CN112609157B - 一种宽温域自润滑纳米多层膜材料及制备方法 - Google Patents
一种宽温域自润滑纳米多层膜材料及制备方法 Download PDFInfo
- Publication number
- CN112609157B CN112609157B CN202011317290.4A CN202011317290A CN112609157B CN 112609157 B CN112609157 B CN 112609157B CN 202011317290 A CN202011317290 A CN 202011317290A CN 112609157 B CN112609157 B CN 112609157B
- Authority
- CN
- China
- Prior art keywords
- layer
- target
- tib
- film
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/067—Borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
- C23C14/505—Substrate holders for rotation of the substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及固体润滑材料制备领域,具体一种宽温域自润滑纳米结构薄膜材料,由两层调制层构成:一调制层为ZrN‑WS2‑WSN层,由面心立方ZrN、密排六方WS2和W(SN)2组成;另一层是TiB2层,具有六方结构。随着薄膜调制周期的增加,其硬度首先剧烈下降,开始缓慢上升;室温时,摩擦系数呈现缓慢上升的趋势;当温度为400摄氏度时,摩擦系数先上升,后下降,随后又继续上升;当温度达到800摄氏度时,摩擦系数呈现先上升,后下降,最后持平的趋势。本发明有益效果为:兼具高硬度和优异的宽温域摩擦磨损性能;可应用于如发动机活塞环、空气箔轴承、涡轮叶片滚珠轴承等一系列涉及到从室温到高温宽温域下服役的摩擦表面,用于改善工件材料表面的摩擦磨损性能,以提高服役寿命。
Description
技术领域
本发明属于固体润滑材料领域,具体涉及一种宽温域自润滑纳米多层膜材料及制备方法。
背景技术
人类的生活状况随着动力机械及装备的出现发生了天翻地覆的变化,在现代工业的迅速发展下,活塞环、轴承和高速齿轮等核心部件需要在更为恶劣的工作环境下运行,因此对其性能有了更加严苛的要求,使核心部件能够在室温到高温环境下都具有可靠的性能与较长的服役寿命。磨损是造成材料失效的主要形式之一,而摩擦又是导致磨损失效的主要原因,每年由于材料磨损失效造成的经济损失估计在上千亿美元,因此开展磨损失效理论、润滑技术的研究不仅可以采取有效的磨损失效预防措施,还可以促进润滑技术的发展,并由此带来显著的经济效益。传统的润滑材料主要是液体润滑材料,它们在各个领域中均有广泛的应用,但其在使用过程中存在污染、泄露等问题,且使用温度也很有限,在严苛的工作环境中,液体润滑材料会逐步失效,无法使用,而固体润滑材料则可避免这些缺点。在固体润滑理论的基础上,利用涂层技术研发一种薄膜,使其从室温到高温均具有持续自润滑能力,是解决一些核心部件在苛刻工作环境下减少磨损以及增加服役寿命的有效方式,也已成为当今固体润滑领域的前沿方向之一。
第四族过渡金属氮化物的结构通常是由金属键和共价键混合而成,因此同时具有金属晶体和共价晶体的特点,即熔点高、硬度高、热和化学性能优异,具有优良的导电性能和金属的反射比,因此这类薄膜具有高的耐磨性与硬度,可广泛应用于各种机械零部件、切削工具,也可在各种装饰行业作为装饰薄膜,还可以作为Cu和Si之间的扩散阻挡层,另外,当膜层的厚度很薄时,也可用来作为太阳能选择性透射膜、电致变色器件中的导电薄膜以及作为反射薄膜和抗静电薄膜用于保护膜、显示器中。
氮化锆薄膜程金黄色,因其良好的化学稳定性、高热硬度、低电阻率、高反射率以及较高的硬度得到了广大研究者的关注。氮化锆因其比氮化钛较高的熔点,从而沉积的氮化锆薄膜的缺陷比氮化钛薄膜要少,膜层更加致密,而对基体的保护能力是随着薄膜致密性的提高而提高,另外,氮化锆薄膜可以与周围环境发生反应,在薄膜表面氧化形成耐腐蚀能力很强的氧化物ZrO2保护层,因此氮化锆薄膜具有优良的耐腐蚀能力(特别是当膜层很薄时)这一优点。氮化锆薄膜具有较高的反射率,这是另一个优点,在可见光范围内,氮化锆薄膜的反射率平均可达80%,因此氮化锆薄膜更适于作为金薄膜的底层,沉积Au/ZrN复合薄膜,当顶层Au镀层受到磨损后,顶层和底层产生的色差很小,因而在使用过程中Au/ZrN复合薄膜的光学性能更稳定。
发明内容
针对上述提出的问题,可以在氮化锆基薄膜中添加其他元素提高其机械性能及摩擦学性能,来实现降低薄膜的摩擦系数,提高薄膜的高温自润滑性能的目的。为实现从室温到高温使薄膜具有较好的宽温域自润滑摩擦性能。
本发明创新性的提出了一种宽温域自润滑纳米多层膜材料,其包括过渡层和两种调制层中的任一种或其组合,在基材表面附着有200nm的Zr作为过渡层,一种调制层为ZrN-WS2-WSN,另一种调制层为TiB2。
优选的,两种调制层按厚度比1:1交替附着于基体表面,其厚度为0.8μm~5μm。
优选的,ZrN-WS2-WSN调整层由面心立方ZrN、密排六方WS2和密排六方W(SN)2组成;TiB2层调制层,具有六方结构。
优选的,两种调制层的调制周期为6-24nm。
优选的,ZrN-WS2-WSN薄膜中Zr、W、S、N和O元素的原子百分含量分别为39.2±7.8、11.3±2.3、16.5±3.3、29.3±5.9和3.7±0.7at.%。
优选的,TiB2薄膜中Ti、B和O元素的原子百分含量分别为33.6±6.7、61.7±12.3和4.7±0.9at.%。
一种宽温域自润滑纳米多层膜材料的制备方法,其特征在于,包括如下步骤:
步骤一:将硬质合金基片表面作镜面处理,随后分别用无水乙醇和丙酮超声波清洗15min,用热空气吹干后装入磁控溅射仪的制膜舱内的可旋转基片架上,硬质合金或陶瓷基体表面到靶的距离固定在80cm;
步骤二:对磁控溅射仪的制模舱进行抽真空操作,真空室本底真空度优于6.0×10-4Pa后向真空室中通入Ar(99.999%)起弧;
步骤三:在沉积薄膜之前通过挡板隔离硬质合金或陶瓷基体表面基片与离子区;
步骤四:挡板隔离好后,打开Zr靶、WS2靶和TiB2靶,各靶进行10min预溅射以除去靶材表面的杂质;
步骤五:旋转挡板,Zr靶工作,在硬质基体表面基片上溅射200nm的Zr过渡层,以增强膜基结合力;然后移开挡板,固定溅射气压为0.3Pa,衬底加热200℃,在沉积ZrN-WS2-WSN层时,保持向真空室通入Ar(99.999%)的同时,打开N2(99.999%)流量控制器,控制Ar与N2的流量比为10:2,分别固定Zr靶和WS2靶功率为150W和50W,同时关闭TiB2靶,沉积时间为14.4-64.8s;沉积TiB2层时,保持向真空室通入Ar(99.999%)的同时,关闭(99.999%)N2流量控制器,打开TiB2靶功率为100W,同时关闭Zr靶和WS2靶,沉积时间为10.8-43.2s。
优选的,调制层ZrN-WS2-WSN和调制层TiB2的调制周期为6nm。
本发明的有益效果为:
一、本发明所设计的薄膜材料在兼顾ZrN优异力学性能的前提下,具有优异的宽温域润滑性能,可由磁控溅射、多弧、离子镀、化学气相沉积等多种方式制备,具有较高的生产效率和工业应用价值。
二、通过薄膜的结构设计及各调制层的协同使薄膜在不影响总体的宽温域自润滑性能的前提下,具备优异的服役寿命;
三、ZrN与WS2的协同作用,达到了ZrN-WS2-WSN层内材料力学与室温减摩性能的平衡,以使薄膜在室温条件下既减摩又耐磨;
四、ZrN-WS2-WSN层和TiB2层之间的室温、中温和高温协同润滑实现了薄膜总体的跨温域润滑,使薄膜体现出宽温域自润滑性能。
附图说明
图1、ZrN-WS2-WSN/TiB2纳米结构薄膜横截面投射电镜照片;
图2、薄膜硬度随调制周期变化曲线;
图3、薄膜摩擦系数随调制周期变化曲线;
图4、薄膜磨损率随调制周期的变化曲线。
具体实施方法
为了使本领域的普通技术人员能更好的理解本发明的技术方案,以下对本发明的技术方案做进一步的描述。
实施例1:
ZrN-WS2-WSN调制层材料的制备包括以下步骤:薄膜的制备是在高真空多靶磁控溅射设备上完成的,该磁控溅射设备简称磁控溅射仪,磁控溅射仪上设有三个溅射靶,分别安装在三个水冷的靶支架上,三个不锈钢挡板分别安放在三个靶前面,通过电脑自动控制:Zr靶、WS2靶分别安装在独立的射频阴极上,靶材直径均为75mm;
步骤一:将硬质合金基体表面作镜面处理,随后分别用无水乙醇和丙酮超声波清洗15min,用热空气吹干后装入磁控溅射仪的制膜舱内的可旋转基片架上,硬质合金或陶瓷基体表面到靶的距离固定在80cm;
步骤二:对磁控溅射仪的制模舱进行抽真空操作,真空室本底真空度优于6.0×10-4Pa,后向真空室中通入Ar(99.999%)起弧;
步骤三:在沉积薄膜之前通过挡板隔离硬质合金或陶瓷基体与离子区;
步骤四:挡板隔离好后,打开Zr靶和WS2靶,设置靶功率为各靶进行10min预溅射以除去靶材表面的杂质;
步骤五:固定溅射气压为0.3Pa,衬底加热200℃,旋转挡板,Zr靶工作,在硬质基体表面基片上溅射200nm的Zr过渡层,以增强膜基结合力。然后移开挡板,通入氮气,控制Ar与N2的流量比为10:2。在沉积ZrN-WS2-WSN层时,固定Zr靶和WS2靶功率为150W和50W,沉积时间为3小时。
此时,ZrN-WS2-WSN调制层厚度~2μm,薄膜中Zr、W、S、N和O元素的原子百分含量分别为39.2±7.8、11.3±2.3、16.5±3.3、29.3±5.9和3.7±0.7at.%。具有立方和六方两种结构,由面心立方ZrN、密排六方WS2和密排六方W(SN)2三相组成。薄膜硬度为19GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.3、0.4及0.6,磨损率分别为4×10-7mm3/(N·mm)、6×10-6mm3/(N·mm)、7×10-6mm3/(N·mm)。
实施例2:
TiB2调制层材料的制备与实施例1不同的是:采用TiB2靶在纯Ar气氛下沉积,沉积过程中TiB2靶功率为100W,沉积时间为2小时。
此时,TiB2调制层厚度~2μm,薄膜中Ti、B和O元素的原子百分含量分别为33.6±6.7、61.7±12.3和4.7±0.9at.%。为六方结构,是六方TiB2,TiB2相中固溶了少量的氧。薄膜硬度为36GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.5、0.4及0.4,磨损率分别为1×10-7mm3/(N·mm)、3×10-7mm3/(N·mm)、4×10- 7mm3/(N·mm)。
实施例3:
ZrN-WS2-WSN/TiB2纳米结构薄膜材料的制备基于硬质基体表面制备ZrN-WS2-WSN/TiB2纳米结构薄膜材料的方法,包括以下步骤:薄膜的制备是在磁控溅射仪上完成的,磁控溅射仪上设有三个溅射靶,分别安装在三个水冷的靶支架上,三个不锈钢挡板分别安防在三个靶前面,通过电脑自动控制:Zr靶、WS2靶和TiB2靶分别安装在独立的射频阴极上,靶材直径均为75mm;
步骤一:将硬质合金表面基片表面作镜面处理,随后分别用无水乙醇和丙酮超声波清洗15min,用热空气吹干后装入磁控溅射仪的制膜舱内的可旋转基片架上,硬质合金或陶瓷基体表面到靶的距离固定在80cm;
步骤二:对磁控溅射仪的制模舱进行抽真空操作,真空室本底真空度优于6.0×10-4Pa后向真空室中通入Ar(99.999%)起弧;
步骤三:在沉积薄膜之前通过挡板隔离硬质合金或陶瓷基体表面基片与离子区;
步骤四:挡板隔离好后,打开Zr靶、WS2靶和TiB2靶,各靶进行10min预溅射以除去靶材表面的杂质;
步骤五:旋转挡板,Zr靶工作,在硬质基体表面基片上溅射200nm的Zr过渡层,以增强膜基结合力。然后移开挡板,固定溅射气压为0.3Pa,衬底加热200℃,在沉积ZrN-WS2-WSN层时,保持向真空室通入Ar(99.999%)的同时,打开N2(99.999%)流量控制器,控制Ar与N2的流量比为10:2,固定Zr靶和WS2靶功率为150W和50W,同时关闭TiB2靶,沉积时间为16.2s;沉积TiB2层时,保持向真空室通入Ar(99.999%)的同时,关闭(99.999%)N2流量控制器,打开TiB2靶功率为100W,同时关闭Zr靶和WS2靶,沉积时间为10.8s。
此时,ZrN-WS2-WSN层厚度~3nm,TiB2层厚度3nm。两种调制层的调制比为1:1,调制周期为6nm,以此为基本单位,沉积133~833个基本单位,薄膜厚度为0.8μm~5μm。薄膜硬度为38GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.6、0.5及0.3,磨损率分别为3×10-7mm3/(N·mm)、5×10-6mm3/(N·mm)、9×10-6mm3/(N·mm),薄模未被磨穿,体现出较高的宽温域自润滑能力。
实施例4
与实施例3不同的是:在沉积ZrN-WS2-WSN层时,沉积时间为21.6s,在沉积TiB2层时,沉积时间为14.4s。此时,ZrN-WS2-WSN层厚度~4nm,WS2层厚度~4nm,两种调制层的调制比为1:1,调制周期为8nm,以此为基本单位沉积100~625个基本单位,薄膜厚度为0.8μm~5μm。薄膜硬度为30GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.7、0.6及0.4,磨损率分别为4×10-7mm3/(N·mm)、7×10-6mm3/(N·mm)、1×10-5mm3/(N·mm),薄膜未被磨穿,体现出较高的宽温域自润滑能力。
实施例5
与实施例3不同的是:在沉积ZrN-WS2-WSN层时,沉积时间为32.4s,在沉积TiB2层时,沉积时间为21.6s。此时,ZrN-WS2-WSN层厚度~6nm,TiB2层厚度~6nm,两种调制层的调制比为1:1,调制周期为12nm,以此为基本单位,沉积67~417个基本单位,薄膜厚度为0.8μm~5μm。薄膜硬度为22GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.7、0.5及0.5,磨损率分别为4×10-7mm3/(N·mm)、8×10-6mm3/(N·mm)、1×10-5mm3/(N·mm),薄膜未被磨穿,体现出较高的宽温域自润滑能力。
实施例6
与实施例3不同的是:在沉积ZrN-WS2-WSN层时,沉积时间为43.2s,在沉积TiB2层时,沉积时间为28.8s。此时,ZrN-WS2-WSN层厚度~8nm,TiB2层厚度~8nm,两种调制层的调制比为1:1,调制周期为16nm,以此为基本单位,沉积50~313个基本单位,薄膜厚度为0.8μm~5μm。薄膜硬度为21GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.7、0.6及0.4,磨损率分别为6×10-7mm3/(N·mm)、9×10-6mm3/(N·mm)、3×10-5mm3/(N·mm),薄膜未被磨穿,体现出较高的宽温域自润滑能力。
实施例7
与实施例3不同的是:在沉积ZrN-WS2-WSN层时,沉积时间为64.8s,在沉积TiB2层时,沉积时间为43.2s。此时,ZrN-WS2-WSN层厚度~12nm,TiB2层厚度~12nm,两种调制层的调制比为1:1,调制周期为24nm,以此为基本单位,沉积33~208个基本单位,薄膜厚度为0.8μm~5μm。薄膜硬度为22GPa。以氧化铝为摩擦副,30分钟圆周摩擦实验后,室温、400℃及800℃的摩擦系数分别为0.8、0.7及0.4,温度为室温、400℃时磨损率分别为9×10-7mm3/(N·mm)、9×10-7mm3/(N·mm),当温度达到800℃时,薄膜被磨穿。
本专利涉及的薄膜制备方式不局限于磁控溅射,可由多弧、离子镀等多种薄膜制备方式获得。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (7)
1.一种宽温域自润滑纳米多层膜材料,其特征在于,其包括过渡层和两种调制层,在基材表面附着有200nm的Zr作为过渡层,一种调制层为ZrN-WS2-WSN,另一种调制层为TiB2;ZrN-WS2-WSN调整层由面心立方ZrN、密排六方WS2和密排六方W(SN)2组成;TiB2层调制层,具有六方结构。
2.根据权利要求1所述的一种宽温域自润滑纳米多层膜材料,其特征在于,两种调制层按厚度比1:1交替附着于过渡层表面,其厚度为0.8μm~5μm。
3.根据权利要求2所述的一种宽温域自润滑纳米多层膜材料,其特征在于,两种调制层的调制周期为6-24nm。
4.根据权利要求1所述的一种宽温域自润滑纳米多层膜材料,其特征在于, ZrN-WS2-WSN薄膜中Zr、W、S、N和O元素的原子百分含量分别为39.2±7.8、11.3±2.3、16.5±3.3、29.3±5.9和3.7±0.7 at.%。
5.根据权利要求1所述的一种宽温域自润滑纳米多层膜材料,其特征在于,TiB2薄膜中Ti、B和O元素的原子百分含量分别为33.6±6.7、61.7±12.3和4.7±0.9at.%。
6.根据权利要求1所述的一种宽温域自润滑纳米多层膜材料的制备方法,其特征在于,包括如下步骤:
步骤一:将硬质合金基片表面作镜面处理,随后分别用无水乙醇和丙酮超声波清洗15min,用热空气吹干后装入磁控溅射仪的制膜舱内的可旋转基片架上,硬质合金或陶瓷基体表面到靶的距离固定在80cm;
步骤二:对磁控溅射仪的制模舱进行抽真空操作,真空室本底真空度优于6.0×10-4Pa后向真空室中通入纯度为99.999%的Ar起弧;
步骤三:在沉积薄膜之前通过挡板隔离硬质合金或陶瓷基体表面基片与离子区;
步骤四:挡板隔离好后,打开Zr靶、WS2靶和TiB2靶,各靶进行10min预溅射以除去靶材表面的杂质;
步骤五:旋转挡板,Zr靶工作,在硬质基体表面基片上溅射200nm的Zr过渡层,以增强膜基结合力;然后移开挡板,固定溅射气压为0.3Pa,衬底加热200℃,在沉积ZrN-WS2-WSN层时,保持向真空室通入纯度为99.999%的Ar的同时,打开纯度为99.999%的N2流量控制器,控制Ar与N2的流量比为10:2,分别固定Zr靶和WS2靶功率为150W和50W,同时关闭TiB2靶,沉积时间为14.4-43.2s;沉积TiB2层时,保持向真空室通入纯度为99.999%的Ar的同时,关闭纯度为99.999%的N2流量控制器,打开TiB2靶功率为100W,同时关闭Zr靶和WS2靶,沉积时间为10.8-28.8s。
7.根据权利要求6所述的一种宽温域自润滑纳米多层膜材料的制备方法,其特征在于,调制层ZrN-WS2-WSN和调制层TiB2的调制周期为6nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011317290.4A CN112609157B (zh) | 2020-11-20 | 2020-11-20 | 一种宽温域自润滑纳米多层膜材料及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011317290.4A CN112609157B (zh) | 2020-11-20 | 2020-11-20 | 一种宽温域自润滑纳米多层膜材料及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112609157A CN112609157A (zh) | 2021-04-06 |
CN112609157B true CN112609157B (zh) | 2023-06-16 |
Family
ID=75224952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011317290.4A Active CN112609157B (zh) | 2020-11-20 | 2020-11-20 | 一种宽温域自润滑纳米多层膜材料及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112609157B (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7736582B2 (en) * | 2004-06-10 | 2010-06-15 | Allomet Corporation | Method for consolidating tough coated hard powders |
GB201507524D0 (en) * | 2015-05-01 | 2015-06-17 | Teer Coatings Ltd | Improvements to molybdenum containing coatings |
CN105483449B (zh) * | 2016-01-25 | 2017-03-29 | 黄河水利职业技术学院 | 一种NiAl基固体自润滑复合材料及其制备工艺 |
CN107058948B (zh) * | 2017-02-14 | 2019-03-01 | 厦门大学 | 一种软硬复合涂层刀具及其制备方法 |
CN107012424B (zh) * | 2017-03-10 | 2020-09-08 | 广东工业大学 | 一种TiZrB2硬质涂层及其制备方法和应用 |
CN110878407A (zh) * | 2019-10-31 | 2020-03-13 | 江苏科技大学 | 具有硬度异常升高效应的Ta-Ag-N/VN多层薄膜材料及制备方法 |
CN111500990B (zh) * | 2020-06-01 | 2022-05-24 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种Zr-Ti-B-N纳米复合涂层及其制备方法 |
-
2020
- 2020-11-20 CN CN202011317290.4A patent/CN112609157B/zh active Active
Non-Patent Citations (1)
Title |
---|
高温固体自润滑涂层的制备及可靠性的研究进展;袁晓静;关宁;侯根良;陈小虎;马爽;;材料导报(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112609157A (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107557736B (zh) | 一种AlCrSiVN纳米复合涂层及其制备方法 | |
CN108642449A (zh) | 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法 | |
CN113789503A (zh) | 一种具有抗氧化特性的高熵硅化物薄膜的原位合成方法 | |
CN106191772B (zh) | 一种含有多相AlCrN纳米插入层的高硬度CrAlN涂层及其制备方法 | |
CN108251797A (zh) | 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法 | |
CN113106408B (zh) | 一种自润滑难熔高熵合金薄膜及其制备方法 | |
CN107740053B (zh) | 一种AlCrSiN/VSiN纳米多层涂层及其制备方法 | |
Baran et al. | The mechanical and tribological properties of Ti [Nb, V] N films on the Al-2024 alloy | |
Sui et al. | Evolution behavior of oxide scales of TiAlCrN coatings at high temperature | |
CN112941463B (zh) | 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 | |
CN112609157B (zh) | 一种宽温域自润滑纳米多层膜材料及制备方法 | |
JP2003321764A (ja) | 耐高温酸化に優れた高耐摩耗性・高硬度皮膜 | |
CN115961259B (zh) | 一种强韧耐蚀max相多层复合涂层及其制备方法与应用 | |
Liu et al. | Effects of duty cycle on microstructure and mechanical properties of (AlCrNbSiTi) N high-entropy nitride hard coatings deposited by pulsed arc ion plating | |
Zhang et al. | In-situ fabrication of novel (Ti, Cr)-N/aluminide multilayer coatings by plasma nitriding Ti-Cr coated Al alloy | |
CN115522169B (zh) | 氧化物硬质涂层的复合沉积方法及涂层刀具 | |
CN111304612A (zh) | 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法 | |
CN209906871U (zh) | TiAlN/CrAlSiN纳米复合多层涂层 | |
CN115354288A (zh) | 一种宽温域低摩擦复合涂层及其制备方法与应用 | |
CN112609156B (zh) | 具有热循环服役能力的宽温域自润滑膜材料及其制备方法 | |
CN109023265A (zh) | CrN/CrNiN纳米多层涂层及其制备方法、纳米多层涂层及其制备方法与应用 | |
CN114672777A (zh) | 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法 | |
CN109338312B (zh) | 一种含银的氮化铬基硬质纳米结构复合膜及制备方法 | |
CN114774857A (zh) | 一种TiAlCrN微纳米涂层及其制备方法 | |
CN109898056B (zh) | 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |