称读取偏差,该标称读取偏差将用于读取存储器单元在正常读取操作期间的编程状态。Vcgn的非限制性示例是2.5V。本发明人已经发现,该第二编程电压脉冲极有可能将存储器单元置于期望的编程状态。可执行第二读取操作来确认这一点。如果期望的编程状态被确认,则其将仅通过两个编程脉冲来实现。
还发现,在某些情况下,可省略第一编程脉冲和第二编程脉冲之间的擦除操作。具体地讲,如果确定如由等式1确定的Vcg2大于Vcg1+Vd,其中Vd是基于存储器单元特性和处理技术而变化的德耳塔电压值(例如,对于典型的存储器单元,为约0.8V至1.0V),则可省略第一程序脉冲和第二程序脉冲之间的居间擦除操作。Vd为Vcg2与Vcg1之间的最小差值,该最小差值导致存储器单元10的编程状态作为两个编程脉冲(一个使用Vcg1,并且另一个使用Vcg2)的结果和作为仅一个编程脉冲(仅使用Vcg2)的结果而发生基本上相同的变化。编程状态是指浮栅上的电子的数量。
在下表中提供了第一编程脉冲和第二编程脉冲的非限制性示例性电压和电流:
表1
源极14 漏极16 选择栅22 擦除栅30 控制栅28
第一程序脉冲 4.5V 1μA 1V 4.5V V<sub>cg1</sub>=8V
第二程序脉冲 4.5V 1μA 1V 4.5V V<sub>cg2</sub>
在下表中提供了用于读取和擦除存储器单元的非限制性示例性电压:
表2
源极14 漏极16 选择栅22 擦除栅30 控制栅28
读取 0V 0.8V 2.5V 0V V<sub>cgn</sub>=2.5V
擦除 0V 0V 0V 11.5V 0V
在上述两脉冲编程技术中,如果由第二读取操作确定未实现期望的编程状态,则存在若干选项。首先,如果由第二读取操作确定第二编程电压脉冲对存储器单元进行欠编程,则可使用通过确认读取操作分开的小增量编程脉冲的现有技术来递增地继续对存储器单元进行编程,直到实现期望的编程状态。然而,即使在这种情况下,与仅使用现有技术增量编程技术相比,编程脉冲的总体数量也大幅减少。其次,如果由第二读取操作确定未实现期望的编程状态,则可重复擦除操作并且可根据以下公式施加第三编程脉冲:
Vcg3=Vcg2+Vcgn–Vtcg2 等式2
具体地讲,在施加第二编程脉冲并且确定存储器单元过编程或欠编程之后,执行第一扫读操作,其中在测量或检测通过沟道区18的读取电流时,控制栅28上的读取电压在值范围内扫过。该第二扫读操作的目的是确定控制栅上的第二目标电压Vtcg2,该第二目标电压产生通过沟道区18的目标读取电流It。然后,擦除存储器单元,并且将第三编程电压脉冲施加到存储器单元,其中电压Vcg3在该第三编程电压脉冲期间根据等式2施加到控制栅。已经发现,该第二程序迭代(扫读、擦除、第三编程脉冲)可补偿存储器单元中的次级效应。可使用Vcgn执行第二编程脉冲之后的初始读取操作,以确定单元是否被恰当地编程,并且如果不是,则执行扫读操作以确定Vtcg2。另选地,第二编程脉冲之后的初始读取操作可为扫读操作,其中只有在控制栅上需要达到It的电压与Vcgn不同(确切地或在预定范围内)的情况下才触发第二程序迭代。如果在第三编程脉冲之后,执行读取操作并且确定未实现期望的编程状态,则可迭代地重复上文关于等式2所描述的过程,直到实现期望的编程状态(即,使用等式Vcg(k)=Vcg(k-1)+Vcgn–Vtcg(k-1),其中对于第一迭代重复,k为4,对于第二迭代重复,k为5,等等)。
在编程期间耦合到浮栅的电压不仅出现在控制栅和浮栅之间,而且出现在擦除栅和浮栅之间。因此,在第一另选实施方案中,能够在两脉冲编程技术中改变擦除栅而不是控制栅上的电压。具体地讲,到正被编程的存储器单元的第一编程电压脉冲将包括施加到擦除栅30的初始电压Ve1。然后,执行第一扫读操作,其中在测量或检测通过沟道区18的读取电流时,擦除栅30上的读取电压在值范围内扫过。该读取操作的目的是确定擦除栅上的目标电压Vte,该目标电压产生通过沟道区18的目标读取电流It。一旦由读取操作确定了目标电压Vte,就通过擦除操作擦除存储器单元。然后,将第二编程电压脉冲施加到存储器单元,其中在该第二编程电压脉冲期间施加到擦除栅的电压Ve2通过以下等式确定:
Ve2=Ve1+Ven–Vte 等式3
其中Ven是擦除栅的标称读取偏差,该标称读取偏差将用于读取存储器单元在正常读取操作期间的编程状态。Ven的非限制性示例是2.5V。在下表中提供了对于该第一另选实施方案的第一编程脉冲和第二编程脉冲的非限制性示例性电压和电流:
表3
源极14 漏极16 选择栅22 擦除栅30 控制栅28
第一程序脉冲 4.5V 1μA 1V V<sub>e1</sub>=4.5V 8V
第二程序脉冲 4.5V 1μA 1V V<sub>e2</sub> 8V
在下表中提供了对于该第一另选实施方案的用于读取和擦除存储器单元的非限制性示例性电压:
表4
源极14 漏极16 选择栅22 擦除栅30 控制栅28
读取 0V 0.8V 2.5V V<sub>en</sub>=2.5V 2.5V
擦除 0V 0V 0V 11.5V 0V
还发现,在某些情况下,对于该第一另选实施方案可省略第一编程脉冲和第二编程脉冲之间的擦除操作。具体地讲,如果确Ve2大于Ve1+Ved,其中Ved是基于存储器单元特性和处理技术而变化的德耳塔电压值(例如,对于典型的存储器单元,为约1V至2V),则可省略第一程序脉冲和第二程序脉冲之间的居间擦除操作。Ved为Ve2与Ve1之间的最小差值,该最小差值导致存储器单元的编程状态作为两个编程脉冲(一个使用Ve1,并且另一个使用Ve2)的结果和作为仅一个编程脉冲(仅使用Ve2)的结果而发生基本上相同的变化。
在第二另选实施方案中,在两脉冲编程技术中改变控制栅电压和擦除栅电压两者。具体地讲,到正被编程的存储器单元的第一编程电压脉冲将包括施加到擦除栅30的初始电压Ve1和施加到控制栅28的初始电压Vcg1。然后,执行读取操作,其中在测量或检测通过沟道区18的读取电流时,控制栅28和擦除栅30上的读取电压在值范围内扫过。该读取操作的目的是分别确定擦除栅30和控制栅28上的目标电压Vte和Vtcg,该目标电压产生通过沟道区18的目标读取电流It。一旦由读取操作确定了Vte和Vtcg,就通过擦除操作擦除存储器单元10。然后,将第二编程电压脉冲施加到存储器单元,其中在该第二编程电压脉冲期间施加到擦除栅的电压Ve2和施加到控制栅的电压Vcg2通过以下等式确定:
Ve2=Ve1+Ven–Vte 等式4
Vcg2=Vcg1+Vcgn–Vtcg 等式5
在下表中提供了对于该第二另选实施方案的第一编程脉冲和第二编程脉冲的非限制性示例性电压和电流:
表5
源极14 漏极16 选择栅22 擦除栅30 控制栅28
第一程序脉冲 4.5V 1μA 1V V<sub>e1</sub>=4.5V V<sub>cg1</sub>=8V
第二程序脉冲 4.5V 1μA 1V V<sub>e2</sub> V<sub>cg2</sub>
在下表中提供了对于该第二另选实施方案的用于读取和擦除存储器单元的非限制性示例性电压:
表6
源极14 漏极16 选择栅22 擦除栅30 控制栅28
读取 0V 0.8V 2.5V V<sub>en</sub>=2.5V V<sub>cgn</sub>=2.5V
擦除 0V 0V 0V 11.5V 0V
还发现,在某些情况下,对于该第二另选实施方案可省略第一编程脉冲和第二编程脉冲之间的擦除操作。具体地讲,如果确定Ve2大于Ve1+Ved,并且Vcg2大于Vcg1+Vd,则可省略第一程序脉冲和第二程序脉冲之间的居间擦除操作。
图2示出了示例性存储器设备的架构。存储器设备包括非易失性存储器单元的阵列60,该阵列可被分隔成两个单独的平面(平面A 62a和平面B 62b)。存储器单元可以是图1中所示的类型的存储器单元(即,存储器单元10),可以形成在单个芯片上,可以在半导体衬底12中按多行和多列布置。与非易失性存储器单元的阵列60相邻的是地址解码器(例如,XDEC 64(驱动字线的行解码器)、SLDRV 66(用于驱动源极线的源极线驱动器)、YMUX 68(驱动位线的列解码器)、HVDEC 70(高电压解码器)和位线控制器(BLINHCTL 72),其用于解码地址并且在所选存储器单元的读取操作、编程操作和擦除操作期间向各种存储器单元栅极和区供应各种电压。控制器76(包含控制电路)控制各种设备元件以实现目标存储器单元上的每个操作(编程、擦除、读取)(即,直接地或间接地提供电压和电流以操作如本文所讨论的存储器单元)。电荷泵CHRGPMP 74提供用于在控制器76的控制下读取、编程和擦除存储器单元的各种电压。
本发明的显著优点是对多个单元的编程可同时发生,并且相对于第一编程脉冲和第二编程脉冲以不同的粒度发生(即,涉及不同数量的存储器单元)。这相对于图3进行说明,图3示出了存储器阵列的架构(为简单起见未示出浮栅)。具体地讲,每个水平选择栅线22a将该行存储器单元10的所有选择栅22电连接在一起。每个水平控制栅线28a将该行存储器单元10的所有控制栅28电连接在一起。每个水平源极线14a将共享源极区14的两行存储器单元10的所有源极区14电连接在一起。每个位线16a将该列存储器单元10的所有漏极区16电连接在一起。每个擦除栅线30a将共享擦除栅30的两行存储器单元10的所有擦除栅30电连接在一起。因此,所有栅极线和源极线在水平(行)方向上伸展,并且位线在竖直(列)方向上伸展。
利用上述存储器阵列架构,可同时执行对多个单元的编程。具体地讲,第一编程脉冲和第二编程脉冲两者均可如下所述同时施加到多个存储器单元。首先,因为正被编程的每个存储器单元优选地使用第一编程脉冲的相同值来进行初始编程,所以不同行和不同列中的存储器单元可用第一编程脉冲同时进行编程。例如,可将第一程序脉冲施加到相同位线16a上的多个存储器单元10,包括经由控制栅线28a将Vcg1施加到控制栅28。可通过去除那些行存储器单元的编程电压中的一个或多个编程电压来防止对相同位线上的非目标单元的编程,并且可通过在那些位线上施加程序抑制电压来防止对其他位线上的非目标单元的编程。根据要编程的那些单元,能够利用第一程序脉冲同时对多行和多列中的多个单元进行编程。然而,应当指出的是,一次可编程的单元的数量可能存在实际限制,因为外围电路可能无法供应足够的电压和/或电流来一次编程所有或甚至大多数存储器单元(即,在大多数情况下,要包括可供应足够的电压/电流以一次编程所有存储器单元的外围电路,成本将太高并且将使用太多空间)。但是,对于大多数阵列设计,外围电路可利用第一程序脉冲同时对两个或更多个存储器单元进行编程。
第二程序脉冲也可同时施加到多个存储器单元10。具体地讲,在针对多个存储器单元10确定了Vcg2之后,可将第二程序脉冲施加到同一行中的多个存储器单元10,只要其相应的Vcg2值相同即可(因为它们共享相同的控制栅线28a)。此外,可将第二程序脉冲同时施加到相同位线16a上的不同行中的多个存储器单元10,因为可将不同的Vcg2值施加到不同行的单独控制栅线28a。如从上文显而易见的是,可通过同时向多条擦除栅线30a供应擦除电压来同时擦除多对存储器单元行。
相对于第一实施方案描述了使用第一编程脉冲和/或第二编程脉冲对多个存储器单元的同时编程,其中通过扫描控制栅电压来执行读取,并且基于确定适当的控制栅电压Vcg2来为每个单元定制第二程序脉冲。然而,同样可针对上述第一另选实施方案执行同时编程,其中通过扫描擦除栅电压来执行读取,并且基于确定适当的擦除栅电压Ve2来为每个单元定制第二程序脉冲。
应当理解,本发明不限于上述的和在本文中示出的实施方案,而是涵盖在任何权利要求书的范围内的任何和所有变型形式。举例来说,本文中对本发明的提及并不意在限制任何权利要求书或权利要求术语的范围,而是仅参考可由这些权利要求中的一项或多项权利要求涵盖的一个或多个特征。上文所述的材料、工艺和数值的示例仅为示例性的,而不应视为限制权利要求书。材料的单个层可形成为此类材料或类似材料的多个层,并且反之亦然。最后,本发明对于不同的存储器单元应用(即多级单元(其中存储器单元除了未编程状态之外还具有两种或更多种不同的程序状态)和模拟(其中程序状态不限于离散步骤))是理想的。
应当指出的是,如本文所用,术语“在…上方”和“在…上”均包括性地包括“直接在…上”(之间没有设置中间材料、元件或空间)和“间接在…上”(之间设置有中间材料、元件或空间)。类似地,术语“相邻”包括“直接相邻”(之间没有设置中间材料、元件或空间)和“间接相邻”(之间设置有中间材料、元件或空间),“被安装到”包括“被直接安装到”(之间没有设置中间材料、元件或空间)和“被间接安装到”(之间设置有中间材料、元件或空间),并且“被电耦接到”包括“被直接电耦接到”(之间没有将元件电连接在一起的中间材料或元件)和“被间接电耦接到”(之间有将元件电连接在一起的中间材料或元件)。例如,“在衬底上方”形成元件可包括在两者间无中间材料/元件的情况下直接在衬底上形成该元件,以及在两者间有一种或多种中间材料/元件的情况下间接在衬底上形成该元件。

Claims (32)

1.一种存储器设备,包括:
存储器单元,所述存储器单元按行和列布置,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;和
控制电路,所述控制电路被配置为针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述控制栅的第一电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述控制栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述控制栅的目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括施加到所述控制栅的第二电压,所述第二电压由所述第一电压、标称电压和所述目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述控制栅的所述标称电压。
2.根据权利要求1所述的存储器设备,其中针对所述一个存储器单元,施加到所述控制栅的所述第二电压由所述第一电压加上所述标称电压减去所述目标电压来确定。
3.根据权利要求1所述的存储器设备,其中所述控制电路还被配置为针对所述一个存储器单元,在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
4.根据权利要求1所述的存储器设备,其中所述控制电路还被配置成针对所述一个存储器单元:
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后执行第二读取操作,所述第二读取操作包括针对施加到所述控制栅的不同电压检测通过所述沟道区的第二电流,以及使用对应于通过所述沟道区的所述目标电流的所检测到的第二电流来确定所述控制栅的第二目标电压;以及
将第三编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第三编程电压脉冲包括施加到所述控制栅的第三电压,所述第三电压由所述第二电压加上所述标称电压减去所述第二目标电压来确定。
5.根据权利要求4所述的存储器设备,其中所述控制电路还被配置为针对所述一个存储器单元,在所述第二读取操作之后并且在施加所述第三编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
6.根据权利要求1所述的存储器设备,其中所述控制电路还被配置为:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
7.一种存储器设备,包括:
存储器单元,所述存储器单元按行和列布置,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;和
控制电路,所述控制电路被配置为针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述擦除栅的第一电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述擦除栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述擦除栅的目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括施加到所述擦除栅的第二电压,所述第二电压由所述第一电压、标称电压和所述目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅、所述擦除栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述擦除栅的所述标称电压。
8.根据权利要求7所述的存储器设备,其中针对所述一个存储器单元,施加到所述擦除栅的所述第二电压由所述第一电压加上所述标称电压减去所述目标电压来确定。
9.根据权利要求7所述的存储器设备,其中所述控制电路还被配置为针对所述一个存储器单元,在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
10.根据权利要求7所述的存储器设备,其中所述控制电路还被配置成针对所述一个存储器单元:
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后执行第二读取操作,所述第二读取操作包括针对施加到所述擦除栅的不同电压检测通过所述沟道区的第二电流,以及使用对应于通过所述沟道区的所述目标电流的所检测到的第二电流来确定所述擦除栅的第二目标电压;以及
将第三编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第三编程电压脉冲包括施加到所述擦除栅的第三电压,所述第三电压由所述第二电压加上所述标称电压减去所述第二目标电压来确定。
11.根据权利要求10所述的存储器设备,其中所述控制电路还被配置为针对所述一个存储器单元,在所述第二读取操作之后并且在施加所述第三编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
12.根据权利要求7所述的存储器设备,其中所述控制电路还被配置为:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
13.一种存储器设备,包括:
存储器单元,所述存储器单元按行和列布置,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;和
控制电路,所述控制电路被配置为针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述控制栅的第一电压和施加到所述擦除栅的第二电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述控制栅和所述擦除栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述控制栅的第一目标电压和所述擦除栅的第二目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括:
施加到所述控制栅的第三电压,所述第三电压由所述第一电压、第一标称电压和所述第一目标电压确定,和
施加到所述擦除栅的第四电压,所述第四电压由所述第二电压、第二标称电压和所述第二目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅、所述擦除栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述控制栅的所述第一标称电压和施加到所述擦除栅的所述第二标称电压。
14.根据权利要求13所述的存储器设备,其中针对所述一个存储器单元:
施加到所述控制栅的所述第三电压由所述第一电压加上所述第一标称电压减去所述第一目标电压来确定;并且
施加到所述擦除栅的所述第四电压由所述第二电压加上所述第二标称电压减去所述第二目标电压来确定。
15.根据权利要求13所述的存储器设备,其中所述控制电路还被配置为针对所述一个存储器单元,在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
16.根据权利要求13所述的存储器设备,其中所述控制电路还被配置为:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
17.一种操作存储器设备的方法,所述存储器设备包括按行和列布置的存储器单元,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;
所述方法包括,针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述控制栅的第一电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述控制栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述控制栅的目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括施加到所述控制栅的第二电压,所述第二电压由所述第一电压、标称电压和所述目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述控制栅的所述标称电压。
18.根据权利要求17所述的方法,其中针对所述一个存储器单元,施加到所述控制栅的所述第二电压由所述第一电压加上所述标称电压减去所述目标电压来确定。
19.根据权利要求17所述的方法,还包括,针对所述一个存储器单元:
在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
20.根据权利要求17所述的方法,还包括,针对所述一个存储器单元:
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后执行第二读取操作,所述第二读取操作包括针对施加到所述控制栅的不同电压检测通过所述沟道区的第二电流,以及使用对应于通过所述沟道区的所述目标电流的所检测到的第二电流来确定所述控制栅的第二目标电压;以及
将第三编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第三编程电压脉冲包括施加到所述控制栅的第三电压,所述第三电压由所述第二电压加上所述标称电压减去所述第二目标电压来确定。
21.根据权利要求20所述的方法,还包括,针对所述一个存储器单元:
在所述第二读取操作之后并且在施加所述第三编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
22.根据权利要求17所述的方法,还包括:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
23.一种操作存储器设备的方法,所述存储器设备包括按行和列布置的存储器单元,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;
所述方法包括,针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述擦除栅的第一电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述擦除栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述擦除栅的目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括施加到所述擦除栅的第二电压,所述第二电压由所述第一电压、标称电压和所述目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅、所述擦除栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述擦除栅的所述标称电压。
24.根据权利要求23所述的方法,其中针对所述一个存储器单元,施加到所述擦除栅的所述第二电压由所述第一电压加上所述标称电压减去所述目标电压来确定。
25.根据权利要求23所述的方法,还包括,针对所述一个存储器单元:
在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
26.根据权利要求23所述的方法,还包括,针对所述一个存储器单元:
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后执行第二读取操作,所述第二读取操作包括针对施加到所述擦除栅的不同电压检测通过所述沟道区的第二电流,以及使用对应于通过所述沟道区的所述目标电流的所检测到的第二电流来确定所述擦除栅的第二目标电压;以及
将第三编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第三编程电压脉冲包括施加到所述擦除栅的第三电压,所述第三电压由所述第二电压加上所述标称电压减去所述第二目标电压来确定。
27.根据权利要求26所述的方法,还包括,针对所述一个存储器单元:
在所述第二读取操作之后并且在施加所述第三编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
28.根据权利要求23所述的方法,还包括:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
29.一种操作存储器设备的方法,所述存储器设备包括按行和列布置的存储器单元,其中所述存储器单元中的每个存储器单元包括:
源极区和漏极区,所述源极区和所述漏极区形成在半导体衬底中,其中所述衬底的沟道区在所述源极区与所述漏极区之间延伸,
浮栅,所述浮栅设置在所述沟道区的第一部分上方并且与其绝缘,以用于控制所述沟道区的所述第一部分的导电性,
选择栅,所述选择栅设置在所述沟道区的第二部分上方并且与其绝缘,以用于控制所述沟道区的第二部分的导电性,
控制栅,所述控制栅设置在所述浮栅上方并且与其绝缘,和
擦除栅,所述擦除栅设置在所述源极区上方并且与其绝缘,并且设置成与所述浮栅相邻并且与其绝缘;
所述方法包括,针对所述存储器单元中的一个存储器单元:
将第一编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第一编程电压脉冲包括施加到所述控制栅的第一电压和施加到所述擦除栅的第二电压,
在施加所述第一编程电压脉冲之后执行读取操作,所述读取操作包括针对施加到所述控制栅和所述擦除栅的不同电压检测通过所述沟道区的电流,以及使用所检测到的电流来确定对应于通过所述沟道区的目标电流的所述控制栅的第一目标电压和所述擦除栅的第二目标电压,
将第二编程电压脉冲施加到所述源极区、所述选择栅、所述擦除栅和所述控制栅,其中所述第二编程电压脉冲包括:
施加到所述控制栅的第三电压,所述第三电压由所述第一电压、第一标称电压和所述第一目标电压确定,和
施加到所述擦除栅的第四电压,所述第四电压由所述第二电压、第二标称电压和所述第二目标电压确定,以及
在施加所述第一编程电压脉冲和所述第二编程电压脉冲之后,通过将相应的读取电压施加到所述漏极区、所述选择栅、所述擦除栅和所述控制栅来确定所述一个存储器单元的程序状态,同时检测所述沟道区中的任何电流,其中所述读取电压包括施加到所述控制栅的所述第一标称电压和施加到所述擦除栅的所述第二标称电压。
30.根据权利要求29所述的方法,其中针对所述一个存储器单元:
施加到所述控制栅的所述第三电压由所述第一电压加上所述第一标称电压减去所述第一目标电压来确定,并且
施加到所述擦除栅的所述第四电压由所述第二电压加上所述第二标称电压减去所述第二目标电压来确定。
31.根据权利要求29所述的方法,还包括,针对所述一个存储器单元:在所述读取操作之后并且在施加所述第二编程电压脉冲之前执行擦除操作,所述擦除操作包括将正电压施加到所述擦除栅。
32.根据权利要求29所述的方法,还包括:
同时将所述第一编程电压脉冲施加到第一多个所述存储器单元,其中所述第一多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的两列或更多列中的存储器单元;以及
同时将所述第二编程电压脉冲施加到第二多个所述存储器单元,其中所述第二多个存储器单元包括位于所述存储器单元的所述行中的两行或更多行中以及位于所述存储器单元的所述列中的仅一列中的存储器单元。
CN201980054776.2A 2018-08-24 2019-07-10 具有电容耦合到浮栅的栅极的存储器单元的编程 Active CN112639977B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201862722776P 2018-08-24 2018-08-24
US62/722,776 2018-08-24
US201862746962P 2018-10-17 2018-10-17
US62/746,962 2018-10-17
US16/217,916 US10838652B2 (en) 2018-08-24 2018-12-12 Programming of memory cell having gate capacitively coupled to floating gate
US16/217,916 2018-12-12
PCT/US2019/041264 WO2020040900A1 (en) 2018-08-24 2019-07-10 Programming of memory cell having gate capacitively coupled to floating gate

Publications (2)

Publication Number Publication Date
CN112639977A CN112639977A (zh) 2021-04-09
CN112639977B true CN112639977B (zh) 2021-11-09

Family

ID=69583663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980054776.2A Active CN112639977B (zh) 2018-08-24 2019-07-10 具有电容耦合到浮栅的栅极的存储器单元的编程

Country Status (7)

Country Link
US (1) US10838652B2 (zh)
EP (1) EP3841576B1 (zh)
JP (1) JP7105989B2 (zh)
KR (1) KR102307677B1 (zh)
CN (1) CN112639977B (zh)
TW (1) TWI698868B (zh)
WO (1) WO2020040900A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11017866B2 (en) 2019-09-03 2021-05-25 Silicon Storage Technology, Inc. Method of improving read current stability in analog non-volatile memory using final bake in predetermined program state
US11309042B2 (en) 2020-06-29 2022-04-19 Silicon Storage Technology, Inc. Method of improving read current stability in analog non-volatile memory by program adjustment for memory cells exhibiting random telegraph noise
CN114335186A (zh) 2020-09-30 2022-04-12 硅存储技术股份有限公司 具有设置在字线栅上方的擦除栅的分裂栅非易失性存储器单元及其制备方法
US11769558B2 (en) 2021-06-08 2023-09-26 Silicon Storage Technology, Inc. Method of reducing random telegraph noise in non-volatile memory by grouping and screening memory cells

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029130A (en) 1990-01-22 1991-07-02 Silicon Storage Technology, Inc. Single transistor non-valatile electrically alterable semiconductor memory device
TW365001B (en) 1996-10-17 1999-07-21 Hitachi Ltd Non-volatile semiconductor memory apparatus and the operation method
US6727545B2 (en) 2000-09-20 2004-04-27 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with low resistance source regions and high source coupling
US6747310B2 (en) 2002-10-07 2004-06-08 Actrans System Inc. Flash memory cells with separated self-aligned select and erase gates, and process of fabrication
US7177199B2 (en) 2003-10-20 2007-02-13 Sandisk Corporation Behavior based programming of non-volatile memory
US7046552B2 (en) 2004-03-17 2006-05-16 Actrans System Incorporation, Usa Flash memory with enhanced program and erase coupling and process of fabricating the same
US6992929B2 (en) * 2004-03-17 2006-01-31 Actrans System Incorporation, Usa Self-aligned split-gate NAND flash memory and fabrication process
US7315056B2 (en) 2004-06-07 2008-01-01 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with program/erase and select gates
US7483316B2 (en) * 2007-04-24 2009-01-27 Macronix International Co., Ltd. Method and apparatus for refreshing programmable resistive memory
US20090039410A1 (en) 2007-08-06 2009-02-12 Xian Liu Split Gate Non-Volatile Flash Memory Cell Having A Floating Gate, Control Gate, Select Gate And An Erase Gate With An Overhang Over The Floating Gate, Array And Method Of Manufacturing
US7633798B2 (en) * 2007-11-21 2009-12-15 Micron Technology, Inc. M+N bit programming and M+L bit read for M bit memory cells
JP2010050208A (ja) * 2008-08-20 2010-03-04 Renesas Technology Corp 半導体記憶装置
CN101826531B (zh) * 2009-03-06 2012-08-22 中芯国际集成电路制造(上海)有限公司 半导体存储器单元、驱动其的方法及半导体存储器
US8842469B2 (en) 2010-11-09 2014-09-23 Freescale Semiconductor, Inc. Method for programming a multi-state non-volatile memory (NVM)
US8711636B2 (en) * 2011-05-13 2014-04-29 Silicon Storage Technology, Inc. Method of operating a split gate flash memory cell with coupling gate
WO2014153174A2 (en) 2013-03-14 2014-09-25 Silicon Storage Technology, Inc. Non-volatile memory program algorithm device and method

Also Published As

Publication number Publication date
EP3841576A1 (en) 2021-06-30
KR102307677B1 (ko) 2021-10-01
TWI698868B (zh) 2020-07-11
KR20210031765A (ko) 2021-03-22
US10838652B2 (en) 2020-11-17
WO2020040900A1 (en) 2020-02-27
CN112639977A (zh) 2021-04-09
US20200065023A1 (en) 2020-02-27
EP3841576B1 (en) 2022-06-15
JP2021534534A (ja) 2021-12-09
TW202016935A (zh) 2020-05-01
JP7105989B2 (ja) 2022-07-25

Similar Documents

Publication Publication Date Title
CN112639977B (zh) 具有电容耦合到浮栅的栅极的存储器单元的编程
EP3459080B1 (en) Flash memory array with individual memory cell read, program and erase
US7787294B2 (en) Operating method of memory
WO2017200850A1 (en) Array of three-gate flash memory cells with individual memory cell read, program and erase
CN109817624B (zh) 存储器及其操作方法
US20100091572A1 (en) 2t nor-type non-volatile memoryt cell array and method of processing data of 2t nor-type non-volatile memory
JP4870876B2 (ja) 不揮発性半導体メモリ装置の消去方法
US10515694B2 (en) System and method for storing multibit data in non-volatile memory
US20170110194A1 (en) Power Driven Optimization For Flash Memory
CN114303199B (zh) 通过限制擦除和编程之间的时间间隙来提高模拟非易失性存储器中的读取电流稳定性的方法
US10699787B2 (en) System and method for minimizing floating gate to floating gate coupling effects during programming in flash memory
CN115720672A (zh) 通过对表现出随机电报噪声的存储器单元进行编程调整来提高模拟非易失性存储器中的读取电流稳定性的方法
EP3841581B1 (en) Method of programming a split-gate flash memory cell with erase gate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant