CN112608930B - BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法 - Google Patents

BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法 Download PDF

Info

Publication number
CN112608930B
CN112608930B CN202110049541.3A CN202110049541A CN112608930B CN 112608930 B CN112608930 B CN 112608930B CN 202110049541 A CN202110049541 A CN 202110049541A CN 112608930 B CN112608930 B CN 112608930B
Authority
CN
China
Prior art keywords
svp
rape
mutant
bnasvp
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110049541.3A
Other languages
English (en)
Other versions
CN112608930A (zh
Inventor
范楚川
周永明
翟云孤
黄会斌
许磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110049541.3A priority Critical patent/CN112608930B/zh
Publication of CN112608930A publication Critical patent/CN112608930A/zh
Application granted granted Critical
Publication of CN112608930B publication Critical patent/CN112608930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于油菜分子育种技术领域,尤其涉及BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法。本发明利用CRISPR/Cas9基因编辑技术对BnaSVP基因靶向突变,通过多代自交分离,获得不同拷贝突变组合的纯合突变体。通过两个世代不同地区对获得的纯合突变体进行开花期调查发现,与野生型相比,四个拷贝纯合突变体的开花期提前最多,在两个地区分别提前了40.57%和50.71%。其他不同拷贝组合突变的纯合突变体的开花期产生不同程度的开花期提前的现象,结果证明BnaSVP基因调控开花期的提前存在突变拷贝数量的累加效应。本发明为油菜花期调控的遗传改良提供重要的功能基因和育种材料。

Description

BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油 菜突变体材料的制备方法
技术领域
本发明属于油菜分子育种技术领域,尤其涉及BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法。
背景技术
油菜不仅可以为人类提供食物油来源,而且也可以为动物提供丰富的蛋白质饲料,与此同时,油菜在工业生产上也起着十分重要的作用,因此,在农业生产中,油菜是一种必不可少的油料作物。油菜的开花期为农业生产上重要的农艺性状之一,合适的开花时间和开花周期可以使油菜的成熟期保持良好的一致性,进而在机械化收获过程中使机械化收获效率增加。开花时间是由一个复杂的遗传网络控制的,该遗传网络整合了许多内源性信号和环境刺激,例如春化、温度、光周期、赤霉素等。
甘蓝型油菜来源于甘蓝和白菜之间的自然杂交,是与拟南芥亲缘关系最近的农作物品种之一。截至目前为止,拟南芥中鉴定出了300多个与花期调控相关的基因,并且发现了控制开花期的各种途径中的许多关键调控因子。例如,FRIGIDA(FRI),FLOWERING LOCUSC(FLC)和SHORT VEGETATIVE PHASE(SVP)是控制春化反应的必需基因,而CONSTANS(CO)基因在响应光周期反应过程中发挥至关重要的作用。另外还有FLOWERING LOCUS D(FLD),FLOWERING LOCUS CA(FCA)和FLOWERING LOCUS KH DOMAIN(FLK)等一些基因可以通过抑制FLC基因的表达来促进花期的转变。在花期调控的ABCDE模型中,花发育的早期阶段,SVP和AGAMOUS-LIKE 24AGL24基因与APETALA1(AP1)相互作用,通过抑制B类PISTILLAT(API)和(AP3)、C类AGAMOUS(AG)和E类SEPALLATA1(SEP1)、SEP2、SEP3和SEP4基因来保证花期的精准调控。
发明内容
针对现有技术存在的问题,本发明提供了BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法,目的在于解决现有技术中的一部分问题或至少缓解现有技术中的一部分问题。本发明靶向甘蓝型油菜BnaSVP基因的四个同源拷贝,快速高效的获得了能稳定遗传的具有不同开花期的甘蓝型油菜种质资源,对油菜早熟品种的选育具有重要的意义。该突变体不含有T-DNA插入,和野生型相比,开花期显著提前。
本发明是这样实现的,BnaSVP基因在调控油菜花期中的应用,所述BnaSVP基因的四个拷贝的核苷酸序列分别为:SEQ ID NO.1所示的BnaA09.SVP,SEQ ID NO.2所示的BnaA04.SVP,SEQ ID NO.3所示的BnaC08.SVP,SEQ ID NO.4所示的BnaC04.SVP。
进一步地,所述BnaA09.SVP的氨基酸序列见SEQ ID NO.5,所述BnaA04.SVP的氨基酸序列见SEQ ID NO.6,所述BnaC08.SVP的氨基酸序列见SEQ ID NO.7,所述BnaC04.SVP的氨基酸序列见SEQ ID NO.8。
本发明还提供了具有不同开花期的油菜突变体材料的制备方法,克隆如上所述的BnaSVP的基因组序列,利用CRISPR/CAS9技术靶向BnaSVP的四个同源拷贝,获得突变体,所述突变体材料由所述的BnaSVP的同源拷贝中BnaA09.SVP的单拷贝突变,BnaA09.SVP和BnaC04.SVP两个拷贝同时突变,BnaA09.SVP和BnaC08.SVP两个拷贝同时突变,BnaA04.SVP、BnaA09.SVP和BnaC08.SVP三个拷贝同时突变,及BnaSVP的四个拷贝同时突变所产生的基因编码区内的核苷酸序列突变获得。
进一步地,所获突变体单株为:BnaSVP17-5 aa1aa2cc1cc2、BnaSVP29-3aa1aa2CC1cc2、BnaSVP52-11 aa1aa2cc1cc2、BnaSVP48-3 AA1aa2cc1CC2、BnaSVP38-5AA1aa2CC1cc2、BnaSVP25-8 AA1aa2CC1CC2。
本发明还提供了获取如上述的突变体单株的方法,包括以下步骤:
步骤1:获取BnaSVP基因片段;
步骤2:针对BnaSVP基因的核苷酸序列设计sgRNA,并构建载体;
步骤3:将步骤2中构建的载体转化至油菜株系中,获得突变体油菜株系;
步骤4:对突变体油菜株系进行检测并测序,确定株系基因型;
步骤5:获得的突变体油菜株系种植并自交分离,获得BnaA09.SVP的单拷贝突变,BnaA09.SVP和BnaC04.SVP两个拷贝同时突变,BnaA09.SVP和BnaC08.SVP两个拷贝同时突变,BnaA04.SVP、BnaA09.SVP和BnaC08.SVP三个拷贝同时突变,及BnaSVP的四个拷贝同时突变的突变体材料;
步骤2中设计四个sgRNA,其中S1,S2,S3靶向BnaA04.SVP拷贝,S1,S2,S4靶向BnaA09.SVP,BnaC04.SVP和BnaC08.SVP拷贝。
进一步地,步骤2中运用pYLCRIPSR/Cas9多重基因组靶向载体系统构建载体。
进一步地,步骤3中用农杆菌介导的下胚轴遗传转化方法将构建好的载体转入半冬性甘蓝型油菜纯系J9707中。
进一步地,步骤5中获得的一系列纯合突变体的核苷酸序列见。
进一步地,获得的纯合突变体的sgRNA序列为:
BnaSVP17-5 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGGA----CAAGG-4bp
S2
CCGTTC--TCTGCGACGCTGATGTT wt
a2-1 CCGTTCT-TCTGCGACGCTGATGTT+A
c1-1 CCGTTCTATCTGCGACGCTGATGTT+2bp
c1-2 CCGTTC------CGACGCTGATGTT-4bp
c2-1 CCGTTCT-TCTGCGACGCTGATGTT+T
c2-2 CCGTTC---CTGCGACGCTGATGTT-T
BnaSVP29-3 aa1aa2CC1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGG------AAGG-6bp
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTTCTTCTGCGACGCTGATGTT+T
c2-1 CCGTTCTTCTGCGACGCTGATGTT+T/58%
c2-2 CCGTTC-T—GCGACGCTGATGTT-2bp/42%
S4
CGAGAGAGAAGATTCAG-ATCAGG wt
a2 CGAGAGAGAAGATTCAGTATCAGG+T
c2/--------------------AGG-31bp
BnaSVP52-11 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGGAACTTCAAGG wt
a1-1 ATGAGAGGAGAGGGAAC-TCAAGG-T/60%
a1-2 ATGAGAGGAGAGGGAAC----AGG-4bp/40%
a2 ATGAGAGGAGAGGG-----CAAGG-5bp
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTTACTGCGACGCTGATGTT+2bp/74%
a2-2 CCGTTCT---TGCGACGCTGATGTT-C/10%
c1-1 CCGTTCTA-CTGCGACGCTGATGTT+A/45%
c1-2 CCGTT------GCGACGCTGATGTT-4bp/55%
c2 CCGTTCT-------ACGCTGATGTT-5bp
BnaSVP48-3 AA1aa2cc1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTT----TGCGACGCTGATGTT-3bp
c1 CCGTTCTTCTGCGACGCTGATGTT+T
S4
CGAGAGAGAAGATTCAGATCAGG wt
c1 CGAGAGAGAAGAT-----TCAGG-5bp
BnaSVP38-5 AA1aa2CC1cc2
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTA---GCGACGCTGATGTT+A/60%
a2-2 CCGTTCT----GCGACGCTGATGTT-2bp/40%
c2 CCGTTCTATCTGCGACGCTGATGTT+2bp
BnaSVP25-8 AA1aa2CC1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2-1 CCGTTCTTCTGCGACGCTGATGTT+T/43%
a2-2 CCG--------------------/-28bp/57%。
本发明还提供了BnaSVP基因在油菜育种中的应用。
本发明通过对所获突变体和野生型单株进行开花期性状调查发现,相较于野生型,BnaSVP基因的不同拷贝组合的纯合突变体的开花期具有不同程度的提前,四拷贝纯合突变体开花最早,三拷贝纯合突变体、双拷贝纯合突变体及单拷贝纯合突变体依次开花。
综上所述,本发明的优点及积极效果为:
本发明使用的CRISPR/Cas9是一种高效的定点靶向基因编辑技术,该技术针对性强,用其对油菜进行基因敲除,可以快速高效的获得突变体。将突变体种植,经过多代自交分离,可以获得不含T-DNA插入的纯合突变体。这种方法比传统的杂交育种技术更快速,比诱变育种更安全。
对获得的突变体开花期调查发现,相较于野生型,BnaSVP基因的不同拷贝组合的纯合突变体的开花期具有不同程度的提前,四拷贝纯合突变体开花最早,三拷贝纯合突变体、双拷贝纯合突变体及单拷贝纯合突变体依次开花。
本实验获得了开花期不同的甘蓝型油菜突变体种质资源,相较于野生型,不同突变体的开花期不同程度的提前。该材料为油菜早熟育种提供了宝贵的资源。
附图说明
图1是BnaSVP的基因结构图及利用CRISPR/CAS9技术构建的载体图;
图2是突变体和野生型的表型图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,各实施例及试验例中所用的设备和试剂如无特殊说明,均可从商业途径得到。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。本发明中,“约”指给定值或范围的10%以内,优选为5%以内。
本发明下述各实施例中所述常温是指四季中自然室温条件,不进行额外的冷却或加热处理,一般常温控制在10~30℃,最好是15~25℃。
本发明中涉及的基因、蛋白或其片段可以是天然纯化的产物,或是化学合成的产物,或使用重组技术从原核或真核宿主(例如,细菌、酵母、植物)中产生。
本发明披露了BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法。本发明利用CRISPR/Cas9技术靶向BnaSVP同源基因,通过遗传转化得到突变体单株,经过T1代和T2代自交分离,最后获得了不含T-DNA插入的一系列纯合突变体,并对这些突变体的两个世代分别在两个地区进行了开花期调查。研究结果表明,和野生型相比,BnaSVP基因的单纯合突变体、双纯合突变体、三纯合突变体及四个拷贝同时突变的纯合突变体开花期提前,均达到了极显著水平。在这些突变体中,四个拷贝同时突变的纯合突变体首先开花期,三纯合突变体、双纯合突变体及单纯合突变体依次开花。BnaSVP基因对于油菜开花期调控具有巨大的应用潜力和前景,为油菜早熟品种的选育提供新的种质资源。具体如下实施例所示。
实施例
本发明利用CRISPR/Cas9技术靶向BnaSVP的同源基因,原理图见图1,
潮霉素抗性盒由花椰菜花叶病毒35S启动子驱动的潮霉素磷酸转移酶CDS序列组成。Cas9表达盒,其包含编码Cas9的p35S驱动的序列;分别由拟南芥的U3D,U3B,U6-1和U6-29启动子驱动的四个sgRNA(S1-S4)。
(a)白色方框和黑色实线代表该基因的外显子和内含子,BnaA09g42480D,BnaC04g35060D和BnaC08g34920D包含八个外显子,七个内含子,而BnaA04g12990D包含六个外显子和一个内含子。基因模型中的垂直虚线表示靶位点,箭头表示sgRNA的方向。S1-S4展示了靶点序列,带下划线的PAM区;(b)SBnaSVP载体的构建图。通过遗传转化得到突变体单株,经过自交分离,最后获得不同拷贝突变组合的纯合突变体材料;并对获得的突变体材料开花期调查。具体过程如下。
步骤1,基因克隆:种植半冬性油菜纯系J9707(种子来自中国武汉油菜籽国家工程研究中心),从鲜嫩叶片中提取基因组DNA,具体制备方法参照一种有效提取油菜叶片总DNA的方法,华中农业大学学报,1994,13(5):521-523,报道的方法进行,用1%的琼脂糖凝胶电泳检测DNA质量,并用紫外分光光度计检测DNA浓度。从提取的DNA中克隆分离得到BnaA09.SVP、BnaC04.SVP、BnaC08.SVP和BnaA04.SVP的基因组DNA和编码序列。基因克隆的实验条件参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
步骤2,载体构建:对分离得到的BnaA09.SVP、BnaC04.SVP、BnaC08.SVP和BnaA04.SVP的基因组DNA和编码序列进行分析,使用CRISPR-P程序在BnaSVP的两个拷贝上设计了四个sgRNA。sgRNA1:ATGAGAGGAGAGGAACTTCAAGG,SEQ ID NO.9;sgRNA2:AACATCAGCGTCGCAGAGAACGG,SEQ ID NO.10;sgRNA3:CTCTAATACTTCCCTCATGCTGG,SEQ IDNO.11;sgRNA4:CGAGAGAGAAGATTCAGATCAGG,SEQ ID NO.12。
其中S1,S2,S3靶向BnaA04.SVP拷贝,S1,S2,S4靶向BnaA09.SVP,BnaC04.SVP和BnaC08.SVP拷贝,四个sgRNA序列在两个拷贝上完全一样。运用pYLCRIPSR/Cas9多重基因组靶向载体系统进行载体构建,具体构建流程参照文献Ma(2015b)A Robust CRISPR/Cas9System for Convenient,High-Efficiency Multiplex Genome Editing in Monocot andDicot Plants.Mol Plant,2015b,8:1274-1284。通过测序验证构建的载体。
步骤3,用农杆菌介导的下胚轴遗传转化方法将构建好的载体转入半冬性甘蓝型油菜纯系J9707中,具体操作流程参照武语笛(2015)白菜型油菜多室基因BrCLV3的功能研究。
步骤4,突变体的检测:
(1)用特异性引物BnaSVPT2-F/PB-R对突变单株进行转基因的阳性鉴定,挑选出含有T-DNA插入的阳性单株。PCR体系及程序参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
PB-R:GCGCGCggtctcTACCGACGCGTATCC,SEQ ID NO.13;
BnaSVPT2-F:gtcAACATCAGCGTCGCAGAGAA,SEQ ID NO.14。
(2)根据目标片段附近的序列用primer premier5设计引物,引物确定后进行blast分析,保证没有其他同源序列。
(3)用设计的目标片段引物进行PCR扩增。PCR体系及程序参照朱恺毓(2017)利用CRISPR/CAS9技术创建甘蓝型油菜多室突变体[硕士学位论文]。
(4)1%琼脂糖水平电泳对PCR扩增效果进行检测。
(5)Sanger测序法和HI-TOM测序对PCR扩增产物进行测序,确定转基因植株的基因型。
编辑鉴定引物为
SUN20-F ggagtgagtacggtgtgccttaaagttctttctctaggg,SEQ ID NO.15;
SUN20-R gagttggatgctggatggagaaagacctggagctac,SEQ ID NO.16;
SUN21-F tcaattcaagatcttcctcctgt,SEQ ID NO.17;
SUN21-R gattagagatatgtgttaaagac,SEQ ID NO.18;
SUN22-F taattcaagatcttcctcctgt,SEQ ID NO.19;
SUN22-R cgtcggagatatgtgttaaag,SEQ ID NO.20;
SUN23-F ggagtgagtacggtgtgcgaaataactatcattttcttacg,SEQ ID NO.21;
SUN23-R gagttggatgctggatggcgcgagtcaaaccggattc,SEQ ID NO.22;
SUN24-F ggagtgagtacggtgtgcaaacaattatcattttcttacg,SEQ ID NO.23;
SUN24-R gagttggatgctggatggggtttcaattacgcgagtc,SEQ ID NO.24;
SUN25-F ggagtgagtacggtgtgccaatccatacttttcctcttgg,SEQ ID NO.25;
SUN25-R gagttggatgctggatggcgagagagacacaaggtag,SEQ ID NO.26;
SUN26-F ggagtgagtacggtgtgccactacatatgcatattctac,SEQ ID NO.27;
SUN26-R gagttggatgctggatggcataagtgagaacaacctttg,SEQ ID NO.28;
SUN27-F ggagtgagtacggtgtgcaagagttcccaactatcatat,SEQ ID NO.29;
SUN27-R gagttggatgctggatggaatatacgttgtatcatacaa,SEQ ID NO.30;
SUN28-F tatcaataatgttgctgttta,SEQ ID NO.31;
SUN28-R tacttatttattaacgtcaagt,SEQ ID NO.32;
SUN29-F ggagtgagtacggtgtgcggaatgtgttttcattatata,SEQ ID NO.33;
SUN29-R gagttggatgctggatgggctagagaatagcaaagc,SEQ ID NO.34;
步骤5,自交纯合:获得的T0代编辑单株自花授粉产生T1代和T2代,通过靶位点附近的PCR产物测序得到不同拷贝突变组合的纯合突变体,这些纯合突变体都会引起移码突变产生功能丧失的蛋白质。经过PCR测序验证获得了一批不含T-DNA插入的双纯合突变体。
步骤6,表型观察和统计:分别对T1代种在湖北和T2代种在甘肃的野生型和突变体材料进行开花期调查,结果见图2,其中(a)图表示的是T1代种在湖北的野生型和突变体材料开花期的调查结果;(b)图表示的T2代种在甘肃的野生型和突变体材料开花期的调查结果;(c)图表示的突变体和野生型在播种后71天后的生长状况。
表型测定中,获得的纯合突变体的sgRNA序列为:
BnaSVP17-5 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGGA----CAAGG-4bp
S2
CCGTTC--TCTGCGACGCTGATGTT wt
a2-1 CCGTTCT-TCTGCGACGCTGATGTT+A
c1-1 CCGTTCTATCTGCGACGCTGATGTT+2bp
c1-2 CCGTTC------CGACGCTGATGTT-4bp
c2-1 CCGTTCT-TCTGCGACGCTGATGTT+T
c2-2 CCGTTC---CTGCGACGCTGATGTT-T
BnaSVP29-3 aa1aa2CC1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGG------AAGG-6bp
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTTCTTCTGCGACGCTGATGTT+T
c2-1 CCGTTCTTCTGCGACGCTGATGTT+T/58%
c2-2 CCGTTC-T—GCGACGCTGATGTT-2bp/42%
S4
CGAGAGAGAAGATTCAG-ATCAGG wt
a2 CGAGAGAGAAGATTCAGTATCAGG+T
c2/--------------------AGG-31bp
BnaSVP52-11 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGGAACTTCAAGG wt
a1-1 ATGAGAGGAGAGGGAAC-TCAAGG-T/60%
a1-2 ATGAGAGGAGAGGGAAC----AGG-4bp/40%
a2 ATGAGAGGAGAGGG-----CAAGG-5bp
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTTACTGCGACGCTGATGTT+2bp/74%
a2-2 CCGTTCT---TGCGACGCTGATGTT-C/10%
c1-1 CCGTTCTA-CTGCGACGCTGATGTT+A/45%
c1-2 CCGTT------GCGACGCTGATGTT-4bp/55%
c2 CCGTTCT-------ACGCTGATGTT-5bp
BnaSVP48-3 AA1aa2cc1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTT----TGCGACGCTGATGTT-3bp
c1 CCGTTCTTCTGCGACGCTGATGTT+T
S4
CGAGAGAGAAGATTCAGATCAGG wt
c1 CGAGAGAGAAGAT-----TCAGG-5bp
BnaSVP38-5 AA1aa2CC1cc2
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTA---GCGACGCTGATGTT+A/60%
a2-2 CCGTTCT----GCGACGCTGATGTT-2bp/40%
c2 CCGTTCTATCTGCGACGCTGATGTT+2bp
BnaSVP25-8 AA1aa2CC1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2-1 CCGTTCTTCTGCGACGCTGATGTT+T/43%
a2-2 CCG--------------------/-28bp/57%。
本发明利用CRISPR/Cas9基因编辑技术对BnaSVP基因靶向突变,通过多代自交分离,获得了不同拷贝突变组合的纯合突变体。通过两个世代不同地区对获得的纯合突变体进行开花期调查发现,与野生型相比,四个拷贝纯合的突变体的开花期提前最多,在两个地区分别提前了40.57%和50.71%。调查发现其他不同拷贝组合突变的纯合突变体的开花期产生不同程度的开花期提前的现象,结果证明BnaSVP基因调控开花期的提前存在突变拷贝数量的累加效应。本发明为油菜花期调控的遗传改良提供重要的功能基因和育种材料。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
序列表
<110> 华中农业大学
<120> BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法
<160> 34
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1714
<212> DNA
<213> BnaA09.SVP
<400> 1
atgagggaag tgttagagag gcataacttg cagtcaaaga acttggagaa gcttgatcaa 60
ccatctcttg agttacaggt tagcttgcca ttctgtttaa attaccattt tcagattatc 120
ctcaagtaca tggattttgg tcaagaagat ctagtgtatt atattaataa taggacagca 180
ttatacttat tgcatacgat tagactacat tttagtgaca ctgaactcat actaaagtcg 240
atcgatacaa actaagagta ttaaaaatat gtgagactca gactattagc tttgtagttc 300
tctttgtgtg atggtagttt ggttcaaaac ctttataatc atagttacat gaatgaatgc 360
gagctttttg aagccagaca tgcatgtaca gttagtcatg tgtagagatc tgagcttaga 420
ttattatgga tttgtttaat gttatcattt agctagtcga gaacagcgat cacgccctgt 480
tgagcaaaga gattgcggaa aagagccacc gattaaggta cacaaatata tgcgtattct 540
ttaaatttcg aaataactat cattttctta cggtatgtgt ttatatgatc atgtacaggc 600
aaatgagagg agaggaactt caaggactta acattgaaga acttcaacag ctggaaaagg 660
cccttgaatc cggtttgact cgcgtaattg aaacaaaggt tgttaaaaac ttagatgtca 720
aaagatgtaa tgccatgata ttatgaataa gaagaatatg ttgcttaact actatgatat 780
gttgttgcag agtgaaaaga ttatgaatga gatcagttac cttcaaagaa aggtaagaag 840
caaaacaacg ttttatcttt acttcttgat tcaaataatt ttggcaataa caagttacaa 900
atttctcttt tccaagggaa tgcaactgat ggatgagaac aagcggctaa ggcagcaagt 960
aggcatctta ctctttgtct ttaacacata tctctaatca tattttgaga aaagtgtatt 1020
tatatctaat ggtaaattaa tatttagcta attagttcca attagttaaa aaaaaaatct 1080
cggtcctagc tgcatgtggg aatgtgcatg gttttggttt gcgctcttta tgttttcaga 1140
ttgttttgtg gaatatggaa ctgaaataat caaactctcg tttgatttga tttaacttgg 1200
ttctgattaa aattttgtat atttataaca tgttttcaag atttattttg tttcatatta 1260
ttttgtttga gatcaaatta ttttagttga ttatttttag ataaaagtaa tcatccctca 1320
gtcagtcgat ctctagagaa gaccaagaca tttggtgcca tttttaaaac tcaaaattca 1380
aatcttctca ttgttttttc tatgatcaaa tcttgatttt gcaggggaca cagttaacag 1440
aagagaacga gcgactaggt cagcaggtac gttggtgtta tatcgaatgt taagtacatt 1500
gtttatattt ttggttaaat gttaaatttg gaagttttat ttggtgacgg tgtagatata 1560
caataatgtg catgaaaggt acggtggttg tgaatcagag aacattgccg tgtacgagga 1620
aggacactcg tcggagtcca ttactaacgc tggaaattcc accggcgctc ctgttgactc 1680
cgagagctcc gatatctccc ttaggctcgg gtaa 1714
<210> 2
<211> 3375
<212> DNA
<213> BnaA04.SVP
<400> 2
atggcgagag agaagattca gatcaggaaa atcgacaacg cgacggcgag acaagtaact 60
ttctctaaac gaagaagagg tcttttcaaa aaagctgaag agctctccgt tctctgcgac 120
gctgatgttg ccctcatcgt cttctcttcc accggaaagc tctttgagtt ttgtagctcc 180
aggtctctct ctctctctac cttgtgtctc tttcgttctc tttagatttc tcaaaacctc 240
taaagaatcg tctctagatc cagaaaaagc tagttcttac atgtgtatgt catacacaaa 300
agtttactgt atcaaacccg tattggacca ctaaattttt atctaagaat accaaaaatg 360
cataaataat accatggtag actctttatt taggcaaata aggttatata cgtacagtaa 420
tattcaagat aatgcaaatg ttttagtcat ttgaatataa taccctatat atttttgtat 480
aattatgtat acagtatata gttattgtgg ttgatatatg gaagccatca atgtcatatt 540
tatttataaa tatgtggtga ccatatgttt ataggctccg aatggtaaca gcgggttgag 600
cggggcggga caagcggatt agctagtgcg gtgcggtttg tgtgcggttt gtgttagaaa 660
aacgtatatt gcgggacaag tgcggttcgt ctaaaagaag cggtttaaaa caaaatgtga 720
atggcgactt gtgtaatgaa tagtgtaact gcgggataca taatatattt atattttata 780
aacaacaaaa tgagtaatac taatataatt tttaatatat atatatatat atattatttt 840
taaaaaatag tttatatatc taaaatataa atatgttatt tctgagtttt atagccaata 900
atttattgta ttttaatttc ttaagagaga tttttaagat ataaattata aaaagttata 960
aactaaaaca cacatagaaa tatacatcct taatccgtaa tgaattattt tattcttaaa 1020
cattaaactg gtgaagttgc aaaacacaat catttattaa ctttttaaat attgtctaaa 1080
aggtgaaata gaaaataaga aaggtttatt gcatatattt tctttacatt tttaattaac 1140
taataacaat aaacaataat tttaatatac tggttgacaa cagtatcaca aaccacacgt 1200
tattactcaa gttttgtctc aacgtgcggt acagacataa aacaatcccg ctacagtcac 1260
atttcttatt ttaattattt ttatatgcaa caattaatat caaacaaaac aaggtgaatg 1320
gtgacataat ttttgaccgt agggtgcgtc ttgtttaccc gcagttctca ttcaaggcct 1380
atatagatag atgttgggaa tctaaaacca cttatcataa agatatgatt tttggatttc 1440
tgacccacga gttatcagtt cagttcctct tatcttcggg acatctatac atacacgttg 1500
acatataagt atatagaggt taattattaa aaacgacagt gtttaacatg aaatactgta 1560
tgtttgagaa tcagattgtt aaaacgacag tgtttaacat taaaacgaca ggtgtttaac 1620
atgaatttag attgtctttt gatttcacat tttgggtata ttgtcgctat ttttatatct 1680
aagtacaagg acatatcaat aatgttgctg tttataacat aatgatggta tatcatttac 1740
agtcttatat agtaaggtac ttattggaat gtgttttcat tatataatga agcatgaggg 1800
aagtattaga gaggcataat ttgcagtcaa agaacttgga gaagcttgat cagccatctc 1860
ttgagttaca ggttagcttt gctattctct agcttataaa atctattccg ttatattacc 1920
atttttgatt aatgtatcct catgtacata agttttatca agaaactcta aaacattaaa 1980
ctaataggac tcaagcatta tattgattgt atgcgattac actatatttt gactatatgc 2040
gatcaaaacg aactaagagt gtttacaaga ctttgtttgt gattctctgt attattatag 2100
tttggtttaa aacatttttt acatgaatgg ttgcgagctc tctaaggcta gctagacatg 2160
tagaattagt caatgtgtat agattaacat gaatgggttt gcttaagttc ttaagtcaat 2220
gttttatttg ttagctggtt gagaacagtg acaattcccg gttgagcaaa gaaattgcag 2280
acaagagcca ccaactaagg tatactacat atgcatattc tacaaaaaag agttcccaac 2340
tatcatattt ctaagtacat gtttatatat aattttatat aggcaaatga gaggagagga 2400
acttcaagga cttaacatag aagagctgca acagctggaa aaggcccttg aagctggttt 2460
gacgcgcgtg attgaaacaa aggttgtttt ttacttatta cttattgatg ttaaaagtag 2520
taaattgtat gatacaacgt atatttttcg aagcttacga atgcgagatg ttgtttgcag 2580
agtgagaaga ttatgagtga gatcagtgac cttcaaagaa aggtaaaata tcgaaatgag 2640
gtttattact tattgatttt ggcaattttg agagttcaaa tctcgctttt tggtgtttag 2700
ggaatgaaat tgatggatga gaacaagcgg ctaaggcagc atgtacacat cttatccttt 2760
gtcctataac acatatcttt gatcatactt tgacataaat ggttaaacca agtgattagc 2820
gtggttaaat agtgtcttat ctctatggaa attaatatag ttagtcagcc ttcaggtaaa 2880
acctttggac attcttccaa tgaaaaatgt aaattcatct gtggacactt ggtccaagat 2940
gtagagtgtg cattgttttg tttcaacttg acgttaataa ataagtatat atattttttt 3000
tcttttatgt tttttcaatc ttttgttttt atgtttttca aacttgaggt ccaaaatgtt 3060
tttcaatctt gattttccag ggaacacaac taacagaaga gaacgagcga ctaggcaagc 3120
aagtaagtcg ggtattattt caagtttaat gctaaatttg gaactttaat tttgtttaat 3180
gctaaatttg gaacttttgt ttgtgttatg gtgaagatat ataataatat gcatgaaaga 3240
tacggtggtg ttgagtcgga gaagaccgcc gtgtacgagg aagggcagtc gtcagagtcc 3300
attactaacg ccggaaactc caccggcgct cctgttgact ccgagagctc cgatacctct 3360
cttaggctcg ggtaa 3375
<210> 3
<211> 2834
<212> DNA
<213> BnaC08.SVP
<400> 3
atggcgagag agaagattca gatcaggaaa atcgacaacg cgacggccag acaagtaacg 60
ttctcaaaac gaagaagagg tcttttcaaa aaagctgaag agctatccgt tctctgcgac 120
gctgatgttg ctctcatcat cttctcttcc accggaaagc tctttgagtt ttgtagctcc 180
aggtctttct ctctaacttc gctatgacta tagttctttg tcattagatt tctccaagtc 240
tttgaaggaa acgtctctag atccagacag aagcttaaga gtttttagat gtcttagaag 300
tttactgtat attaaacctt actggaccac taactttata tataagaaat attaatgacc 360
aaaaataaca tttctgtaaa actatagtaa actctttatt tagtcaaaat aaggtatcta 420
agtacagtaa tattcaagat aatcttaatc ttaataatct gcacaaatgc tatatacctt 480
tatgttgcag aaatctgtaa ttgagttatt gtggatacat acggaagcca tcaatgtcat 540
attcattaaa aattgtggtt accttatacc attagaagtt cagaaataac attatatacg 600
tgtatataca tatctatgtg gatgtatgaa aattgggaac tttttcttga agaagtgatt 660
aataaaaata ataaacaggt tggaatcttt actagtgttg gtaaatgtca gaggtttttt 720
ggatatgtta tagatatatt gggaatctaa aaatgactta tcatatcata aagatacggt 780
tttggatttc tgacccacgg gttatcagtt cagttcctat cttcggggac atctatacac 840
acacgcacat atatgtatat acttgtcttt aaaaaacttc agtgcttaac atgaaataat 900
gtcttgtctc tggattaaat tgtgttttgt aatctaggtt gtgtatcttc tgtgtgtaca 960
ttgtccatcg atgtttagtt atatctaaag cactgggaag catcaacaat tacgctgttt 1020
ataacagaaa agtagataat ttccagtctt atatagtaaa atacttactg gaatgtgttt 1080
gcattatata atgaagcatg agggaagtgt tagagaggca taacttgcag tcaaagaact 1140
tggagaagct agatcaacca tctcttgagt tacaggttag cttgccattg tgtttaaatt 1200
accattttca gattatactc aagtacatgc attttggtca agaagctcta aaatattata 1260
ttaatggtag gactagagca ttatacttat tgcatacgat tagactacat tttagtgaca 1320
ctgaactcat actaaagtcg atccatacga actaagagta ttaaagagat gtgaggctca 1380
gacgatcagg tttgtagttc tctttgtgta atggtcgttt ggttcaaaac ctttataatc 1440
aattaatcat atttacatga taaaaaacat gcgagctttt tgaagccaga catgcatgta 1500
cagttagtca tgtgtagaga tctgagctta gatgattatg gttttgttta atgttatcat 1560
ttagctggtc gagaacagcg atcacgccct gttgagcaaa gagattgcgg gaaagagcca 1620
ccgattaagg tacccaaata tatgcgtatt ctttaaattt ctaaacaatt atcattttct 1680
tacggcatgt gtttatatga tcatatacag gcaaatgaga ggagaggaac ttcaaggact 1740
taacattgaa gaacttcaac agctggaaaa ggcccttgaa tccggtttga ctcgcgtaat 1800
tgaaaccaag gttgttaaaa atttagatgt taaaagatgt aacgccatga tactatgaat 1860
aagacgacta tgttacttaa ctactatgag atgttgtttc agagtgaaaa gattatgaat 1920
gagatcagtt atcttcaaag aaaggtaaaa agcaaaacaa cgttttatct ttacttcttg 1980
attcaaataa ttttggcaat aacaagttac aattttctct tttcctaggg aatgcaactg 2040
atggacgtga acaagcggct aaggcagcaa gtacgcatct tactctttat ctttaacaca 2100
tatctccgac gatattttga gataattggt taaaccaagt gattagcgtg gttaaaagtg 2160
tatttatata taatggtaaa ataatagcta ataatttcaa ttgtatagtt taaaaacaaa 2220
ggaaactcgg tcctagctgc atgtaggatg gttttggttt gcgctctcta tgttttcaga 2280
ttgttttgtg gaatatggaa acttaaataa tcaaaatctc ttttgatttg atttaacctg 2340
gttctgatta aaattttgaa tatttataac acgttttcaa gattgatttt tgtttcatat 2400
tattttgttt cagatcaaat tattataatt ggttatttct agataaaagt aatcatccct 2460
caatctctag agaagaccaa gacatttggt gccagtaaaa actcaaaatt caagttttct 2520
cattgtcttt tctatgatca aatcttgatt tttcagggga cacagttaac ggaagagaac 2580
gagcgactag gtcagcaggt acgtatcgat tgttgtgtat ttttatattt ttggttaaat 2640
gttaaattag gaagttttat ttggtgacgg tgtagatata caataatgtg catgaaagat 2700
acggtggagg tgaatcagag aacactgccg tgtacgagga aggacactca tcggagtcca 2760
ttactaacgc cggaaactcc acaggcgctc ctgttgactc cgagagctcc gatatctccc 2820
ttaggctcgg gtaa 2834
<210> 4
<211> 3109
<212> DNA
<213> BnaC04.SVP
<400> 4
atggcgagag agaagattca gatcaggaaa atcgacaacg cgacggcgag acaagtaact 60
ttctctaaac gaagaagagg tcttttcaaa aaagctgaag agctctccgt tctctgcgac 120
gctgatgttg ccctcatcgt cttctcttcc accggaaagc tcttcgagtt ttgtagctcc 180
aggtctctct cgttctcttt agatttctca aaacctctaa agaatcgtct ctagatccag 240
aataagctta tttcttacat gtgtatgtca tacacaaaag tttactgtat caaacccgta 300
ttggaccact aactttttta tataagaata ccaaaaatgc ataaatagta ccatggtaaa 360
ctctttattt aggcaaataa gcttatctac gtacagtaat attcaagata atgcaaatgt 420
tttagtcatt taatataata ctatattttt ttgtataatt atgtatatat agttattgtg 480
gttgatatat ggaaagccat caatgtcata tttatttata aatatgtggt gactatatgt 540
ttatatagat gttgggaatc taaaaccact tatcataaag atatgatttt ggatttctga 600
cccacgagtt atcagttcag ttcctatctt cgggacatct atacatacac gctcacatat 660
aagtatatag atgttaatta ttaaaaacga cagtgtttaa catgaaatac tgtctgtttg 720
agaattatat tgttttgtga atttagattg tgtcttttga tttcacattt tgggtacatt 780
gtcgctattt tttatacttt ctaagtagtc acgcttatta agaatttaat aaatgtttat 840
aatttaattt aatttttact ttcttataca ctttccaata actttccacc aataaaattt 900
aatcaattca aatattctca acaataaaat ttaatcaatt caaatattct caattaatgt 960
tcctcaaaag tataaaaaaa taccttaaca atatagaaaa tctatctttg tggaacaaga 1020
aaaaaatcta aaacatctta ttttcgggaa cggagctagt atctaagtac aaggacatat 1080
caataatgtt gatgtttata acataatggt atatcattta cagtcttata tagtaaggta 1140
cttattggaa tgtgttttca ttatataatg aagcatgagg gaagtactag agaggcataa 1200
tttgcagtca aagaacttgg agaagcttga tcagccatct cttgagttac aggttagctt 1260
tgctattctc tagcttataa aatctattcc gttatattac catttttaat taatgtatcc 1320
tcatgtacat aaattttatc aagaaacttt aaaacattat actaatagga cccaagcatt 1380
atattgattg tatgcgatta cattatattt tgactatatg cgatccaaac gaactaagag 1440
tgtttaaaag actttgtttg tgattctctg tataatcata gtttggttta aaaccttttt 1500
tacatgaatg gttgcgcgct ctctaaggct agctagacat gtagaataag tcaatgtgta 1560
tagattaaca tgaatgggtt tgcttaagtt cttaagtcaa tgttttactt gttagctggt 1620
tgagaacagt gaaaattccc ggttgagcaa agaaattgca gacaagagcc accaactaag 1680
gtatactaca tatgcatatt ctacaaaaaa acgttcccaa ctatcatatt tctaagtaca 1740
tgtttatata taattaaata taggcaaatg agaggagagg aacttcaagg acttaacata 1800
gaagagctgc aacagctgga aaaggccctt gaagctggtt tgacgcgcgt gattgaaaca 1860
aaggttgttt tttacttatg acttattgat gttaaaagta gtaaatggta tgatataatg 1920
tatatcattc tcgaagctta cgaatgcgag atgttgtttg cagagtgaga agattatgag 1980
tgagatcagt gaccttcaaa gaaaggtaaa acatcgaaaa gaggtttatt acttattgat 2040
tcaaatgatt ttggcaattt tgagagttca aatctcgctt tttggtgttt agggagtgaa 2100
attgatggat gagaacaagc ggctaaggca gcatgtacac atcttatcct ttctcctata 2160
acacatatct ttgatcatac tttgacataa acggttaaac caagtggtta gcgtggttaa 2220
atagtgtctt atctctatgg aaaattaata tagttagtta gccttaatgt aaaacctttg 2280
gacattcatc cagtaaaaaa atataaattc atctgtggac acttggtcca agatgtagag 2340
tgtgcattgt tttgtttcaa cttgaggtta atatatatat tttccttttt tttttctttt 2400
atgtttttca atcttgattt tgcagggaac acaactaaca gaagagaacg agcgactagg 2460
caagcaagta agtcggtatt atttcaagtt taatgctaaa tttggaagtt ttgtttaatg 2520
ctaaatttgg aagttttgtt tgtgttatgg tgaagatata taataatatg catgaaagat 2580
acggtggtgt tgagtcggag aagaccgccg tgtacgagga agggcactcg tcagagtcca 2640
ttactaacgc cgggaactcc accggcgctc ctgttgactc cgagagctcc gatacctctc 2700
taaggctcgg gtaattcatt atttttcacc atggcttaat tttggttatt ttcctgattt 2760
aataagttga catgattttt gtttgtaaaa ctaatattat ctaaaaaaga aaagaagagt 2820
tatggcctaa aaaatcacat gttaatcatt tcttcgtaaa atgataaaag gattgaaaat 2880
aagttgacat aatttcgtct atgtttttaa caatgatctt gctattttat cttacgaccc 2940
ctattaaata tgatatgcaa caacgacaaa aaaaaatgat atgcaacatt ttatttaaat 3000
ccaacgtgaa aaatagacca ctaatttacg tttgttttgc atctgttagt atgaaaataa 3060
atatataatt taatgtttgg tttcttgcag cttaccgtat ggcggttag 3109
<210> 5
<211> 202
<212> PRT
<213> BnaA09.SVP
<400> 5
Met Arg Glu Val Leu Glu Arg His Asn Leu Gln Ser Lys Asn Leu Glu
1 5 10 15
Lys Leu Asp Gln Pro Ser Leu Glu Leu Gln Leu Val Glu Asn Ser Asp
20 25 30
His Ala Leu Leu Ser Lys Glu Ile Ala Glu Lys Ser His Arg Leu Arg
35 40 45
Tyr Thr Asn Ile Cys Val Phe Phe Lys Phe Arg Asn Asn Tyr His Phe
50 55 60
Leu Thr Val Cys Val Tyr Met Ile Met Tyr Arg Gln Met Arg Gly Glu
65 70 75 80
Glu Leu Gln Gly Leu Asn Ile Glu Glu Leu Gln Gln Leu Glu Lys Ala
85 90 95
Leu Glu Ser Gly Leu Thr Arg Val Ile Glu Thr Lys Ser Glu Lys Ile
100 105 110
Met Asn Glu Ile Ser Tyr Leu Gln Arg Lys Gly Met Gln Leu Met Asp
115 120 125
Glu Asn Lys Arg Leu Arg Gln Gln Gly Thr Gln Leu Thr Glu Glu Asn
130 135 140
Glu Arg Leu Gly Gln Gln Ile Tyr Asn Asn Val His Glu Arg Tyr Gly
145 150 155 160
Gly Cys Glu Ser Glu Asn Ile Ala Val Tyr Glu Glu Gly His Ser Ser
165 170 175
Glu Ser Ile Thr Asn Ala Gly Asn Ser Thr Gly Ala Pro Val Asp Ser
180 185 190
Glu Ser Ser Asp Ile Ser Leu Arg Leu Gly
195 200
<210> 6
<211> 236
<212> PRT
<213> BnaA04.SVP
<400> 6
Met Ala Arg Glu Lys Ile Gln Ile Arg Lys Ile Asp Asn Ala Thr Ala
1 5 10 15
Arg Gln Val Thr Phe Ser Lys Arg Arg Arg Gly Leu Phe Lys Lys Ala
20 25 30
Glu Glu Leu Ser Val Leu Cys Asp Ala Asp Val Ala Leu Ile Val Phe
35 40 45
Ser Ser Thr Gly Lys Leu Phe Glu Phe Cys Ser Ser Ser Met Arg Glu
50 55 60
Val Leu Glu Arg His Asn Leu Gln Ser Lys Asn Leu Glu Lys Leu Asp
65 70 75 80
Gln Pro Ser Leu Glu Leu Gln Leu Val Glu Asn Ser Asp Asn Ser Arg
85 90 95
Leu Ser Lys Glu Ile Ala Asp Lys Ser His Gln Leu Arg Gln Met Arg
100 105 110
Gly Glu Glu Leu Gln Gly Leu Asn Ile Glu Glu Leu Gln Gln Leu Glu
115 120 125
Lys Ala Leu Glu Ala Gly Leu Thr Arg Val Ile Glu Thr Lys Ser Glu
130 135 140
Lys Ile Met Ser Glu Ile Ser Asp Leu Gln Arg Lys Gly Met Lys Leu
145 150 155 160
Met Asp Glu Asn Lys Arg Leu Arg Gln His Gly Thr Gln Leu Thr Glu
165 170 175
Glu Asn Glu Arg Leu Gly Lys Gln Ile Tyr Asn Asn Met His Glu Arg
180 185 190
Tyr Gly Gly Val Glu Ser Glu Lys Thr Ala Val Tyr Glu Glu Gly Gln
195 200 205
Ser Ser Glu Ser Ile Thr Asn Ala Gly Asn Ser Thr Gly Ala Pro Val
210 215 220
Asp Ser Glu Ser Ser Asp Thr Ser Leu Arg Leu Gly
225 230 235
<210> 7
<211> 263
<212> PRT
<213> BnaC08.SVP
<400> 7
Met Ala Arg Glu Lys Ile Gln Ile Arg Lys Ile Asp Asn Ala Thr Ala
1 5 10 15
Arg Gln Val Thr Phe Ser Lys Arg Arg Arg Gly Leu Phe Lys Lys Ala
20 25 30
Glu Glu Leu Ser Val Leu Cys Asp Ala Asp Val Ala Leu Ile Ile Phe
35 40 45
Ser Ser Thr Gly Lys Leu Phe Glu Phe Cys Ser Ser Ser Met Arg Glu
50 55 60
Val Leu Glu Arg His Asn Leu Gln Ser Lys Asn Leu Glu Lys Leu Asp
65 70 75 80
Gln Pro Ser Leu Glu Leu Gln Leu Val Glu Asn Ser Asp His Ala Leu
85 90 95
Leu Ser Lys Glu Ile Ala Gly Lys Ser His Arg Leu Arg Tyr Pro Asn
100 105 110
Ile Cys Val Phe Phe Lys Phe Leu Asn Asn Tyr His Phe Leu Thr Ala
115 120 125
Cys Val Tyr Met Ile Ile Tyr Arg Gln Met Arg Gly Glu Glu Leu Gln
130 135 140
Gly Leu Asn Ile Glu Glu Leu Gln Gln Leu Glu Lys Ala Leu Glu Ser
145 150 155 160
Gly Leu Thr Arg Val Ile Glu Thr Lys Ser Glu Lys Ile Met Asn Glu
165 170 175
Ile Ser Tyr Leu Gln Arg Lys Gly Met Gln Leu Met Asp Val Asn Lys
180 185 190
Arg Leu Arg Gln Gln Gly Thr Gln Leu Thr Glu Glu Asn Glu Arg Leu
195 200 205
Gly Gln Gln Ile Tyr Asn Asn Val His Glu Arg Tyr Gly Gly Gly Glu
210 215 220
Ser Glu Asn Thr Ala Val Tyr Glu Glu Gly His Ser Ser Glu Ser Ile
225 230 235 240
Thr Asn Ala Gly Asn Ser Thr Gly Ala Pro Val Asp Ser Glu Ser Ser
245 250 255
Asp Ile Ser Leu Arg Leu Gly
260
<210> 8
<211> 241
<212> PRT
<213> BnaC04.SVP
<400> 8
Met Ala Arg Glu Lys Ile Gln Ile Arg Lys Ile Asp Asn Ala Thr Ala
1 5 10 15
Arg Gln Val Thr Phe Ser Lys Arg Arg Arg Gly Leu Phe Lys Lys Ala
20 25 30
Glu Glu Leu Ser Val Leu Cys Asp Ala Asp Val Ala Leu Ile Val Phe
35 40 45
Ser Ser Thr Gly Lys Leu Phe Glu Phe Cys Ser Ser Ser Met Arg Glu
50 55 60
Val Leu Glu Arg His Asn Leu Gln Ser Lys Asn Leu Glu Lys Leu Asp
65 70 75 80
Gln Pro Ser Leu Glu Leu Gln Leu Val Glu Asn Ser Glu Asn Ser Arg
85 90 95
Leu Ser Lys Glu Ile Ala Asp Lys Ser His Gln Leu Arg Gln Met Arg
100 105 110
Gly Glu Glu Leu Gln Gly Leu Asn Ile Glu Glu Leu Gln Gln Leu Glu
115 120 125
Lys Ala Leu Glu Ala Gly Leu Thr Arg Val Ile Glu Thr Lys Ser Glu
130 135 140
Lys Ile Met Ser Glu Ile Ser Asp Leu Gln Arg Lys Gly Val Lys Leu
145 150 155 160
Met Asp Glu Asn Lys Arg Leu Arg Gln His Gly Thr Gln Leu Thr Glu
165 170 175
Glu Asn Glu Arg Leu Gly Lys Gln Ile Tyr Asn Asn Met His Glu Arg
180 185 190
Tyr Gly Gly Val Glu Ser Glu Lys Thr Ala Val Tyr Glu Glu Gly His
195 200 205
Ser Ser Glu Ser Ile Thr Asn Ala Gly Asn Ser Thr Gly Ala Pro Val
210 215 220
Asp Ser Glu Ser Ser Asp Thr Ser Leu Arg Leu Gly Leu Pro Tyr Gly
225 230 235 240
Gly
<210> 9
<211> 23
<212> DNA
<213> sgRNA1
<400> 9
atgagaggag aggaacttca agg 23
<210> 10
<211> 23
<212> DNA
<213> sgRNA2
<400> 10
aacatcagcg tcgcagagaa cgg 23
<210> 11
<211> 23
<212> DNA
<213> sgRNA3
<400> 11
ctctaatact tccctcatgc tgg 23
<210> 12
<211> 23
<212> DNA
<213> sgRNA4
<400> 12
cgagagagaa gattcagatc agg 23
<210> 13
<211> 27
<212> DNA
<213> PB-R
<400> 13
gcgcgcggtc tctaccgacg cgtatcc 27
<210> 14
<211> 23
<212> DNA
<213> BnaSVPT2-F
<400> 14
gtcaacatca gcgtcgcaga gaa 23
<210> 15
<211> 39
<212> DNA
<213> SUN20-F
<400> 15
ggagtgagta cggtgtgcct taaagttctt tctctaggg 39
<210> 16
<211> 36
<212> DNA
<213> SUN20-R
<400> 16
gagttggatg ctggatggag aaagacctgg agctac 36
<210> 17
<211> 23
<212> DNA
<213> SUN21-F
<400> 17
tcaattcaag atcttcctcc tgt 23
<210> 18
<211> 23
<212> DNA
<213> SUN21-R
<400> 18
gattagagat atgtgttaaa gac 23
<210> 19
<211> 22
<212> DNA
<213> SUN22-F
<400> 19
taattcaaga tcttcctcct gt 22
<210> 20
<211> 21
<212> DNA
<213> SUN22-R
<400> 20
cgtcggagat atgtgttaaa g 21
<210> 21
<211> 41
<212> DNA
<213> SUN23-F
<400> 21
ggagtgagta cggtgtgcga aataactatc attttcttac g 41
<210> 22
<211> 37
<212> DNA
<213> SUN23-R
<400> 22
gagttggatg ctggatggcg cgagtcaaac cggattc 37
<210> 23
<211> 40
<212> DNA
<213> SUN24- F
<400> 23
ggagtgagta cggtgtgcaa acaattatca ttttcttacg 40
<210> 24
<211> 37
<212> DNA
<213> SUN24-R
<400> 24
gagttggatg ctggatgggg tttcaattac gcgagtc 37
<210> 25
<211> 40
<212> DNA
<213> SUN25- F
<400> 25
ggagtgagta cggtgtgcca atccatactt ttcctcttgg 40
<210> 26
<211> 37
<212> DNA
<213> SUN25-R
<400> 26
gagttggatg ctggatggcg agagagacac aaggtag 37
<210> 27
<211> 39
<212> DNA
<213> SUN26- F
<400> 27
ggagtgagta cggtgtgcca ctacatatgc atattctac 39
<210> 28
<211> 39
<212> DNA
<213> SUN26-R
<400> 28
gagttggatg ctggatggca taagtgagaa caacctttg 39
<210> 29
<211> 39
<212> DNA
<213> SUN27- F
<400> 29
ggagtgagta cggtgtgcaa gagttcccaa ctatcatat 39
<210> 30
<211> 39
<212> DNA
<213> SUN27-R
<400> 30
gagttggatg ctggatggaa tatacgttgt atcatacaa 39
<210> 31
<211> 21
<212> DNA
<213> SUN28- F
<400> 31
tatcaataat gttgctgttt a 21
<210> 32
<211> 22
<212> DNA
<213> SUN28-R
<400> 32
tacttattta ttaacgtcaa gt 22
<210> 33
<211> 39
<212> DNA
<213> SUN29- F
<400> 33
ggagtgagta cggtgtgcgg aatgtgtttt cattatata 39
<210> 34
<211> 36
<212> DNA
<213> SUN29-R
<400> 34
gagttggatg ctggatgggc tagagaatag caaagc 36

Claims (4)

1.具有不同开花期的油菜突变体材料的制备方法,其特征在于:克隆BnaSVP的基因组序列,利用CRISPR/CAS9技术靶向BnaSVP的四个同源拷贝,获得突变体,所述突变体材料由所述的BnaSVP的同源拷贝中BnaA09.SVP的单拷贝突变,BnaA09.SVP和BnaC04.SVP两个拷贝同时突变,BnaA09.SVP和BnaC08.SVP两个拷贝同时突变,BnaA04.SVP、BnaA09.SVP和BnaC08.SVP三个拷贝同时突变,及BnaSVP的四个拷贝同时突变所产生的基因编码区内的核苷酸序列突变获得;
其中,所述BnaSVP基因的四个拷贝的核苷酸序列分别为:SEQ ID NO.1所示的BnaA09.SVP,SEQ ID NO.2所示的BnaA04.SVP,SEQ ID NO.3所示的BnaC08.SVP,SEQ IDNO.4所示的BnaC04.SVP;
所述BnaA09.SVP的氨基酸序列见SEQ ID NO.5,所述BnaA04.SVP的氨基酸序列见SEQID NO.6,所述BnaC08.SVP的氨基酸序列见SEQ ID NO.7,所述BnaC04.SVP的氨基酸序列见SEQ ID NO.8。
2.根据权利要求1所述的具有不同开花期的油菜突变体材料的制备方法,其特征在于:
所获突变体单株为:BnaSVP17-5 aa1aa2cc1cc2 、BnaSVP29-3 aa1aa2CC1cc2 、BnaSVP52-11 aa1aa2cc1cc2 、BnaSVP48-3 AA1aa2cc1CC2 、BnaSVP38-5 AA1aa2CC1cc2 、BnaSVP25-8 AA1aa2CC1CC2。
3.获取如权利要求2中所述的突变体单株的方法,其特征在于,包括以下步骤:
步骤1:获取BnaSVP基因片段;
步骤2:针对BnaSVP基因的核苷酸序列设计sgRNA,并构建载体;
步骤3:将步骤2中构建的载体转化至油菜株系中,获得突变体油菜株系;
步骤4:对突变体油菜株系进行检测并测序,确定株系基因型;
步骤5:获得的突变体油菜株系种植并自交分离,获得BnaA09.SVP的单拷贝突变,BnaA09.SVP和BnaC04.SVP两个拷贝同时突变,BnaA09.SVP和BnaC08.SVP两个拷贝同时突变,BnaA04.SVP、BnaA09.SVP和BnaC08.SVP三个拷贝同时突变,及BnaSVP的四个拷贝同时突变的突变体材料;
步骤2中设计四个sgRNA,其中S1,S2,S3靶向BnaA04.SVP拷贝,S1,S2,S4靶向BnaA09.SVP,BnaC04.SVP和BnaC08.SVP拷贝。
4.根据权利要求3所述的获取突变体单株的方法,其特征在于,获得的纯合突变体的sgRNA序列为:
BnaSVP17-5 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGGA----CAAGG -4bp
S2
CCGTTC--TCTGCGACGCTGATGTT wt
a2-1 CCGTTCT-TCTGCGACGCTGATGTT +A
c1-1 CCGTTCTATCTGCGACGCTGATGTT +2bp
c1-2 CCGTTC------CGACGCTGATGTT -4bp
c2-1 CCGTTCT-TCTGCGACGCTGATGTT +T
c2-2 CCGTTC---CTGCGACGCTGATGTT -T
BnaSVP29-3 aa1aa2CC1cc2
S1
ATGAGAGGAGAGGAACTTCAAGG wt
a1 ATGAGAGGAGAGG------AAGG -6bp
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTTCTTCTGCGACGCTGATGTT +T
c2-1 CCGTTCTTCTGCGACGCTGATGTT +T/58%
c2-2 CCGTTC-T—GCGACGCTGATGTT -2bp/42%
S4
CGAGAGAGAAGATTCAG-ATCAGG wt
a2 CGAGAGAGAAGATTCAGTATCAGG +T
c2 /--------------------AGG -31bp
BnaSVP52-11 aa1aa2cc1cc2
S1
ATGAGAGGAGAGGGAACTTCAAGG wt
a1-1 ATGAGAGGAGAGGGAAC-TCAAGG -T/60%
a1-2 ATGAGAGGAGAGGGAAC----AGG -4bp/40%
a2 ATGAGAGGAGAGGG-----CAAGG -5bp
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTTACTGCGACGCTGATGTT +2bp/74%
a2-2 CCGTTCT---TGCGACGCTGATGTT -C/10%
c1-1 CCGTTCTA-CTGCGACGCTGATGTT +A/45%
c1-2 CCGTT------GCGACGCTGATGTT -4bp/55%
c2 CCGTTCT-------ACGCTGATGTT -5bp
BnaSVP48-3 AA1aa2cc1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2 CCGTT----TGCGACGCTGATGTT -3bp
c1 CCGTTCTTCTGCGACGCTGATGTT +T
S4
CGAGAGAGAAGATTCAGATCAGG wt
c1 CGAGAGAGAAGAT-----TCAGG -5bp
BnaSVP38-5 AA1aa2CC1cc2
S2
CCGTTCT--CTGCGACGCTGATGTT wt
a2-1 CCGTTCTA---GCGACGCTGATGTT +A/60%
a2-2 CCGTTCT----GCGACGCTGATGTT -2bp/40%
c2 CCGTTCTATCTGCGACGCTGATGTT +2bp
BnaSVP25-8 AA1aa2CC1CC2
S2
CCGTTC-TCTGCGACGCTGATGTT wt
a2-1 CCGTTCTTCTGCGACGCTGATGTT +T/43%
a2-2 CCG--------------------/ -28bp/57%。
CN202110049541.3A 2021-01-14 2021-01-14 BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法 Active CN112608930B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110049541.3A CN112608930B (zh) 2021-01-14 2021-01-14 BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110049541.3A CN112608930B (zh) 2021-01-14 2021-01-14 BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法

Publications (2)

Publication Number Publication Date
CN112608930A CN112608930A (zh) 2021-04-06
CN112608930B true CN112608930B (zh) 2022-12-13

Family

ID=75254231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110049541.3A Active CN112608930B (zh) 2021-01-14 2021-01-14 BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法

Country Status (1)

Country Link
CN (1) CN112608930B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116621959B (zh) * 2023-04-26 2024-04-19 青岛农业大学 大豆GmMADS5基因及其在植物花期调控中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070053A1 (en) * 1999-05-18 2000-11-23 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Transgenic plants exhibiting an altered flowering time
CN101663398A (zh) * 2007-02-06 2010-03-03 首尔大学校产学协力团 控制植物的开花时间的svp基因
CN107723379A (zh) * 2017-11-30 2018-02-23 华中农业大学 一种控制甘蓝型油菜开花期的分子标记及应用
WO2018213538A1 (en) * 2017-05-17 2018-11-22 Cold Spring Harbor Laboratory Mutations in mads-box genes and uses thereof
CN111560371A (zh) * 2020-04-26 2020-08-21 西北农林科技大学 一种基于CRISPR/Cas9的甘蓝型油菜基因编辑材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ552259A (en) * 2004-07-08 2008-09-26 Dlf Trifolium As Means and methods for controlling flowering in plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000070053A1 (en) * 1999-05-18 2000-11-23 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Transgenic plants exhibiting an altered flowering time
CN101663398A (zh) * 2007-02-06 2010-03-03 首尔大学校产学协力团 控制植物的开花时间的svp基因
WO2018213538A1 (en) * 2017-05-17 2018-11-22 Cold Spring Harbor Laboratory Mutations in mads-box genes and uses thereof
CN107723379A (zh) * 2017-11-30 2018-02-23 华中农业大学 一种控制甘蓝型油菜开花期的分子标记及应用
CN111560371A (zh) * 2020-04-26 2020-08-21 西北农林科技大学 一种基于CRISPR/Cas9的甘蓝型油菜基因编辑材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Data Descriptor: Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation;Sarah Schiessl;《Scientific Data》;20170314;第1-10页 *
Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome;Boulos Chalhoub;《Science》;20140822;第345卷(第6199期);第950-953页 *

Also Published As

Publication number Publication date
CN112608930A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
AU2021225142B2 (en) Generation of haploid plants
CN106164272B (zh) 修饰的植物
CN111635892B (zh) 一种具有草铵膦抗性的谷氨酰胺合成酶突变体及其应用
CN111073898A (zh) 小麦条锈病抗性基因YrU1及其克隆与应用
CN113667682A (zh) Yh66-rs11190基因突变体及其在制备l-缬氨酸中的应用
CN113637688A (zh) 水稻稻米直链淀粉含量调控基因OsACF1及其应用
CN108218968B (zh) 一种植物籽粒性状相关蛋白及其编码基因和应用
CN112608930B (zh) BnaSVP基因在调控油菜花期中的应用、具有不同开花期的油菜突变体材料的制备方法
CN111808869A (zh) 参与番茄果实大小、番茄红素及β-胡萝卜素调控的基因SlOPT7及其应用
CN111116724B (zh) 水稻d11基因在调控植物抗旱性中的应用
CN108517324A (zh) 一个影响烟草腋芽分化的NtIPMD基因
CN107435044B (zh) 水稻雄蕊特异表达的启动子及其应用
CN111378672A (zh) 一种水稻矮化、多分蘖基因Os11g0587000突变体及其应用
KR102516522B1 (ko) 반수체 식물을 유도하는 pPLAⅡη 유전자 및 이의 용도
CN114605509B (zh) Yh66_01475蛋白及其编码基因在调控细菌精氨酸产量中的应用
CN109295071A (zh) 一种水稻花器官发育调控基因peh1及其编码的蛋白质和应用
US20040210967A1 (en) Genes for controlling floral development in orchid
CN112679591B (zh) 抑制OaGS3基因表达的物质在调控四倍体野生稻籽粒长度中的应用
CN114958867A (zh) 玉米穗粒重和产量调控基因kwe2、其编码蛋白、功能标记、表达载体及应用
CN108586595B (zh) 水稻mis2基因及其编码蛋白与应用
CN108148846B (zh) 水稻叶型突变基因zy103及其应用
CN111269920A (zh) 一种小麦抗赤霉病基因TaXAX1及其应用
CN108676803A (zh) 一种植物蒺藜苜蓿花器官柱头外露基因及其编码的蛋白与应用
CN114854712B (zh) 玉米ZmWAK02基因在提高玉米灰斑病抗性中的应用
CN109706171B (zh) 水稻高光效基因hpe1及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant